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Foreword 
 
Computational modeling of materials behavior by multiscale materials modeling (MMM) 
approaches is becoming a reliable tool to underpin scientific investigations and to complement 
traditional theoretical and experimental approaches of component assessment. At transitional 
(microstructural) scales continuum approaches begin to break down and atomistic methods 
reach inherent limitations in time and length scale. Transitional theoretical frameworks and 
modeling techniques are developed to bridge the gap between the different length scales. 
 
Industrial success in high technology fields relies on the possibility to specifically engineer 
materials and products with improved performance. The success factor is the ability to make 
these material related developments timely at relatively low-costs. This demands not only the 
rapid development of new or improved processing techniques but also better understanding and 
control of material chemistry, processing, structure, performance, durability, and their 
relationships. This scenario usually involves multiple length and time scales and multiple 
processing and performance stages, which are usually only accessible via multi-scale / multi-
stage modeling or simulation. 
 
In high-payoff, high-risk technologies such as the design of large structures in the aerospace and 
nuclear industries, the effects of aging and environment on failure mechanisms cannot be left to 
conservative approaches. Increasing efforts are now focused on advancing MMM approaches to 
develop new material systems components and devices. Appropriate validation experiments are 
crucial to verify that the models predict the correct behavior at each length scale. Thus, one of 
the advantages of these MMM approaches is that, at each scale, physically meaningful 
parameters are predicted and used in models for subsequent scales, avoiding the use of 
empiricism and fitting parameters. 
 
Recent interest in nanotechnology is challenging the scientific community to design nanometer 
to micrometer size devices for applications in new generations of computers, electronics, 
photonics or drug delivery systems. These new application areas of multiscale materials 
modeling require novel and sophisticated science-based approaches for design and performance 
evaluation. Theory and modeling are playing an increasing role to reduce development costs and 
manufacturing times. With the sustained progress in computational power and MMM 
methodologies, new materials and new functionalities are increasingly more likely discovered by 
MMM approaches than by traditional trial and error approach. This is part of a paradigm shift in 
modeling, away from reproducing known properties of known materials towards simulating the 
behavior of hypothetical composites as a forerunner to finding real materials with these novel 
properties. 
 
The MMM 2006 conference provides an international forum for the scientific advances of 
multiscale modeling methodologies and their applications. 
 
I would like to thank the members of the international advisory committee, the local program 
committee and particularly the organizing team, the symposium organizers and the session 
chairs and the University of Freiburg for their engagement and support. Without their hard work 
and their devotion of time and ressources, the Third International Conference Multiscale 
Materials Modeling would not have been possible.  
 
Finally, I would like to thank our conference sponsors for their financial support: The German 
Research Foundation DFG, Accelrys Inc., Plansee S.E. and the Ministry of Science, Research and 
Art, Baden-Württemberg. 
 
Peter Gumbsch 
Conference Chair 
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ABSTRACT 
 
 
The DNA molecule is modeled as an elastic rod with bending and twisting rigidities, 
subjected to external tension and twist applied at one end, the other end being clamped. We 
study the plectonemic equilibrium of such a rod, taking into account the impenetrability 
constraint. Numerical solutions of this boundary value problem have previously shown that 
purely elastic models can reproduce the supercoiling response of the DNA molecule. Using a 
variational approach, we derive analytical formulae for the elastic response of the filament, 
and extend former numerical results. 
 
 
1. Introduction 
 
It is widely known that mechanical properties of the DNA molecule play an important role in 
the biology of cell, but at present we only have an imprecise view of the way DNA responds 
to various constraints. There is currently an upsurge of interest in this question as 
nanotechnologies make it possible to apply forces onto an isolated DNA filament. 
A typical loading that can be performed experimentally on a double strand of DNA is shown 
in Fig 1: a DNA molecule is fixed at one end on a glass pane while the other end is attached 
to a magnetic bead [1]. By using a magnet, it is possible to pull on the bead while twisting it 
around a vertical axis [2]. For a fixed pulling force, the molecule wraps around itself in a 
helical way, when the rotation angle of the bead exceeds a threshold value: the resulting 
structure is called a plectonem. These experiments can be done for different pulling forces, 
molecule contour lengths or salt concentrations. 
 

