Elastic and electrostatic model for DNA in
rotation-extension experiments
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Abstract We present a self-contained theory for the mechanical respof DNA in
extension-rotation single molecule experiments. Therthisdased on the elasticity
of the double-helix and the electrostatic repulsion betwma DNA duplex. The
configuration of the molecule at large imposed rotation ssiased to comprise two
phases, linear and superhelical DNA. Thermal fluctuatiosasaacounted for in the
linear phase and electrostatic repulsion is treated in tiperbelical phase. This
analytical model enables the computation of the supergpiladius and angle of
DNA during experiments. The torsional stress in the mokeauld the slope of the
linear region of the experimental curve are also predictelc@mpared successfully
with experimental data.

1 Introduction

Mechanics of the DNA molecule is a key component for seveadbbical processes
at the cellular level. The action of enzymes and proteins biiADas been found
to often depend on the mechanical stress present in the uteldn this context
single molecule experiments, where forces and torquespgléed onto individual
DNA molecules, offer a remarkable opportunity to study nesgbal issues. We are
here interested in extension-rotation experiments peréadrwith the help of optical
or magnetic tweezers [17, 2, 3, 6]. Although different expental methods ex-
ist, within a mechanical point of view the problem is the sammdsDNA molecule
is fixed by one end on a glass cover-slip while the other endtéslzed to a me-
chanical system that exerts a pulling force and a torsiomahent on the molecule.
Experiments are carried out at constant pulling force wifike upper end of the
molecule is rotated. The imposed rotation is charactetigettie number of turna
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performed. DNA is then under or over-wound and various mdéconformations
are observed [3]. In the present study we focus on the oveding of a dsDNA
molecule for large imposed rotations. In such cases theaul@devraps around it-
self in a helical way and forms plectonemes as shown in Fig. 1.

Plectonemic DNA mechanics requires to account for varidugsigal effects
such as thermal fluctuations, electrostatic interactiseff;avoidance, and DNA
elasticity. Although several studies have addressed tissses, a model consider-
ing all these effects together is still lacking. For instGoyal et al have presented
in [7, 8] a numerical model which addresses within a meclemicint of view the
formation of DNA supercoils. Coleman & Swigon give in [5] accarate descrip-
tion of the mechanical equilibrium of supercoiled elastids. However their model
was applied to DNA plasmids, and does not take into accotimteihermal fluctu-
ations or DNA-DNA long-range interactions. More recentlyr&hit has addressed
plectonemic DNA mechanics using Kirchhoff elastic rod thyealthough contact
forces in the plectonemic part of the molecule are not tak&ndccount [14]. Marko
has presented an analytical, though not self-containedghwehich fit experimen-
tal data with good agreement [10]. This model accounts femttal fluctuations and
self-avoidance but relies on numerical results extraatech fiVionte-Carlo simula-
tions.

The present paper is an extension of our previous analygikeofonemic DNA
mechanics [4]. We present an analytical model for the meachhnesponse of
plectonemic DNA in extension-rotation experiments. Weufbon the plectonemic
regime, which means we consider large imposed rotatiomge(ld). Our elastic
model accounts for DNA-DNA interactions present in the faemic region and
for thermal fluctuations present in the tails region.

2 Model

The present model investigates the equilibrium behaviandadflastic rod with bend-
ing rigidity Ko (the bending persistence lengthAs= Ko/(ksT), wherekg is the

Boltzmann constant anfl the absolute temperature) and twisting rigidityunder

traction and torsion as shown in Fig. 1. This is a coarseagchimodel for DNA

where base-pairs details are neglected. For instance niketi@pic flexibility of

the molecule, originating from base pairing and major-migieove geometry, is
smoothed out at a scale of several base pairs.

Geometry We start with a geometric description of the rod configuraticelevant
to the plectonemic regime. This defines a reduced set of agatigns (Ansatz),
over which we shall minimize the elastic strain energy aisged with deformations.
The rod, of lengttY, is considered inextensible and has circular cross-sedao
s denote the arclength along the rod. The strain energy iegoplat lowest order,
the geometric curvature(s) of the centerline of the rod as well as the twigs).

The rod centerline is parameterized ) and its unit tangeritd:efdr/ds can be
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described with spherical angles, as shown in Figa(s) is the zenith angle and
Y (s) the azimuth angle with respect to the directegnalong the common axis of
the two superhelices in the plectonemic region.

