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Abstract We present a self-contained theory for the mechanical response of DNA in
extension-rotation single molecule experiments. The theory is based on the elasticity
of the double-helix and the electrostatic repulsion between two DNA duplex. The
configuration of the molecule at large imposed rotation is assumed to comprise two
phases, linear and superhelical DNA. Thermal fluctuations are accounted for in the
linear phase and electrostatic repulsion is treated in the superhelical phase. This
analytical model enables the computation of the supercoiling radius and angle of
DNA during experiments. The torsional stress in the molecule and the slope of the
linear region of the experimental curve are also predicted and compared successfully
with experimental data.

1 Introduction

Mechanics of the DNA molecule is a key component for several biological processes
at the cellular level. The action of enzymes and proteins on DNA has been found
to often depend on the mechanical stress present in the molecule. In this context
single molecule experiments, where forces and torques are applied onto individual
DNA molecules, offer a remarkable opportunity to study mechanical issues. We are
here interested in extension-rotation experiments performed with the help of optical
or magnetic tweezers [17, 2, 3, 6]. Although different experimental methods ex-
ist, within a mechanical point of view the problem is the same: a dsDNA molecule
is fixed by one end on a glass cover-slip while the other end is attached to a me-
chanical system that exerts a pulling force and a torsional moment on the molecule.
Experiments are carried out at constant pulling force whilethe upper end of the
molecule is rotated. The imposed rotation is characterizedby the number of turnsn
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performed. DNA is then under or over-wound and various molecule conformations
are observed [3]. In the present study we focus on the over-winding of a dsDNA
molecule for large imposed rotations. In such cases the molecule wraps around it-
self in a helical way and forms plectonemes as shown in Fig. 1.

Plectonemic DNA mechanics requires to account for various physical effects
such as thermal fluctuations, electrostatic interactions,self-avoidance, and DNA
elasticity. Although several studies have addressed theseissues, a model consider-
ing all these effects together is still lacking. For instance, Goyal et al have presented
in [7, 8] a numerical model which addresses within a mechanical point of view the
formation of DNA supercoils. Coleman & Swigon give in [5] an accurate descrip-
tion of the mechanical equilibrium of supercoiled elastic rods. However their model
was applied to DNA plasmids, and does not take into account either thermal fluctu-
ations or DNA-DNA long-range interactions. More recently Purohit has addressed
plectonemic DNA mechanics using Kirchhoff elastic rod theory, although contact
forces in the plectonemic part of the molecule are not taken into account [14]. Marko
has presented an analytical, though not self-contained, model which fit experimen-
tal data with good agreement [10]. This model accounts for thermal fluctuations and
self-avoidance but relies on numerical results extracted from Monte-Carlo simula-
tions.

The present paper is an extension of our previous analysis ofplectonemic DNA
mechanics [4]. We present an analytical model for the mechanical response of
plectonemic DNA in extension-rotation experiments. We focus on the plectonemic
regime, which means we consider large imposed rotations (large n). Our elastic
model accounts for DNA-DNA interactions present in the plectonemic region and
for thermal fluctuations present in the tails region.

2 Model

The present model investigates the equilibrium behavior ofan elastic rod with bend-
ing rigidity K0 (the bending persistence length isA = K0/(kBT ), wherekB is the
Boltzmann constant andT the absolute temperature) and twisting rigidityK3 under
traction and torsion as shown in Fig. 1. This is a coarse-grained model for DNA
where base-pairs details are neglected. For instance, the anisotropic flexibility of
the molecule, originating from base pairing and major-minor groove geometry, is
smoothed out at a scale of several base pairs.

Geometry We start with a geometric description of the rod configurations relevant
to the plectonemic regime. This defines a reduced set of configurations (Ansatz),
over which we shall minimize the elastic strain energy associated with deformations.
The rod, of lengthℓ, is considered inextensible and has circular cross-section; let
s denote the arclength along the rod. The strain energy involves, at lowest order,
the geometric curvatureκ(s) of the centerline of the rod as well as the twistτ(s).

The rod centerline is parameterized byr(s) and its unit tangentt def
= dr/ds can be
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described with spherical angles, as shown in Fig. 1:α(s) is the zenith angle and
ψ(s) the azimuth angle with respect to the directionex along the common axis of
the two superhelices in the plectonemic region.

Fig. 1 Sketch of the magnetic tweezers experiment. A B-DNA molecule of total contour lengthℓ
is fixed in s = 0 to a glass surface while the other end ins = ℓ is attached to a magnetic bead. A
magnet is used to pull and impose a 2πn rotation on the bead. As a result the molecule is subject
to a pulling forceFext and a torqueMext. The superhelical angle and radius are denotedα andR
respectively. The zenith angleα and the azimuth angleψ of the tangent vector with regard to the
superhelical axisex are also shown.

