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Abstract In this article, we solve in closed form a
system of nonlinear differential equations model-
ling the elastica in space of a thin, flexible, straight
rod, loaded by a constant thrust at its free end.
Common linearizations of strength of materials are
of course not applicable any way, because we ana-
lyze great deformations, even if not so large to go
off the linear elasticity range. By passing to cylin-
drical coordinates ρ, θ , z, we earn a more tractable
differential system evaluating ρ as elliptic function
of polar anomaly θ and also providing z through
elliptic integrals of I and III kind. Deformed rod’s
centerline is then completely described under both
tensile or compressive load. Finally, the planar case
comes out as a degeneracy, where the Bernoulli
lemniscatic integral appears.
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1 A literature’s background

As early as 1691 Jakob Bernoulli proposed the
problem to determine the deformed centerline
(planar “elastica”) of a thin, homogeneous, straight,
and flexible rod under forces and couples applied
at its end. Whereas Galilei (Discorsi e dimostr-
azioni matematiche intorno a due nuove scienze,
1638) and Mariotte (Traité du mouvement des eaux
et des autres corps fluides, 1686) had investigated
the strength of beams, he studied the geometry of
their deflection. In such a way, some time later,
he established (Curvatura laminae elasticae, 1694)
elastica’s differential equation and met the same
elliptic integral

∫
(1 − γ 4)−1/2dγ of lemniscate rec-

tification. He integrated it by series and proved the
required line, sometimes referred as lintearia, to
be shaped as a cross-section of a horizontal flex-
ible cylinder filled with water with free surface
belonging to the line of thrust. The subject was
also treated by his brother Johann at lessons XLIV
(De curvatura lintei a fluido incumbente) and XLV
(Constructio curvae linteariae) of his Lectiones
Mathematicae de methodo integralium. . .annis 1691
and 1692, issued in 1742. Daniel Bernoulli, Johann’s
son, had obtained in 1738 an integral expression of
potential energy stored in a bent rod: in 1742, he
guessed it would attain such a shape as to minimize
the functional of squared curvature. Accordingly,
Euler dealt elasica as an isoperimetric problem of
Calculus of Variations, De curvis elasticis, 1744,
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arrived at elastica’s ODE, and mainly interested
in the geometrical forms of elastic curves identified
nine forms of them. The subject attracted also
C. Maclaurin, who realized the elastica had to be
connected to elliptic integrals, see A treatise on flux-
ions, 1742, at p: 927: The construction of the elastic
curve, and of other figures, by the rectification of the
conic sections.

In 1757, Euler wrote a paper, Sur la force des col-
onnes, concerning the buckling of columns again,
where he approached the critical load through a
simplified expression to the elastica’s curvature.
In 1770 Lagrange, Sur la figure des colonnes, did
not limit himself to a calculation of critical loads
already discussed by Euler, but went on to inves-
tigate the deflections when the load exceeds its
critical value, using the exact curvature, and inte-
grating by series his elastica’s ODE. Euler went
over the problem, always in the field of bending,
again in 1770 and 1775: for all this historical con-
cern (see [1–3]).

Some analytic solutions to elastic planar curves
through elliptic integrals of I and II kind, can be
read at [4–6]. The link between elliptic functions
and elastica was deemed so close, to induce to rep-
resent elliptic functions through suitable curved
rubber rods (G. Greenhill:Graphical representa-
tion of the elliptic functions by means of a bent
elastic beam, 1876).

For recent developments ([2, 7–10]) Special pla-
nar problems can be seen at [11], which includes
the effects of transverse deformation; in [12], a
variety of loads (terminal, transverse, continuous)
is tackled; whereas the effect of large loads can
be seen at [13]. Unextendibility and circular shape
of undeformed rod are (numerically) analyzed in
[14] where the load is a uniform centrally directed
force. Quite recently a new role has been found
[15] to elastica in some areas of differential geom-
etry (Willmore surfaces, pseudospherical surfaces)
and in several applications, ranging from tradi-
tional ones (structural mechanics [16], engineer-
ing [17]), to biochemistry [18], and biology [19].
For example Kida [20] investigated the dynam-
ics of a very thin vortex filament of infinitesimal
core in an umbounded perfect fluid, using the
Hama’s (1962) Localized Induction Equation
(LIE), which is asymptotically true for a very thin
mobile vortex-filament. Passing to a stationary con-

text, Kida gets expressions to curvature and torsion
of the elastica, but even if his method seems to be
fit to a 3D treatment, the (parametric) equations
of Euler’s elastica are obtained only in the planar
case, and carelessly to rod elastic strain.