Fezt

Fig. 1 Sketch of the magnetic tweezers experiment. A B-DNA molediltotal contour lengtld

is fixed ins= 0 to a glass surface while the other endsi ¢ is attached to a magnetic bead. A
magnet is used to pull and impose ar2rotation on the bead. As a result the molecule is subject
to a pulling forceFey and a torqueéMey:. The superhelical angle and radius are denoteahd R
respectively. The zenith angte and the azimuth anglgy of the tangent vector with regard to the
superhelical axigy are also shown.

We consider the following configurations, relevant to a éagpplied number
of turns,n. The tails are assumed to be straight but twisted (thermetufdions
will be accounted for by using the rescaled tail length presdi by the worme-like
chain (WLC) theory). The plectonemes are described by twaotidal and uniform
helices where each of these helices is itself a doubledhDNA molecule. Both
the end loop of the plectonemes and the matching region leetthe tails and the
plectonemic part are neglected. Consequently the rod deegptwo phases: one
made up of straight and twisted tails and the other one otq@hetnic structures.
In the tails the rod is aligned with they axis:t = e,. The geometric curvature

K & |dt/ds| is zero,k(s) = 0. In each filament of the plectonemes, the position
vectorr (s) and the tangent vectofs) describe a superhelix of axés:

rx(s) = scosa tx(s) = cosa
ry(s) = xRsinyg(s) and{ ty(s) = sina cosy(s) 1)
rz(s) = —x Rcosy(s) tz(s) = sina siny(s)
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The other filament of the plectonemes is obtained by a rotatiol8C0 around
the axisey. Here x = +1 stands for the chirality of the two (super-)helices — for
example in Fig. 1x = —1. The quantitie®R anda are the superhelical radius and
angle, respectively . In Eq. (1), the condition/ds =t yields dy/ds= x sina/R.
The curvature in the plectonemeskiés) = |dt/ds| = %. Noting ¢, the contour
length spent in the plectonemes, we obtain the followingesgion for the integral

of the squared curvature over the whole length of theﬁmzds: ig;ﬂﬁp. The
end torque twists the filament. For a rod with circular crsestion, the twist (s) at
equilibrium is uniform, d /ds= 0O for all s, so we havq’(f t2ds= 12(. In conclusion
the equilibrium configuration of the rod is fully specified the centerline, through
the variablesy, R and/,, and an additional scalardescribing twist. The twist

is geometrically related to the number of turns imposed enntfagnetic bead,
which is equal to the link of the DNA molecule= Lk. In the present case the link
reads [13]:

1 /¢ sin2o 1 sin2o
Lk =T Wr=— ds— y ——Vp = — {—x ———/ 2
W 27'[/0 TS X7mm P~ on <T X3R p>’ @)

as we neglect the writhe of the tails.

Energy formulation Using the above notations the rod is described by four vari-
ables:a the superhelical anglé&® the superhelical radiug, the twist and/p, the
contour length spent in the plectonemes. We proceed toalthés total energy of
the system as a function of these four variables. It is the shithree termsy =

Vel + Vext+ Vint, Where the first term is the strain elastic energy, the seisthe po-
tential energy associated with the external loagisandMeyt, and the third accounts
for interaction of the filaments in the plectonemes. Thearstetastic energy for the

rod of total contour length is Ve = K [§ k2ds+ 52 [§ 12ds = Kesimay 4 Kag2y,

This strain energy is to be seen as the first order approamati a more com-
prehensive strain energy, as for example terms for the fodigial extension of the
molecule or terms coupling extension and twist could be ddNevertheless in rod
theory extension (and shear) are higher order when compaiezhding and twist-
ing and indeed stretching experiments on DNA have reportedga (> 1000pN)

stretching stiffness [19]. We do not take into account tltiotion of the effective

torsional rigidity in the tails due to fluctuations [12]. Thetential energy associ-

ated with the pulling force is given Byext = —Fext(z(¢) — z(0)) d:Ef—FextAz, where

Az=(—{pfor straight tails. There is no term associated with thereeemoment
since the rotatiom rather than the moment is imposed. The DNA-DNA interactions
that occurs in the plectonemic region of the rod involvetedént effects depending
on the values of the supercoiling radiRs At moderate to large values & (i.e.
several nm) electrostatics effects dominate. In contoastit previous paper [4], we
here take these electrostatics interactions into accdmtintroduce an energy of
interaction per unit length of molecule for the plectoneptiasel (R, a) which is
assumed to depend on the superhelical radius and angl&any (,U (R, a).

