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ABSTRACT

We present preliminary results of work in progress about the nuinber of limit
cycles of the Liénard equations:

= y-Fz)

= (1
where F(z) is an odd polynomial. We propose a function fu(z,y) = 3" +
@ (@Y™ + gaz(2)y™? + .. + go(z), where n is an even integer and g;(z)
(with 0 € j < n — 1) are arbitrary functions of z. These functions g;(z) can be
choosen in such a way that f, = (y — F(@) & - z%‘;- = Rn(z), where Bn(x) is
an even polynomial,
Motivated by the study of several particular cases, we conjecture the following
theorem:
Theorem:Let m be the number of limit cycles of (1). Let r be the number of
positive roots of Rn(z) (with n even) of odd multiplicity. Then we have:

i m<r,Vn even

ii fn' >nthenry —rp =2 withleN
1. Introduction and the Main Results

We present preliminary results of work in progress about the number of limit
cycles of the Liénard equations:
i = y- Flx)
¥ = -z (2)

where F(z) is an odd polynomial. We propose a function fule,y) = v +
Gt ()7 guca(2)y™ 2 + oo + gol2), wliere n is an even integer and g;{x)
{with 0 < j < #n — 1) are arbitrary functions of . These functions g;(:r) can be
choosen in such a way that f, = (y = F ()L — :::%5 = R.{x), where R,(r) is
an even polynomial. _

Motivated by the study of several parti(-ulaﬁ‘ cases, we conjecture the following
theorem:

ir
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Theorem:
Let m be the number of limit cycles of (2). Let r,, be the number of positive
roots of Ra(x) (with n even) of odd multiplicity. Then we have:

i m<r,¥n even
ii ifn'>nthenry—rp =2l withl €N

For the cases where 7, takes the same value for all even n, we show, for par-
ticular cases, that it is possible to determine, for each even n, constants K,
K39,y Ky in such a way that the closed curved fu(z,y) = Ky; (1< 7 < m)
represent an algebraic approximation to each limit cycle.

We present here some preliminary results of work in progress about the
Liénard equations (2).We will consider only the case where F(z) is an odd
polynomial of arbitrary degree.

The determination of the number of limit cycles of (2) as a function of the de-
gree of F(z) is an unsolved problem today.

The Russian mathematician Rychkov ! showed that, when F(z) = a1z +
a3z® + asz®, system (2) has at most two limit cycles. It is well known that, for
the case a5 = 0 and a;a3 < 0, system (2) has exactly one limit cycle. Another
known result is a particular case of a theorem of Blows and Lioyd 2: system (2)
with F(x) = 012 + 4323 + ... + @am+172™! has at most m local limit cycles and
there exist polynomials F'(x), with a,as, @s, ...0om41 alternating in sign, such
that (2) has m local limit cycles. There is also the following result of Perko *: for
€ # 0 sufficiently small, system (2) with F(z) = e(a1z+a3z® + ... + apme1 22™+1)
has at most m limit cycles.

We will explairn our method for obtaining information about the limit cycles
of (2) through the analysis of a very well known case, the van der Pol equation.
For this case, we have: '

F(z) = ¢(z*/3 - 1) (3)

We propose a function fa(z,¥) = y2 + g1{z)y + go{z), where ¢1(x) and go(z)
are arbitrary functions of z. Then we calculate f, = (y — F(z))%ﬂ% - m%’:f. This
quantity is a second degree polynomial in the variable y.

We will choose g,(z) and go(z) in such a way that the coefficients of y* and y in
fs are zero. From these conditions, we obtain g;(z) = K, and go{z) = 2® + K,
where Ay and K are arbitrary constants. We have then f, = Rafx) =
—2F(x) = —ex?(22/3—1). The polynomial R,(x) is even and it has exactly one
positive root of odd multiplicity, i.e. & = v/3. It is evident that the maximum
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value of z for the limit cycle must be greater than this root. If we take Ky = (),
the curves defined by fao(x,y) = 22 + y* + K, = 0 are closed for Aj < 0.

