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Elastic and Electrostatic Model for DNA
in Rotation—-Extension Experiments

S. Neukirch, N. Clauvelin, and B. Audoly

Abstract We present a self-contained theory for the mechanical response of DNA
in extension-rotation single molecule experiments. The theory is based on the elas-
ticity of the double-helix and the electrostatic repulsion between two DNA duplex.
The configuration of the molecule at large imposed rotation is assumed to comprise
two phases, linear and superhelical DNA. Thermal fluctuations are accounted for in
the linear phase and electrostatic repulsion is treated in the superhelical phase. This
analytical model enables the computation of the supercoiling radius and angle of
DNA during experiments. The torsional stress in the molecule and the slope of the
linear region of the experimental curve are also predicted and compared successfully
with experimental data.

1 Introduction

Mechanics of the DNA molecule is a key component for several biological processes
at the cellular level. The action of enzymes and proteins on DNA has been found
to often depend on the mechanical stress present in the molecule. In this context
single molecule experiments, where forces and torques are applied onto individual
DNA molecules, offer a remarkable opportunity to study mechanical issues. We are
here interested in extension-rotation experiments performed with the help of optical
or magnetic tweezers [2,3,6, 17]. Although different experimental methods exist,
within a mechanical point of view the problem is the same: a dsDNA molecule
is fixed by one end on a glass cover-slip while the other end is attached to a me-
chanical system that exerts a pulling force and a torsional moment on the molecule.
Experiments are carried out at constant pulling force while the upper end of the
molecule is rotated. The imposed rotation is characterized by the number of turns »
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114 S. Neukirch et al.

Fig. 1 Sketch of the magnetic tweezers experiment. A B-DNA molecule of total contour length £
is fixed in 5 = 0 to a glass surface while the other end in s = £ is attached to a magnetic bead.
A magnet is used to pull and impose a 21 rotation on the bead. As a result the molecule is subject
to a pulling force F,,, and a torque My, The superhelical angle and radius are denoted « and R
respectively. The zenith angle o and the azimuth angle ¥ of the tangent vector with regard to the
superhelical axis e, are also shown

2

performed. DNA is then under or over-wound and various molecule conformations
are observed [3]. In the present study we focus on the over-winding of a dsDNA
molecule for large imposed rotations. In such cases the molecule wraps around it-
self in a helical way and forms plectonemes as shown in Fig. 1.

Plectonemic DNA mechanics requires to account for various physical effects
such as thermal fluctuations, electrostatic interactions, self-avoidance, and DNA
elasticity. Although several studies have addressed these issues, a model consider-
ing all these effects together is still lacking. For instance, Goyal et al have presented
in [8? ] a numerical model which addresses within a mechanical point of view
the formation of DNA supercoils. Coleman and Swigon give in [5] an accurate
description of the mechanical equilibrium of supercoiled elastic rods. However
their model was applied to DNA plasmids, and does not take into account either
thermal fluctuations or DNA-DNA long-range interactions. More recently Purohit
has addressed plectonemic DNA mechanics using Kirchhoff elastic rod theory, al-
though contact forces in the plectonemic part of the molecule are not taken into
account [14]. Marko has presented an analytical, though not self-contained, model
which fit experimental data with good agreement [10]. This model accounts for ther-
mal fluctuations and self-avoidance but relies on numerical results extracted from
Monte—Carlo simulations.

The present paper is an extension of our previous analysis of plectonemic DNA
mechanics [4]. We present an analytical model for the mechanical response of
plectonemic DNA in extension-rotation experiments. We focus on the plectonemic
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regime, which means we consider large imposed rotations (large #). Our elastic
model accounts for DNA-DNA interactions present in the plectonemic region and
for thermal fluctuations present in the tails region.

2 Model

The present model investigates the equilibrium behavior of an elastic rod with
bending rigidity Ko (the bending persistence length is A = Ko/(kgT), where kg
is the Boltzmann constant and T the absolute temperature) and twisting rigidity K
under traction and torsion as shown in Fig. 1. This is a coarse-grained model for
DNA where base-pairs details are neglected. For instance, the anisotropic flexibility
of the molecule, originating from base pairing and major—minor groove geomeltry,
is smoothed out at a scale of several base pairs.

2.1 Geometry

We start with a geometric description of the rod configurations relevant to the plec-
tonemic regime. This defines a reduced set of configurations (Ansatz), over which
we shall minimize the elastic strain energy associated with deformations. The rod,
of length £, is considered inextensible and has circular cross-section; let s denote the
arclength along the rod. The strain energy involves, at lowest order, the geometric
curvature k(s) of the centerline of the rod as well as the twist £(s). The rod center-

line is parameterized by r(s) and its unit tangent ¢ < dr/ds can be described with
spherical angles, as shown in Fig. I: a(s) is the zenith angle and ¥ (5) the azimuth
angle with respect to the direction ey along the common axis of the two superhelices
in the plectonemic region.