 
Figure 1. Simplified view of the experimental setup 
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2. Elastic model for the plectonemic regime 
 
We first investigate the equilibrium behavior of an elastic rod under the constraints described 
above. The rod, with bending rigidity K0 , and twisting rigidity K3, is considered inextensible, 
with a constant circular cross section of radius a, and a total contour length L. We note s the 
arclength with s=0 for the end fixed to the glass and s=L for the other end. The external loads 
are the pulling force F(L) and the torsional moment M(L). 
 
 
 2.1 Plectonems geometry 
 
To analyze the mechanical response of plectonems we make an ansatz on the geometry of the 
twisted filament, relevant to large applied twist: we assume that the plectonems can be 
assimilated to two identical and perfect helices (each one of these helices is itself a double 
strand of DNA), and we also suppose that curvature and twist are uniform in the plectonemic 
part. In the tails we further consider the twist to be uniform and the curvature to vanish, and 
we neglect both the end loop of the plectonems and the region connecting the tails and the 
plectonemic part. 
We parametrize the rod with Euler angles, and take into account material twist as well as 
geometrical torsion, which add up to give the total twist [3]. At the equilibrium the 
plectonems are described by five variables: the plectonemic radius R, the opening angle α, the 
value of the material twist ζp  in the plectonems, the length Lp  of the plectonemic region, and 
the material twist value ζt in the tails. We have for total curvature and twist the following 
expressions (where ε=+/- 1 stands for the chirality): 
 

 
 

  (1) 
 
We model the self-contact of the filament by a hard-wall potential. Geometric impenetrability 
implies that the two helices contact along a straight line, as long as the opening angle is less 
than π/4. In this case the plectonemic radius equals to the circular cross section of the rod. 
 
 
 2.2 Potential energy of the rod 
 
We now derive the potential energy of the elastic rod, which is the sum of three terms: the 
elastic energy, the work done by external loads, and the contact condition: 
 

  (2) 
 
 
where the strain elastic energy is the sum of the square of the curvature and the square of the 
twist, and the external force works again extension and the external moment works again 
rotation. Finally the contact constraint is represented with a Lagrange multiplier, λ. 
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 2.3 Results 
 
We seek extrema of Eqn (2) with regard to the five variables. Euler-Lagrange minimization 
with respect to the twist variables ζp and ζt yields  and 

, which show that the internal moment M(s) is constant 
along the filament, and takes the value M(L) imposed by the loading, both in the tails and in 
the plectonemic part. 
Minimization with respect to the opening angle gives the value of this internal moment: 
 

  (3) 
 
For the variable R we obtain the expression of the contact pressure in the rod: 
 

  (4) 
 
Finally for the Lp variable we find the relation between the pulling force and the plectonemic 
variables: 
 

  (5) 
 
Notice that the value of R is fixed by the condition of hard-wall contact R=a. With the help of 
Eqn (5) we obtain the value of α since the value of F(L) is fixed, and we have checked that 
this set of equations accurately describes the numerical results of [4]. 
 
 
3. Application to the DNA molecule 
 
In order to apply our model to DNA molecules we must consider the electrostatic effects due 
to the bare charge of DNA and to the counter-ions of the solution. Since the inter-strand 
distance is of the order of the Debye screening length the Debye-Hückel approximation, 
leading to the linear Poisson-Boltzmann equation, is not valid in the case we consider. The 
study of the non-linear case is, according to our knowledge, only possible numerically, and 
therefore does not yield any analytical expression. For example [5] investigates the potential 
created by a charged cylinder, and [6] consider helical geometry but within the linear 
approximation. 
We choose to avoid these difficulties by calculating an effective radius of the DNA molecule 
in the plectonemic regime. By effective radius we mean the radius that the  molecule must 
have for acting as a non-charged rod-like polymer. In fact it boils down to determinate the 
radius of the circular cross section introduced in the elastic model with hard-wall contact. We 
give in Fig 2 the effective radius as a function of the pulling force. These results are extracted 
from experimental data, as explained in [4], provided by G. Charvin and V. Croquette (LPS – 
ENS, Paris), on a dsDNA molecule of 11kbp. 
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Figure 2. Effective radius versus pulling force 

 
Fig 2 shows that at low forces the effective radius of the molecule is about 1nm, which is in 
good agreement with ordinary values of the core radius of dsDNA (from 0.9nm to 1.2nm). 
The increase of the effective radius can be interpreted in term of the Manning condensation 
process [7], although it is probably not the only effect to take into account. Experimental 
studies on plasmids at zero force [8] shows that the salt concentration influences the effective 
radius of the DNA molecule in a manner still not understood. 
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