Let us come to a doubly curved elastica. The
study of coiling of suboceanic cables, filamentary
structures of biomolecules (like DNA) and bacte-
rial fibers, the phenomenon of helix and reversal
in climbing plants, lead today to a further motiva-
tion, but the problem is very old. It first appeared
in Lagrange’s Mécanique Analytique, 2nd edition
(1811), even if the relevant ODEs system was not
integrated. To J. Binet, Mémoire sur l’intégration
des équations de la courbe élastique à double cour-
bure, 1844, is due a first attempt of treating “la co-
urbe élastique á double courbure en équilibre sous
l’action de forces qui agissent á sas éxtremités seul-
ement” Nevertheless he did not perform any con-
clusive computation. In the same year, M. Wantzel,
Note sur l’intégration des équations de la courbe
élastique à double courbure, 1844, through an eas-
ier approach arrived at same differential system,
but the integrals are vaguely formulated and not
affronted. A completely different model dates to
G. Kirchhoff, Űber das Gleichgewicht und die
Bewegung eines unendlich dűnnen elastischen Sta-
bes, 1859. Starting from Newton’s second law, plus
a linear constitutive relationship stress–strain, he
obtained a set of nine PDEs in the variables: rod
arc-length and time, describing its statics and
dynamics (see [21]). He then demonstrated, under
forces applied only to ends of a straight-linear rod,
the relevant equilibrium equations to be identical
with those describing the motion of a rigid body
around a fixed point (spinning top). Three years
later, Clebsch, Theorie der Elasticität fester Körper,
1862, gave formulae for the flexural and torsional
couples for unstressed curved rod.

But the Kirchhoff–Clebsch theory [22, 23], is
conceptually far from the Binet–Wantzel approach,
whose equations were worked by Hermite, arriv-
ing.1 at a system like (3). Unfortunately his final

1 Just after Hermite’s death,1901, the Sciences Paris Acad-
emy promoted, under government grant, the issue of
famous mathematician’s Collected Works under direction
of his pupil E. Picard, who in the III volume added about
fifty papers-relevant to different dates and journals but all-
concerning elliptic functions applications, specially to Diff-
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formulæ hold complex entities and some elliptic
functions now-a-days not used any more. In 1880
tract [5], one can read the valuable article Der
elastisch biegsame Faden im Raume, quite close to
Wantzel’s approach. Papers [18, 23] collect about
100 bibliographic entries about the subject. For
example we highlight [24], whose authors obtained
solutions for a straight rod under twisting. The
same subject has been improved in [25, 26] by
determining when a DNA equilibrium configura-
tion is stable in the sense that gives a local minimum
to the sum of the segment’s elastic energy and the
potential of the acting forces.

Euler’s work was gradually extended beyond the
pure bending in order to model the effects of twist:
the rods tend to buckle into spatial configurations
(helices, three-dimensional knots), with sudden
jumps from one configuration to another. The Coss-
erat brothers’ theory of the rods (Sur la statique de
la ligne déformable, 1907; Sur la théorie des corps
minces, 1908) was established to model the body
as a line in space: the rod configuration is then
defined by a right-handed rod-centred coordinate
frame of directions specified at each arc-length s.
Culmination of all the work done since Euler, it
adds a “couple stress” (namely a torque per unit
area) to traditional force per unit area, and the
isotropic Cosserat version has six elastic constants,
in contrast to classic elasticity holding only two
(Lamé constants λ and G). This model is useful
([27–29]) to understand a variety of phenomena
such as snap-buckling, twisted cables flipping into
loops, and super-coiling in DNA.