As the next step of our procedure, we propose a fourth degree polynomial in y
for the function fu(z,y), i.e. falz,y) = v*+g3(z)y*+ 022}y’ +a(2)y+g0(z). By
imposing the condition that f; must be a function only of z, we find fy = Ry(x)
where Ry(z) is an even polynomial of tenth degree. The roots of R4(z) depend
of e. In the following we take ¢ = 1. For this case R4(z) has only one positive
root of odd multiplicity, given by z = 1,824.. . This root is greater than the
root of Ry(z). Obviously, the maximum value of z for the limit cycle must
be greater than this value. We have in this way a new lower bound for the
maximum value of z on the limit cycle. Moreover, again the number of posi-
tive roots of odd multiplicity is equal to the number of limit cycles of the system.

The condition that f4 must be a function only of z imposes a first order triv-
ial differential equation for each function g;(z). These equations can be solved
by direct integration and we obtain in this way all the functions g;(z). We take
all the integration constants, that appear when we solve these equations, equal
to zero.

The function fi{z,y) is therefore a polynomial in x and y. Moreover, the
level curves f4{z,y) = K are all closed for positives values of K. We have found
the same results for greater values of n. We have calculated f.(z,y) and Ry(z)
up to order 18. In all cases, the polynomials R,(z) have only one positive root
of odd multiplicity. Let be 7, the number of positive roots of odd multiplicity
of the polynomial R,,(z). For the van der Pol equation, it seems that r, =1Vn
even. These roots approach in a monotonous fashion the maximum value of x
on the limit cycle. For n = 18, the polynomial Rs(z) is of fifty-second degree.

In fact, the functions f,(z,y) are polynomials in z and y for all n. The
level curves f,(z,y) = K are all closed for positive values of K. By imposing
the condition that the maximum value of = on the curve fy(z,y) = K must
be equal to the root of R,(z), we find a particular value of K for each n. Let
us call this value K7*. The level curve f,(x,y) = K represents an algebraic
approximation to the limit cycle. In fig. 1 and 2 we show this curve for the
values n = 6 and n = 18, respectively.

In table 1 we give the values of the roots of R,(zr) and the values of A}
for 2 < n < 18. The numerical value of the maximum of  on the limit cycle,
determined from a numerical integration of (2) is Tmer = 2.01 (¢ = 1}.
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Figure 1: The limit cycle of the van der Pol equation (exterior curve) and the
algebraic approximation fs(z,y) = K§.

Figure 2: The limit cycle of the van der Pol equation (exterior curve) and the
algebraic approximation fis(z,y) = K7y .
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n |root | A}

2 | 1L.73 3
4 1182 | 123
6 | 187! 54.5
8 |1.89 | 2476
10| 1.01 | 1141
12 | 1.92 | 5305
14 | 1.93 | 24773
16 | 1.84 | 116050
18 | 1.95 | 544800

Table 1: For each value of n we give the value of the Toot of R,{z) and the
value of K for the van der Pol equation. '

1t is clear that the roots of R.(z) seem to converge t0 Tmex and the curves
falz,y) = K& seem to converge to the limit cycle.

We have also studied equations (2) for the case:
F(z) =z —a°-22° (4)

A numerical analysis of this case seems to indicate that there is only one limit
cycle. The application to this case of the method described above gives the
same qualitative results that those obtained for the van der Pol equation. Up
to the value n = 14, we have checked that r, = 1. We conjecture that r, =1Vn
even. In figures 3 and 4 we show the curves fo(z,y) = K§, fralz,y) = Kiy,
and the limit cycle obtained by a numerical integration. In table 2 we give the
values of the roots of Rn{z) and the values of K for 2 < n < 14. As for the
van der Pol equation, each polynomial R,(z) has exactly one positive root of
odd multiplicity and the system has only one limit cycle.

We have also studied the case:
F(z) =08z — %ﬂ;‘a +0.322° (5)

This system has exactly two limit cycles . The polynomials R,(z) have ex-
actly two positive roots of odd multiplicity. We have checked that r, =2 up to
n = 14. We conjecture that r, = 2 ¥n even. For each value of n, we determine
two values K* and K7, The closed curves fa(z,y) = K7, and falzy) = K}y
provide algebraic approximations to each cycle for each value of n. In fig. 5 and
6 we show these curves for n = 6 and n = 14, respectively. We show also the
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Figure 3: The limit cycle of equations (2) with F(z) given by (4) (exterior
curve) and the algebraic approximation fs(z,y) = K3.

.