We consider the following configurations, relevant to a large applied number
of turns,n. The tails are assumed to be straight but twisted (thermal fluctuations
will be accounted for by using the rescaled tail length predicted by the worm-like
chain (WLC) theory). The plectonemes are described by two identical and uniform
helices where each of these helices is itself a double-stranded DNA molecule. Both
the end loop of the plectonemes and the matching region between the tails and the
plectonemic part are neglected. Consequently the rod comprises two phases: one
made up of straight and twisted tails and the other one of plectonemic structures.
In the tails the rod is aligned with theez axis: t = ez. The geometric curvature

κ def
= |dt/ds| is zero,κ(s) = 0. In each filament of the plectonemes, the position

vectorr(s) and the tangent vectort(s) describe a superhelix of axisex:






rx(s) = s cosα
ry(s) = χ R sinψ(s)
rz(s) = −χ R cosψ(s)

and







tx(s) = cosα
ty(s) = sinα cosψ(s)
tz(s) = sinα sinψ(s)

(1)
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The other filament of the plectonemes is obtained by a rotation of 180◦ around
the axisex. Hereχ = ±1 stands for the chirality of the two (super-)helices – for
example in Fig. 1,χ = −1. The quantitiesR andα are the superhelical radius and
angle, respectively . In Eq. (1), the condition dr/ds = t yields dψ/ds = χ sinα/R.

The curvature in the plectonemes isκ(s) = |dt/ds| = sin2 α
R . Noting ℓp the contour

length spent in the plectonemes, we obtain the following expression for the integral
of the squared curvature over the whole length of the rod

∫ ℓ
0 κ2ds = sin4 α

R2 ℓp. The
end torque twists the filament. For a rod with circular cross-section, the twistτ(s) at
equilibrium is uniform, dτ/ds = 0 for all s, so we have

∫ ℓ
0 τ2ds = τ2ℓ. In conclusion

the equilibrium configuration of the rod is fully specified bythe centerline, through
the variablesα, R andℓp, and an additional scalarτ describing twist. The twistτ
is geometrically related to the number of turns imposed on the magnetic bead,n,
which is equal to the link of the DNA molecule,n = Lk. In the present case the link
reads [13]:

Lk = Tw+Wr =
1

2π

∫ ℓ

0
τ ds− χ

sin2α
4π R

ℓp =
1

2π

(

τ ℓ− χ
sin2α

2R
ℓp

)

, (2)

as we neglect the writhe of the tails.

Energy formulation Using the above notations the rod is described by four vari-
ables:α the superhelical angle,R the superhelical radius,τ the twist andℓp the
contour length spent in the plectonemes. We proceed to derive the total energy of
the system as a function of these four variables. It is the sumof three terms,V =
Vel+Vext+Vint, where the first term is the strain elastic energy, the secondis the po-
tential energy associated with the external loadsFext andMext, and the third accounts
for interaction of the filaments in the plectonemes. The strain elastic energy for the
rod of total contour lengthℓ is Vel =

K0
2

∫ ℓ
0 κ2ds+ K3

2

∫ ℓ
0 τ2ds = K0

2
sin4 α

R2 ℓp + K3
2 τ2ℓ.

This strain energy is to be seen as the first order approximation of a more com-
prehensive strain energy, as for example terms for the longitudinal extension of the
molecule or terms coupling extension and twist could be added. Nevertheless in rod
theory extension (and shear) are higher order when comparedto bending and twist-
ing and indeed stretching experiments on DNA have reported alarge (> 1000pN)
stretching stiffness [19]. We do not take into account the reduction of the effective
torsional rigidity in the tails due to fluctuations [12]. Thepotential energy associ-

ated with the pulling force is given byVext = −Fext(z(ℓ)− z(0))
def
= −Fext∆z, where

∆z = ℓ− ℓp for straight tails. There is no term associated with the external moment
since the rotationn rather than the moment is imposed. The DNA-DNA interactions
that occurs in the plectonemic region of the rod involves different effects depending
on the values of the supercoiling radiusR. At moderate to large values ofR (i.e.
several nm) electrostatics effects dominate. In contrast to our previous paper [4], we
here take these electrostatics interactions into account.We introduce an energy of
interaction per unit length of molecule for the plectonemicphase,U(R, α) which is
assumed to depend on the superhelical radius and angle onlyVint = ℓpU(R, α).