Langer and Singer treated elastica in space
through three articles [30–32] but, in any case,
rather far from the specific Wantzel–Hermite
elasticity problem. In [30], elastica is a pure
geometrical entity to be treated with methods of

Footnote 1 continued
erential Geometry and Mathematical Physics. In such a way,
the book Sur quelques applications des fonctions elliptiques
came to the light, even if never written by Hermite! It takes
up pages from 266 to 418 of III volume of his Oeuvres and
is divided in 51 chapters. Unfortunately Picard did not care
their crossed relationship with the originary articles. The
planar elastica is at chapter 34; the skew one at chapter 35,
pp. 361–366, Oeuvres, III, Gauthier-Villars, 1912. The edi-
tion of all Hermite’s papers (excluding tracts and lessons),
completed after World War I, was of six volumes: four of
articles and two of letters

Differential Geometry, and the curves taken into
account are closed and knotted in R

3. The
authors start from a nonlinear second-order ODE
in the curvature as a function of the arc-length:
they classify and compute several knotted elasticae
(orbitlike, wavelike, borderline), with the conclu-
sive conjecture: the circle is the only stable closed
elastica in R

3. Paper [31] embeds the subject in a
highly general geometric context looking for those
regular curves—of fixed length—capable of mini-
mizing the functional of squared curvature. The re-
search is developed in an absolutely abstract way,
considering the hyperbolic space of closed and free
(when the constraint on arc-length is removed)
elastic curves in an orientable 2-manifold of con-
stant negative curvature. Last work’s [32] purpose
is to complement Hasimoto discovery of 1971 [33],
that elastic curves can be regarded as solitons for
LIE, in order to connect the Kirchhoff–Clebsch
rod theory to LIE. Referring to standard Frenet
frame, a special functional is considered adding
total length, total torsion, and total squared curva-
ture. Its equilibrium first variation equated to zero
among all given-length configurations satisfying
endpoint conditions, leads to the same nonlinear
ODE involving curvature, torsion, and arclength
(see [30, 31]), which can be solved in terms of
elliptic functions. Finally, authors try to establish
a bridge with classic Euler elastica equation: any-
way this does not seem to be particularly clear.
Article [32] is very extensive, and his aim is to
improve the work of Hasimoto and Kida about
the elastic curves and LIE connections: but it does
not concern the specific problem of rod’s elasti-
ca in space. As a consequence, the authors do not
care neither the geometric characteristics, nor con-
straint and loading conditions, and do not even
evaluate any deformation in space. In addition,
their nonstandard notation excludes a reader inter-
ested in continuum mechanics from seeing how the
strain could be computed and analyzed in its geo-
metrical features. It would be really too diffcult
to extract from [32] the necessary elements for
computing 3D-elastica, or performing structural
computations.

What the preceding papers leave uncovered
about the practical needs of structural analyst and
designer, that is done throughout our work.
Starting from the Wantzel model (see [34, 35], we
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develop a new solution for 3D elastica of a given
loaded rod, in a clear, purely mechanical and self
consisting way. We believe it might really have a
practical use, since analytical solutions are scarce
in this area.

2 A 3D rod model

Main difficulties about elastica are: its intrinsic
nonlinearity due to not small displacements; geo-
metric complexity of the unstressed configuration;
constraints’ effect such as isometry (nonstretching);
and finally boundary conditions.

The peculiarity of a thin rod when subjected
to terminal forces and/or terminal couples, is that
it buckles rather than breaks: our experience tells
us that a compressed rod can buckle in any lat-
eral direction. This is the strongest motivation for a
spatial modelling of it.

Let us tackle a thin homogeneous rod, straight-
linear in its unstressed configuration, say �PuQu;
its endpoint � is clamped, while the other one Qu;
is free. A force �F of fixed size, direction and sense is
applied to it: then a stationary strain field, by equi-
librium of active load �F, reactive force −�F, and
reactive couple �M takes place. We fix a cartesian
reference frame�x̂ŷẑ: origin at�, the ẑ axis paral-
lel to �F, the x̂ and ŷ axes belonging to the plane for
� orthogonal to ẑ. A sketch of elastica � in space
is �PQ (see Fig. 1).