We consider the following configurations, relevant to a large applied number
of turns, n. The tails are assumed to be straight but twisted (thermal fluctuations
will be accounted for by using the rescaled tail length predicted by the worm-like
chain [WLC] theory). The plectonemes are described by two identical and uniform
helices where each of these helices is itself a double-stranded DNA molecule. Both
the end loop of the plectonemes and the matching region between the tails and the
plectonemic part are neglected. Consequently the rod comprises two phases: one
made up of straight and twisted tails and the other one of plectonemic structures.

In the tails the rod is aligned with the e, axis: t = e,. The geometric curvature

lef : . . .
Kk = |dt/ds| is zero, k(s) = 0. In each filament of the plectonemes, the position

vector r(s) and the tangent vector t(s) describe a superhelix of axis e,:

Fe(s) = 5 cosa 1:(8) = cosa
ry(s) = x Rsinyr(s) and | t,(s) = sina cos ¥ (s) (1
r{s) =—y Rcosy(s) t.(v) = sina siny(s)

¢
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The other filament of the plectonemes is obtained by a rotation of 180° around the
axis e,. Here y = =1 stands for the chirality of the two (super-)helices — for ex-
ample in Fig. 1, y = —1. The quantities R and & are the superhelical radius and
angle, respectively. In Eq. 1, the condition dr/ds = t yields dy//ds = yx sina/R.
The curvature in the plectonemes is «(s) = [dt/ds| = ﬂ;—“— Noting {, the contour
length spent in the plectonemes, we obtain the following expression for the integral
of the squared curvature over the whole length of the rod f(f k2ds = ‘"‘ .2 ¢p. The
end torque twists the filament. For a rod with circular cross-section the tw;st (%)
at equilibrium is uniform, dz/ds = 0 for all 5, so we have f t2ds = 72¢£. In con-
clusion the equilibrium configuration of the rod is fully specified by the centerline,
through the variables «, R and £, and an additional scalar v describing twist. The
twist 7 is geometrically related to the number of turns imposed on the magnetic
bead, n, which is equal to the link of the DNA molecule, n = Lk. In the present

case the link reads [13]:
sin 2o
{— L), @2
m (t X 2R p) )

as we neglect the writhe of the tails.

2.2 Energy Formulation

Using the above notations the rod is described by four variables: a the superhelical
angle, R the superhelical radius, 7 the twist and £, the contour length spent in the
plectonemes. We proceed to derive the total energy of the system as a function of
these four variables. It is the sum of three terms, V = Vg + Vexe + Vi, where the
first term is the strain elastic energy, the second is the potential energy associated
with the external loads F.,, and M.y, and the third accounts for interaction of the
filaments in the plectonemes The strain elastic energy for the rod of total contour
length £ is Vy = —Qfo kids + —-"—f(;Z t?ds = —0-““ Wty + 5 K3 724, This strain
energy is to be seen as the first order approximation of a more comprehensive strain
energy, as for example terms for the longitudinal extension of the molecule or terms
coupling extension and twist could be added. Nevertheless in rod theory extension
{and shear) are higher order when compared to bending and twisting and indeed
stretching experiments on DNA have reported a large (> 1,000 pN) stretching stiff-
ness [19]. We do not take into account the reduction of the effective torsional rigidity

in the tails due to fluctuations [12]. The potential energy associated with the pulling

force is given by Vexy = — Fexe(z(£) — 2(0)) o = Fext Az, where Az = £ ~ £, for

straight tails. There is no term associated with the external moment since the rota-
tion n rather than the moment is imposed. The DNA-DNA interactions that occurs
in the plectonemic region of the rod involves different effects depending on the val-
ues of the supercoiling radius R. At moderate to large values of R (i.e., several nm)
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electrostatics effects dominate. In contrast to our previous paper [4], we here take
these electrostatics interactions into account. We introduce an energy of interaction
per unit length of molecule for the plectonemic phase, U(R, &) which is assumed
to depend on the superhelical radius and angle only Vip = £, U(R, ).