Finally we obtain the following function for the total energy of the system:
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V (R,α, ℓp,τ) =
K0

2
sin4 α

R2 ℓp +
K3

2
τ2ℓ−Fext(ℓ− ℓp)+ ℓpU(R, α) , (3)

subjected to the end rotation constraintn = Lk whereLk is given by Eq. 2. As
this constraint is linear inℓp we use it in order to substituteℓp with an expression
involving τ andn. Dropping the constant term−Fextℓ, we obtain:

V (α,R,τ) =
K3

2
τ2ℓ+(2πn− τ ℓ)

[

−2χ
sin2α

(

K0sin4 α
2R

+ RFext+ RU(R, α)

)]

(4)

=
K3

2
τ2ℓ+ g(τ) f (R,α) .

Ubbink & Odijk model of DNA-DNA interactions In their study of supercoiled
DNA plasmids [18] Ubbink and Odijk derive an analytical expression for the elec-
trostatic interaction energy between two interwound DNA molecules. Their work
is based on the Poisson-Boltzmann theory where, in the computation of the elec-
trostatic repulsion of the two charged molecules, the presence and fluctuations of
the counter-ions and co-ions in solution play an important role. The electrostatic
interaction energy (per unit length) derived in [18] writesas follow:

U(R,α) =
1
2

kBT ν2 lB

√

π
κR

e−2κR ϕ(α) (5)

wherekB is the Boltzmann constant,T the temperature in Kelvin,ν the effective
linear charge density (in m−1), lB the Bjerrum length, andκ−1 the Debye length.
For a typical temperatureT = 300 K we havelB = 0.7 nm, and for a monovalent
salt concentrationc = 10 mM the Debye length isκ−1 = 3.07 nm. The value of the
effective chargeν depends on the salt concentration. For a monovalent salt concen-
trationc = 10 mM, we haveν = 1.97 nm−1. The winding of the two molecules is
rendered by the functionϕ(α) = 1+ 0.83 tan2 α + 0.86 tan4 α which introduces a
dependance ofU on the superhelical angleα.

Equilibrium equations The total energy of the system, Eq. 4, which takes into
account the constraint related to the imposed end rotation,is now minimized with
respect to its three variables in order to obtain equations for the mechanical response
of the DNA molecule. The first step in the minimization is to consider the Euler-
Lagrange equations (first variation ofV ): (∂V/∂α, ∂V/∂R, ∂V/∂τ) = 0, which
yields:

2K0
cosα sin3 α

R2 +
∂U
∂α

−
2

tan2α

(

K0

2
sin4 α

R2 + Fext+U(R, α)

)

= 0 , (6)

Fext−
K0

2R2 sin4 α + R
∂U
∂R

+U(R, α) = 0 , (7)

Mext+ χ
2R

sin2α

(

K0

2
sin4 α

R2 + Fext+U(R, α)

)

= 0 . (8)
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This is a system of three equations with three unknowns(α, R, Mext). The use of
Mext = K3 τ instead ofτ in the last equilibrium equation renders the set of equations
independent ofK3. For a given potentialU(R, α) these equilibrium equations may
have several solutions and the number of solutions may depend on the value of
the forceFext. In the case of the potential we use in this work, there are in fact
two solutions at low force and these two solutions collapse and vanish for a certain
force threshold, typically several pico Newton (see section 3). We therefore examine
the stability of the two concurrent solutions by computing the second variation of
the potential functionV (α,R,τ). The second derivatives ofV are ordered in a 3x3
matrix, called the Hessian matrix:

H =





∂ααV ∂αRV ∂ατV
∂RαV ∂RRV ∂RτV
∂ταV ∂τRV ∂ττV



 . (9)

The Hessian matrix, once evaluated on the equilibrium solution Eqs. 6, 7, and 8,
writes:

H|∂V=0 =





g(τ)∂αα f g(τ)∂αR f 0
g(τ)∂αR f g(τ)∂RR f 0

0 0 K3ℓ



 . (10)

The stability of an equilibrium solution is given by the signof the eigenvalues (a
stable equilibrium requires having only positive eigenvalues). Sinceℓp > 0, g(τ) >
0 and then the problem boils down to computing the eigenvalues of the reduced
hessian:

H|∂V=0 =

[

∂αα f ∂αR f
∂αR f ∂RR f

]

. (11)

Among the two equilibrium solutions, we find that the solution with lowerα andR
has one negative and one positive eigenvalues, therefore being unstable. The other
solution has two positive eigenvalues and is therefore stable: this is the solution we
present in the results.