Fig. 1 Elastica � in space of a thin compressed rod; �r∗ aux-
iliary vector to be added to �r; Oxyz, final three-orthogonal
frame of reference; ρ and θ polar coordinates superimposed
upon the cartesian plane xOy on which � is projected as �ρθ

The curvilinear abscissa along the 3D deflection
curve �; is s ≥ 0 with s = 0 at �, and s > 0 at P(s).
We establish the assumptions:

A1 the rod is thin, initially straight, homogeneous,
with uniform cross-section and uniform flex-
ural rigidity. This last is given by the product
EJ, where E is the Young modulus, and J the
cross-section second moment of inertia about
a “neutral” axis normal to the plane of bend-
ing and passing through the central line;

A2 the rod is unloaded along all its external sur-
face, and loaded by a force �F = const. at its
free end;

A3 transverse deformation is ignored, the rod is
freely extendible, without isometry constraint,
and with linear elasticity;

A4 due to rest of static equilibrium, no rod
element undergoes acceleration.

Equilibrium vectorial equation (see [34]), for the
strained rod is:

EJ
d
ds
(P −�)× d3

ds3 (P −�) = �F × d
ds
(P −�),

where × is the cross product of two vectors in R
3.

Putting (P − �) := �r, after a first integration with
respect to s, we have:

EJ
d�r
d�s × d2�r

ds2 = �F × �r + �V, (1)

where �V is a vectorial constant (homogeneous to
a moment) of integration, amenable by boundary
conditions, and then assumed known. Right-hand
side of (1) consists of �F × �r, which is ⊥ to �F, plus
�V. If we split this last as: �V = �V

//�F + �V⊥�F , our

right-hand side will consist of a first term �V
//�F ,

say:= h�F(where h is a scalar constant), plus a sec-
ond term �F × �r + �V⊥�F orthogonal to �F:

h�F +
(�F × �r + �V⊥�F

)
.

In order to get rid of any term orthogonal to �F, we
translate our reference frame from �x̂ŷẑ to Oxyz
with the origin moved from � to O and the new
axes parallel to the old ones. Let it be �r∗ the vector
(�− O) to be added to �r so that �F × (�r + �r∗)+ h�F
equates the right-hand side of Eq. 1, namely: �F ×
(�r + �r∗)+ h�F = �F × �r + �V. We get:

�F × �r∗ + h�F = �V,
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which is a vectorial equation for h and the unknown
constant vector r∗ := (x∗, y∗, z∗). Accordingly, the
above equation is projected to �x̂ŷẑ in a triple of
scalar equations:

Fŷz∗ − Fẑy∗ + hFx̂ = Vx̂,

x∗Fẑ − Fx̂z∗ + hFŷ = Vŷ,

Fx̂y∗ − Fŷx∗ + hFẑ = Vẑ.

With Fx̂ = Fŷ = 0, Fẑ = F, the solutions are:

x∗ = Vŷ

F
, y∗ = −Vx̂

F
, h = Vẑ

F
. (2)

Therefore, the right-hand side of Eq. 1 can be writ-
ten as �F × �r∗ + h�F provided that (2) holds. The
third of (2) gives the h value; the first two define
the position of origin O of new—and final—frame
Oxyz (see Fig. 1), whose plane xOy is far z∗ from
the old plane x̂�ŷ. Because z∗ does not appear in
(2), then it is arbitrary: as a matter of fact the com-
ponent z∗ of �r∗ could not give any contribution to
�F× �r∗: therefore, O will be placed in space unless of
an arbitrary translation of size |O′ −�| = z∗ along
�F itself. Of course the moment �V could be zero
and then h = 0; alternatively �V could be a nonzero
planar vector with Vẑ = 0, and h = 0 again: we
shall see how such cases will lead to a planar elas-
tica. With previous assumptions, referring again to
3D-sketch of Fig. 1, Eq. 1 can be written:

EJ
d�r
ds

× d2�r
ds2 = �F × �r∗ + h�F.

Multiplying both sides in scalar and vectorial way
by d�r

ds
; one obtains (see [34, 36]), that Oxyz compo-

nents x(s), y(s), z(s) of �r shall satisfy the nonlinear
differential system:

hz′ + xy′ − yx′ = 0,

z′′ + ξ(xx′ + yy′) = 0, (3)

x′2 + y′2 + z′2 = 1

to be solved knowing four boundary values for
x, y, z, z′, where ′ means derivative with respect to
s. By ξ we mean the ratio:

ξ = F
EJ

<=
>

0

of z-component F <=
>

0 of �F and flexural rigidity

EJ > 0. By Fig. 1, ξ < 0 means tensile stress, and
ξ > 0 compression.