Figure 4: The limit cycle of equations (2) with F(z) given by (4) (exterior
curve) and the algebraic approximation fi4(z,y) = Kij-
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root | K

0.707 | 0.5

0.737 | 0.345
0.753 | 0.262
0.762 | 0.207
0.768 | 0.167
0.773 | 0.136
0.777 | 0.113

HL B ook o

Table 2: For each value of n we give the root of R,(z) and the value of K for
equation (2) with F(z) given by (4).

Figure 5: The limit cycles of equation (2) with F(z) given by (5) (rough
curves) and their algebraic approximations (smooth curves): fe(z,y) = K§)
and fo(x,y) = Ag,
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Figure 6: The limit cycles of equation (2) with F(z) given by (5) (rough curves)
and their algebraic approximations (smooth curves): fu(z,y) = Kiy; and

f14(37ay) = Kj4s

limit cycles obtained by numerical integration. In table 3, we give the values
of the roots of R,(z) and the values of K}, and K}, for 2 < n < 14. These

root one | Kyn | root two oY
0.852 | 0.726 | 1.854 | 3.439
0.905 |0.711 | 1.885 14.5
0.931 |0.739| 1.905 | 67.59
0.945 |0.784| 1.920 334
0.955 |0.840 1.931 | 1712
0962 |0.903 1.938 | 8973
0.967 |0.974{ 1945 147741

A s oo e e

Table 3: For each value of n, we give the two roots of R,(z) and the valﬁes of
Kz, and K, for equations (2), with F(z) given by (5)

roots seem t0 converge to the maximum values of z for each cycle. The curves
falz,y) = K2, and fo(z,y) = K}, seem to converge to each one of the limit
cycles of the system.

We have also studied system (2) with:

Flz)=2*-212%+z (6)
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For this case we have r, = 2 for n < 12. However, the second positive root of
R, () decreases with n. This phenomenon does not occur in the three previous
cases. When we calculate Rj{z), we find r); = 0. Thus we can conclude that
this system has no limit cycles.

Something resembling to an annihilation of the two roots of Ryo(r) seems to
oceur for the polynomial Rjs(z). An indication that this annihilation of roots
wilt occur seems to be the lowering of the value of the second root of R, (x) with
respect to n {between n = 2 and n = 10}.

More generally, we have considered system (2) with:
Flz)=2°—ps® +2 (7

Rychkov has proved in ! that this system has exactly two limit cycles for p > 2.5.
It is clear that this system has no limit cycles for s < 2 because r2 = 0 in that
case. Hence between u = 2 and g = 2.5 there is a bifurcation value u* such
that for 4 < y* the system has no limit cycles and for y > p* the system has
two limit cycles. When i = y* the system undergoes a saddle-node bifurcation.

By applying our method, we can obtain lower bounds for the value of u*.
For each even value of n we calculate the maximum value of p for which r,
is zero. This value of p represents a lower bound for 4*. The results of these
calculations are given in table 4. We have also analysed system (2) with F(z)

n Hh

2 2

4| 2057
6| 2071
8 1 2000
10 | 2.096
12| 2.100
14 | 2.10269
16 | 2.102693

Table 4: We give in this table, for each even value of n between 2 and 18, a
lower bound g, for the value of p*. This sequence seems to converge rapidely

toward .

given by:

F(z) = z(z® - 1.6%)(z% — 4)}{(z* - 9) (8)

For this case we have r, = rq = 3. However, the second positive root of R4(z) is
smaller than the second positive root of Ry(x). Indeed for n = 6 we find 5 = 1.
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Once again an annihilation of two roots has occured and this phenomenon lias
been annonced by the lowering of the value of one of the roots of R {r).

We conjecture that r, = 1 ¥n even, greater than 4. The muncrical analysis of
this system seems to indicate that it has exactly one limit cvele,

For all the cases that we have studied, we have found that two types of
behaviour of r, are possible:

i r, =r] for arbitrary even values of n and n'. In this case the wuuher of
limit cycles of the system is given by this common value of the wumber of
positive roots of odd multiplicity of R,(z)

ii the values of r,, changes with n; In this case the value of r, decreases with
n; besides we have r, —rj, = 2p for n’ > n and p € N. The roots of R, ()
seems to disappear by pairs.

Guided by the particular cases that we have analysed, we conjecture the follow-
ing theorem: :

Theorem: Let be m the number of limit cycles of (2). Let be r,, the number of
positive roots of Rn(z) (with n even} of odd multiplicity. Then we have:

i m<r,Vn even

it fn'>nthenr,—r, =2l withleN
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