Vertical extension of the filament In extension-rotation experiments the vertical
extension of the filament is recorded while the number of turns is increased. The
vertical extension of the filament is calculated from Eq. 2 inthe following way. First
we make the replacementℓp = ℓ−ℓt . Then in the absence of thermal fluctuations we
would writeℓt = ∆z. Nevertheless we take thermal fluctuations in the tails phase into
account by introducing a rescaling factorρwlc ∈ [0;1] between the contour length
ℓt of the tails and their vertical extension∆z = ρwlc ℓt . The factorρwlc is computed,
following a worm-like chain approach, Eq. 7 in [11]. Finallyreplacing Lk= n and
solving for∆z yields:

∆z =

(

1− χ
2R

sin2α
τ
)

ρwlc ℓ+ χ ρwlc
4πR

sin2α
n . (12)
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Note that Eqs. 6 and 7 do not show anyn dependence. Consequently the superhelical
radiusR and angleα, solutions of Eqs. 6 and 7, do not depend onn either. Therefore
the vertical extension∆z is a linear function of the number of turnsn.

3 Results

For each value of the forceFext, the equilibrium equations, Eqs. 6, 7, and 8, together
with an expression for the interaction energyU(R, α) allow one to compute the
plectonemic variablesα andR and the torsional momentMext. We compare our re-
sults with the model developed in [10] and with experimentaldata. The comparisons
are performed with the same data as in [13, 4]. These data wereobtained on a 48
kbp lambda phage DNA molecule in a 10 mM phosphate buffer (seeFig.(2) in [4])
and were kindly provided by V. Croquette (CNRS, France).
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Fig. 2 A typical experimental curve. The slopeq is negative (respectively positive) for positive
(respectively negative)n.

A numerical example We give the results of the equilibrium equation for a force
valueFext = 1.1pN. The unstable equilibrium hasR = 0.53nm,α = 0.33rad, and
τ = 0.11rad/nm. Once divided by the factor(kBT )2(ℓ/K0) (which has dimension
of an energy) the reduced hessian matrix, Eq. 11, hasλ1 = 248 andλ2 = −6.39
as eigenvalues (withR expressed in nm). The stable equilibrium hasR = 5.19nm,
α = 0.52rad,τ = 0.06rad/nm,λ1 = 52.9 andλ2 = 0.29.

The values ofR andθ for the stable equilibrium are plotted in Fig. 3 as functions
of Fext.

Extension-rotation curve Our model shows that the derivative of the vertical ex-
tension∆z with regard ton is constant, i.e. that the extension-rotation curve has a
linear part, which is well-known experimentally. The slopeq is given by:
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Fig. 3 Values of the superhelical radiusR and angleθ as functions of the pulling forceFext.

q =
d
dn

∆z = χ
4πR

sin2α
ρwlc . (13)

Eq. 8 shows that under a positive imposed rotationn > 0 (hence a positive torque
Mext), χ = −1. Eq. 13 then implies that the slope is negative. Alternatively, a nega-
tive n means a positiveχ and a positive slope, as verified in Fig. 2. The value of the
slopeq is computed using the values ofα andR found by solving the equilibrium
equations, Eqs. 6, 7, and 8. We plot in Fig. 4 the value of the slope as a function of
the force. We also plot the slopes predicted by the model in [10] in order to offer
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Fig. 4 Slopeq of the linear region of extension-rotation curves as a function of the applied force.
Our theoretical prediction (dashed, red) is compared to experimental data (green squares) and to
the model in [10] (continuous, blue).

a comparison. Our results show a good quantitative agreement with experimental
data. Moreover in comparison with the model in [10], our results follow the exper-
iments in a more consistent manner. We emphasize that the model in [10] uses a
free energy for the plectonemic phase that is computed from Monte-Carlo simula-
tions. Furthermore the model assumes a quadratic dependance of the free energy on
the linking number, which is not universally valid [9]. In contrast there is no such
assumption in our model.
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4 Discussion

We have shown in this study that a self-contained mechanicalmodel completed
with an analytical description of DNA-DNA long range interactions can reproduce
extension-rotation experimental data with good agreement. The principal weakness
of our model is that we neglect thermal fluctuations in the plectonemic phase. Inves-
tigation of the steepness of the energy in Eq. 4 would give therelative importance of
these fluctuations. Another improvement of the present model would be to consider
the renormalization of the twist rigidity of the tails due toadded link [12].

A possible outcome of this work is the possibility of testingexisting descriptions
of DNA-DNA interactions. For example the results obtained here with a potential
derived from the Poisson-Boltzmann theory could be compared to results obtained
with potential derived from the counter-ion condensation theory [16]. Ray & Man-
ning have shown in [15], within the counter-ions condensation theory, the existence
of a well in the DNA-DNA interaction energy. If an analyticalexpression of such
an attractive potential was available we might compute interesting effects such as
collapse in the plectonemic region [1].
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