Finally we obtain the following function for the total energy of the system:

Ko sin* K
V(R. p.7) = Sty + 0= Feu (L= 8p) + £ UR ) ()

subjected to the end rotation constraint n = Lk where Lk is given by Eq. 2. As
this constraint is linear in £, we use it in order to substitute {, with an expression
involving 7 and n. Dropping the constant term — Fey, £, we obtain:

K —~ in
Vi Ro1) = —> 120+ Qun—18) | = 2x_(Kosiva | pr  + RUR. @)
2 sin 2o 2R
K .
= ?3t2€+g(r)j(R,a). 4)

2.3 Ubbink and Odijk Model of DNA-DNA Interactions

In their study of supercoiled DNA plasmids [18] Ubbink and Odijk derive an an-
alytical expression for the electrostatic interaction energy between two interwound
DNA molecules. Their work is based on the Poisson-Boltzmann theory where, in the
computation of the electrostatic repulsion of the two charged molecules, the pres-
ence and fluctuations of the counter-ions and co-ions in solution play an important
role. The electrostatic interaction energy (per unit length) derived in [18] writes as
follow:

1
U(R.q) = EkBT v2ip ‘/;Ee_m ¢la) (5)

where kg is the Boltzmann constant, 7' the temperature in Kelvin, v the effective
linear charge density (in m™!), [ the Bjerrum length, and k™! the Debye length.
For a typical temperature 7 = 300 K we have /p = 0.7 nm, and for 2 monovalent
salt concentration ¢ = 10 mM the Debye length is k™! = 3.07 nm. The value
of the effective charge v depends on the salt concentration. For a monovalent salt
concentration ¢ = 10 mM, we have v = 1.97 nm~!. The winding of the two
molecules is rendered by the function ¢(a) = 1 4 0.83 tan? & 4+ 0.86 tan* @ which
introduces a dependance of U on the superhelical angle «.

i
H
o
i
L
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2.4 Egquilibrium Equations

The total energy of the system, Eq. 4, which takes into account the constraint related
to the imposed end rotation, is now minimized with respect to its three variables
in order to obtain equations for the mechanical response of the DNA molecule.
The first step in the minimization is to consider the Euler-Lagrange equations (first
variation of V): (3V/da, aV /AR, dV/at) = 0, which yields:

. 3

cose sin"a QU 2 Ko sin a
- R, 6
Ko * 9% "z ( 7 gz Tt U Dl)) ©

Ko oU

Fei — TRZ sin*a + R-a? + U(R, o) = (N

2R [ Ky sinta
Mex + Xsin o ( ) R2 + Fexi + U(R, a)) (8)

This is a system of three equations with three unknowns (a, R, Me). The use of
M. = K3t instead of 7 in the last equilibrium equation renders the set of equa-
tions independent of K. For a given potential U(R, «) these equilibrium equations
may have several solutions and the number of solutions may depend on the value
of the force F.y. In the case of the potential we use in this work, there are in fact
two solytions at low force and these two solutions collapse and vanish for a certain
force threshold, typically several pico Newton (see Section 3). We therefore exam-
ine the stability of the two concurrent solutions by computing the second variation
of the potential function V{(x, R, 7). The second derivatives of V are ordered in a

3x3 matrix, called the Hessian matrix:
e

aaaV 30,RV aarV
H = | dpaV dgrV 9.V |. )
aruV arRV azrV

The Hessian matrix, once evaluated on the equilibrium solution Eqs. 6, 7, and 8,

writes:
g(t)0aa f g(T)0erf O
Hlgv=o = | g(r)3urf g(x)rrSf 0 |. (10
0 0 K3

The stability of an equilibrium solution is given by the sign of the eigenvalues (a sta-
ble equilibrium requires having only positive eigenvalues). Since £, > 0, g(r) > 0
and then the problem boils down to computing the eigenvalues of the reduced hes-

sian:
aaozf 3¢!Rf:|. (11)

Hlov=o = [aakf Orr f
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Among the two equilibrium solutions, we find that the solution with lower & and R
has one negative and one positive eigenvalues, therefore being unstable. The other
solution has two positive eigenvalues and is therefore stable: this is the solution we
present in the results.

2.5 Vertical Extension of the Filament

In extension-rotation experiments the vertical extension of the filament is recorded
while the number of turns is increased. The vertical extension of the filament is cal-
culated from Eq. 2 in the following way. First we make the replacement £, = ¢ —¢;.
Then in the absence of thermal fluctuations we would write £, = Az. Nevertheless
we take thermal fluctuations in the tails phase into account by introducing a rescal-
ing factor pyic € [0: 1] between the contour length £; of the tails and their vertical
extension Az = pyc £,. The factor py is computed, following a worm-like chain
approach, Eq. 7 in [11]. Finally replacing Lk = n and solving for Az yields:

4 R
sin 2o

n. (12)

; I') Pwic £ + X Pwic
sin 2o

2R
Az = (l —X
Note that Eqgs. 6 and 7 do not show any n dependence. Consequently the superhelical
radius R and angle a, solutions of Eqs. 6 and 7, do not depend on » either. Therefore
the vertical extension Az is a limear function of the number of turns 2.