Finally we obtain the following function for the total engrgf the system:
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Ko sin*a Ks
> ot 7r2£ —Fext(l—lp) +pU(R ),  (3)

V(Ra avgpa T) =
subjected to the end rotation constraint Lk wherelLk is given by Eq. 2. As
this constraint is linear i, we use it in order to substitutg with an expression
involving T andn. Dropping the constant termFex/, we obtain:

VR =2 @mo [ 22 (“’%“J’m&xﬁwa @)@
_ %TZM—g(r)f(R,a).

Ubbink & Odijk model of DNA-DNA interactions In their study of supercoiled
DNA plasmids [18] Ubbink and Odijk derive an analytical eggsion for the elec-
trostatic interaction energy between two interwound DNAleunales. Their work
is based on the Poisson-Boltzmann theory where, in the ctatipa of the elec-
trostatic repulsion of the two charged molecules, the presand fluctuations of
the counter-ions and co-ions in solution play an importate.rThe electrostatic
interaction energy (per unit length) derived in [18] writesfollow:

URa) = :—ZLkBT Vg \/%ezmq)(a) (5)

wherekg is the Boltzmann constant, the temperature in Kelviry the effective
linear charge density (in mt), Ig the Bjerrum length, ana ! the Debye length.
For a typical temperatur€ = 300 K we havdg = 0.7 nm, and for a monovalent
salt concentration = 10 mM the Debye length is 1 = 3.07 nm. The value of the
effective chargey depends on the salt concentration. For a monovalent satecen
trationc = 10 mM, we havev = 1.97 nn L. The winding of the two molecules is
rendered by the functiogi(a) = 1+ 0.83 tarf a + 0.86 tarf a which introduces a
dependance df on the superhelical angte.

Equilibrium equations The total energy of the system, Eq. 4, which takes into
account the constraint related to the imposed end rotaamw minimized with
respectto its three variables in order to obtain equationthe mechanical response
of the DNA molecule. The first step in the minimization is tanew@er the Euler-
Lagrange equations (first variation @): (dV/da, dV /IR, oV /dT) = 0, which
yields:

cosa sifa QU 2  [Kpsinta
2K07R2 +%— an <? 2 +Fext+ U (R, Cf)) =0, (6)
Ko . ou
Fext—z—F‘;zsm“aJrRﬁJFU(R,a):o, (7)
2R (Kosinta
Mo+ X oo <7° = T FeatU(R a)) -0. (8
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This is a system of three equations with three unknotengR, Mexi). The use of
Mext = K3 T instead oft in the last equilibrium equation renders the set of equation
independent oK3. For a given potentidl (R, a) these equilibrium equations may
have several solutions and the number of solutions may deperthe value of
the forceFex:. In the case of the potential we use in this work, there areaat f
two solutions at low force and these two solutions collapsk\anish for a certain
force threshold, typically several pico Newton (see sec3ip We therefore examine
the stability of the two concurrent solutions by computihg second variation of
the potential functioV (o, R, 7). The second derivatives df are ordered in a 3x3
matrix, called the Hessian matrix:

OqaV OqrV 0grV
araV dTRV aTTV

The Hessian matrix, once evaluated on the equilibrium solUEQs. 6, 7, and 8,

writes:
9(T)0ua f 9(1)0qrf O
Hlov—o = | 9(1)darf 9(T)Irrf O | . (10)
0 0 Ksf

The stability of an equilibrium solution is given by the sighthe eigenvalues (a
stable equilibrium requires having only positive eigemes). Sinceé, > 0,9(1) >
0 and then the problem boils down to computing the eigengatie¢he reduced

hessian:
H| o aaaf 0aRf
N=0"1 Gorf Orrf |-

Among the two equilibrium solutions, we find that the solatieith lowera andR
has one negative and one positive eigenvalues, thereforg bestable. The other
solution has two positive eigenvalues and is therefordestéitis is the solution we
present in the results.

(11)

Vertical extension of the filament In extension-rotation experiments the vertical
extension of the filament is recorded while the number ofgusnincreased. The
vertical extension of the filament is calculated from Eq. thmfollowing way. First
we make the replacemefy= ¢ — 4. Then in the absence of thermal fluctuations we
would write/; = Az Nevertheless we take thermal fluctuations in the tails e
account by introducing a rescaling factayc € [0;1] between the contour length
¢ of the tails and their vertical extensidrz = pyc 4. The factorpyc is computed,
following a worm-like chain approach, Eq. 7 in [11]. Finatlgplacing Lk=n and
solving forAzyields:

2R

4R
Az= (1_Xsin2aT) Pwlcf'i‘XPwlcmn- (12)
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Note that Egs. 6 and 7 do not show angependence. Consequently the superhelical
radiusRand anglex, solutions of Egs. 6 and 7, do not depenchaither. Therefore
the vertical extensioAzis a linear function of the number of turns

3 Results

For each value of the fordey;, the equilibrium equations, Egs. 6, 7, and 8, together
with an expression for the interaction enetdyR, a) allow one to compute the
plectonemic variables andR and the torsional momeiMey;. We compare our re-
sults with the model developed in [10] and with experimedé#dh. The comparisons
are performed with the same data as in [13, 4]. These dataeidaned on a 48
kbp lambda phage DNA molecule in a 10 mM phosphate buffer Fgp€2) in [4])

and were kindly provided by V. Croquette (CNRS, France).

Az [pm]

-150  —-100  -50 0 50 100 150 1

Fig. 2 A typical experimental curve. The slopmgis negative (respectively positive) for positive
(respectively negative).

A numerical example We give the results of the equilibrium equation for a force
value Feyxt = 1.1pN. The unstable equilibrium h&= 0.53nm,a = 0.33rad, and
T = 0.11rad/nm. Once divided by the facthsT)?(¢/Ko) (which has dimension
of an energy) the reduced hessian matrix, Eq. 11,as 248 andA, = —6.39
as eigenvalues (witR expressed in nm). The stable equilibrium s 5.19nm,
a = 0.52rad,7r = 0.06rad/nmA; = 52.9 andA, = 0.29.

The values oR and® for the stable equilibrium are plotted in Fig. 3 as functions
of Fext.

Extension-rotation curve Our model shows that the derivative of the vertical ex-
tensionAz with regard ton is constant, i.e. that the extension-rotation curve has a
linear part, which is well-known experimentally. The slapis given by:
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Fig. 3 Values of the superhelical radisand angled as functions of the pulling forcEqy;.

EAZ— 4R
"= Xsin

q= Puwic - (13)

Eq. 8 shows that under a positive imposed rotation 0 (hence a positive torque
Mext), X = —1. Eq. 13 then implies that the slope is negative. Alterediva nega-
tive n means a positivg and a positive slope, as verified in Fig. 2. The value of the
slopeq is computed using the values afandR found by solving the equilibrium
equations, Egs. 6, 7, and 8. We plot in Fig. 4 the value of thpeshs a function of
the force. We also plot the slopes predicted by the model @ iff order to offer

140; ]
12CF
10Ck
80
60
40;
20F ]

g (nm/turns)

86 05 1o 15 20 25  3C
FpN
Fig. 4 Slopeq of the linear region of extension-rotation curves as a fionoof the applied force.

Our theoretical prediction (dashed, red) is compared te®xental data (green squares) and to
the model in [10] (continuous, blue).

a comparison. Our results show a good quantitative agretewidnexperimental

data. Moreover in comparison with the model in [10], our tessfollow the exper-

iments in a more consistent manner. We emphasize that thelrimoflL0] uses a

free energy for the plectonemic phase that is computed framt® Carlo simula-

tions. Furthermore the model assumes a quadratic depemndétie free energy on
the linking number, which is not universally valid [9]. Inmivast there is no such
assumption in our model.
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4 Discussion

We have shown in this study that a self-contained mechanicalel completed

with an analytical description of DNA-DNA long range intet@ns can reproduce
extension-rotation experimental data with good agreendm principal weakness
of our model is that we neglect thermal fluctuations in thefgeemic phase. Inves-
tigation of the steepness of the energy in Eq. 4 would givedlative importance of

these fluctuations. Another improvement of the present inedeld be to consider

the renormalization of the twist rigidity of the tails dueadded link [12].

A possible outcome of this work is the possibility of testadsting descriptions
of DNA-DNA interactions. For example the results obtainedehwith a potential
derived from the Poisson-Boltzmann theory could be contpreéesults obtained
with potential derived from the counter-ion condensatlwgotry [16]. Ray & Man-
ning have shown in [15], within the counter-ions condemsstheory, the existence
of a well in the DNA-DNA interaction energy. If an analyticakpression of such
an attractive potential was available we might computer@sting effects such as
collapse in the plectonemic region [1].
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