3 Results

For each value of the force F,,, the equilibrium equations, Eqgs. 6, 7, and 8, together
with an expression for the interaction energy U(R, ) allow one to compute the
plectonemic variables @ and R and the torsional moment M.,,. We compare our
results with the model developed in [10] and with experimental data. The compar-
isons are performed with the same data as in [4, 13]. These data were obtained on
a 48 kbp lambda phage DNA molecule in a 10 mM phosphate buffer (see Fig. 2 in
[4]) and were kindly provided by V. Croquette (CNRS, France).

3.1 A Numerical Example

We give the results of the equilibrium equation for a force value Fey = 1.1pN.
The unstable equilibrium has R = 0.53nm, ¢ = 0.33rad, and ¢ = 0.11rad/nm.
Once divided by the factor (k3 T)?(£/Ky) (which has dimension of an energy) the
reduced hessian matrix, Eq. 11, has A; = 248 and A; = —6.39 as eigenvalues
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Fig.2 A typical
experimental curve. The slope
¢ is negative (respectively
positive) for positive
(respectively negative) n

IS0 S100 o500 50 100 150 7

RE N\ ] 0.7
~ i
_ 6 ™S - 1 32 o o  — — — ]
B ~ - z -
£ - 8 04}
e 4 e P I
hd 03F
7t ] 0.2 F
0lE
0 1 e A A 'l 0.0 ' ' L A L
00 05 1.0 I.5 2.0 2.5 30 0.0 0.5 1.0 .5 2.0 2.5 3.0
FpN FpN
p o P

Fig.3 Values of the superhelical radius R and angle & as functions of the pulling force Fux

(with R expressed in nm). The stable equilibrium has R = 5.19nm, a = 0.52rad,
t = 0.06rad/mm, A; = 52.9and A; = 0.29.

The values of R and 8 for the stable equilibrium are plotted in Fig. 3 as functions
of Fey.

3.2 Extension—Rotation Curve

Our model shows that the derivative of the vertical extension Az with regard to n
is constant, i.e., that the extension—rotation curve has a linear part, which is well-
known experimentally. The slope ¢ is given by:

d 47 R

=—A =
9 dn ¢ xsin2a

Pwic - (]3)

Equation 8 shows that under a positive imposed rotation n > 0 (hence a positive
torque Mey), ¥ = — 1. Equation 13 then implies that the slope is negative. Alterna-
tively, a negative n means a positive y and a positive slope, as verified in Fig. 2. The
value of the slope ¢ is computed using the values of & and R found by solving the
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Fig. 4 Slope ¢ of the linear 140
region of extension-rotation

the model in [10]
(continuous, blue) 0t

curves as a function of the 120¢
applied force. Our theoretical 2 100F
prediction (dashed, red) is EREET S 1
compared 1o experimental = :
P P g 60} N ]
data (green squares) and to = ~ ——
= 40 f \’\-:.

FpN

equilibrium equations, Egs. 6, 7, and 8. We plot in Fig. 4 the value of the slope as a
function of the force. We also plot the slopes predicted by the model in [10] in order
to offer a comparison. Our results show a good quantitative agreement with experi-
mental data. Moreover in comparison with the model in [10], our results follow the
experiments in a more consistent manner. We emphasize that the model in [10] uses
a free energy for the plectonemic phase that is computed from Monte-Carlo simula-
tions. Furthermore the model assumes a quadratic dependance of the free energy on
the linking number, which is not universally valid [9]. In contrast there is no such
assumption in our model.

4 Discussion

We have shown in this study that a self-contained mechanical model completed
with an analytical description of DNA-DNA long range interactions can reproduce
extension-rotation experimental data with good agreement. The principal weakness
of our model is that we neglect thermal fluctuations in the plectonemic phase, Inves-
tigation of the steepness of the energy in Eq. 4 would give the relative importance of
these fluctuations. Another improvement of the present model would be to consider
the renormalization of the twist rigidity of the tails due to added link [12].

A possible outcome of this work is the possibility of testing existing descriptions
of DNA-DNA interactions. For example the resuits obtained here with a potential
derived from the Poisson-Boltzmann theory could be compared to results obtained
with potential derived from the counter-ion condensation theory [16]. Ray and Man-
ning have shown in [15], within the counter-ions condensation theory, the existence
of a well in the DNA-DNA interaction energy. If an analytical expression of such
an attractive potential was available we might compute interesting effects such as
collapse in the plectonemic region [1].
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