3 Explicit integration

We divide explicit integration of (3) into several
steps.

3.1 Changing to cylindrical coordinates

System (3) consists of three coupled nonlinear
scalar equations, each having at its left-hand side
a trinomial structure: then any approach for sepa-
rating variables is not quick. One way to deal with
such equations, is to pass from cartesian x(s), y(s),
z(s), to cylindrical coordinates ρ(s), θ(s), z(s):

x(s) = ρ(s) cos θ(s),

y(s) = ρ(s) sin θ(s),

z(s) = z(s).

After some handling, (3) becomes:

ρ2 dθ
ds

+ h
dz
ds

= 0,

d2z
ds2 + ξρ

dρ
ds

= 0, (4)

(
dρ
ds

)2

+ ρ2
(

dθ
ds

)2

+
(

dz
ds

2
)

= 1

so that first and second equation lose their trino-
mial form. We will solve the system with the follow-
ing values at the clamped boundary, namely s = 0
(see Fig. 1):

ρ(0) = 0,

θ(0) = θu,

z(0) = z∗,

z′(0) = 0.

Second equation is that of the plane which the un-
strained rod is belonging to. By last one, clamped
end does not undergo any flexional rotation.
Integrating the second of (4), we get:

dz
ds

= −1
2
ξρ2 + C, (5)

which, applying above boundary conditions, gives
C = 0: then z grows (decreases) with s under ten-
sile (compressive) load, as it shall be.
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3.2 θ -Solution

Putting last equation in first of (4), it can be soon
integrated:

θ(s) = θu + h
2
ξs. (6)

Therefore, the “torsion angle”, locally characteriz-
ing any double curvature line, and not to be con-
fused with torsional strain due to a torque, is for our
elastica growing proportionally to s: so that their
points increasingly far from the clamped end, are
more deviated from planarity. Check: without any
force, ξ = 0, no deviation from the plane θ = θu

will occur. But under load, ξ �= 0, skewness of
elastica is depending upon having a nonzero h.

3.3 ρ-Equation and elliptic functions

Inserting C = 0, and expressions to dz/ds and θ(s)
in third of (4), we get ρ-differential equation:

± ds = dρ
√

1 − 1
4 h2ξ2ρ2 − 1

4ξ
2ρ4

, (7)

which shows that if ξ = 0, ds = dρ, namely: pla-
nar elastica is the same straight line of unstressed
rod. By (7), we see ξ cannot be infinite—not only
for physical obvious causes—in order to keep the
square root real. Furthermore for opposite ξ val-
ues, Eq. 7 is invariant, but we will see some differ-
ence not before long. Putting in (7)

ψ(h, ξ) =
√

h4 + 16
ξ2 ,

0 < A2 := ψ − h2

2
<
ψ + h2

2
:= B2

(8)

then, choosing the plus sign because s increases
with ρ, we have:

|ξ |
2

s(ρ) =
∫ ρ

0

dr
√
(B2 + r2)(A2 − r2)

.

Such a equation:

(1) provides arc-length s = s(ρ) of deformed rod
once and for all, after static and elastic equi-
libria have been achieved;

(2) holds assumption ρ(0) = 0;
(3) implies 0 ≤ ρ < A, a condition necessary to

the square root’s reality.

By formula 214.00, p50 of [37], if:

sinψ =
√
ρ2(A2 + B2)

A2(ρ2 + B2)
; k = A√

A2 + B2
;

g = 1√
A2 + B2

then:

sinψ = sn
( |ξ |

2g
s, k

)

,

where sn(ϕ, k) is Jacobi sine amplitude of argument
ϕ and modulus 0 ≤ k ≤ 1. Equating the above sinψ
expressions and solving for ρ(s); one gets radial
solution:

ρ(s) =
ABsn

( |ξ |
2g s, k

)

√

B2 + A2cn2
( |ξ |

2g s, k
) ,

where cn(ϕ, k) is Jacobi cosine amplitude. Then
ρ-coordinate will grow with s, till to A. Choosing
afterwards minus sign in (7) for dρ/ds, ρ will go
down to zero, and so on; and a periodic behavior
will take place. Going back to our originary nota-
tion, we get:

ρ(s) = 2
√

2
|ξ |

√√
√
√
√

1− cn2
( |ξ |

2g s, k
)

(ψ+ h2)+ (ψ− h2)cn2
( |ξ |

2g s, k
) ,

(9)

where:
1
k

= 1
k (h, ξ ,ψ)

=
√

2ψ
√
ψ − h2

, (10)

g = g(ψ) = 1√
ψ

(11)

and of course ψ is given by (8)

3.3.1 Main features of elastica’s planar projection
�ρθ

Let us project the skew line � on plane xOy: Then,
after translating the origin from O′ to O by means
of vector (x∗, y∗), one obtains a curve OP′′Q′′, say
�ρθ , of polar equation:

ρ(θ) = 2
√

2
|ξ |

√√
√
√
√

1 − cn2
(
θ−θu

gh , k
)

(ψ + h2)+ (ψ − h2)cn2
(
θ−θu

gh , k
) .

(12)
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Being (12) of kind ρ = f (cos(θ)), the curve, by
Loria [38], should be a leaf, even if we have the
cosine amplitude and not the circular cosine. Nev-
ertheless we keep the qualitative information of
being faced with something like a petalled flower.

By inspection, g does not change for opposite
ξ values. Consequently the argument θ/(gh) of
cosine amplitude is an even function of ξ too. Then
planar projection’s shape of elastica is doubly
affected by the load ξ : first by (12), and also for be-
ing k a function (10) of ξ . The elliptic function ρ of
the variable θ/(gh) has a period which is half of the
cn one, P = 2K(k), being 0 < k(h, ξ) ≤ 1/

√
2. Let

N be the number of complete revolutions around
O after which the �ρθ polar pattern will repeat
itself:

N = P
2π

= K(k)
π

≥ 1
2

provided that rod succeeds to be long enough.
N cannot be integer, because the upper bound on
k(h, ξ) implies that:
1
2

≤ N = K(k)
π

≤ 1
π

K
(

1√
2

)

≈ 0.5901704.

If N is rational, say N = a/b, a, b ∈ N, then
bP = 2πa, and after a complete θ -turns, the func-
tion ρ(θ/(gh))will have taken for b times the same
values again. If N is irrational, P will be not ratio-
nally congruent to π , and the path will not close
upon itself after a finite number of lobes. At Fig. 2
the case ξ = 1/5, h = 1, θu = 0, 0 ≤ θ ≤ 2π has
been plotted. Notice that, taking for ξ the opposite
value, k will be different and another pattern will
be obtained; in any case the graphics will not be
superimposed.

3.4 Final stage: z-integration

Let us see from (4) how �′s z-coordinate can now
be computed. Formula (5), after a first integration
gives:

z(s) = z∗ − 1
2
ξ

∫ s

0
ρ2(ζ )dζ . (13)

But we have:
B2

A2 + B2 = 1 − k2 = k′2,

A2B2

A2 + B2 = k2k′2

g2 ,
ξ

2
= α

and then, inserting ρ(s):

Fig. 2 Planar pattern (ρ, θ), 0 ≤ θ ≤ 2π , of skew elastica:
ξ = 1/5, h = 1, θu = 0

z(s) = z∗ − 1
2
ξ

k2k
′2

g2

∫ s

0

sn2
(
α
g ζ , k

)

1 − k2sn2
(
α
g ζ , k

)dζ .

The integral can be solved with the help of formula
337. 01, p 201 of [37]. We get:

z(s) = z∗ − ξ
k2

2αg

[

�

(
α

g
s, k2, k

)

− F
(
α

g
s, k

)]

,

(14)

�(ϕ, p2, k) and F(ϕ, k) are the Legendre incom-
plete elliptic integrals of III and I kind, with ϕ, p2k
amplitude, parameter and modulus, respectively.

Formulae (6), (9), (14) for θ(s), ρ(s), z(s) give a
full parametric description of our 3D-elastica of a
thin equilibrium rod under terminal loads, know-
ing: applied forces, material Young modulus, and
cross-section dimensions. The parameter is the
arc-length s ≥ 0 counted from �.

Notice that ρ(s) is obtained through the Jacobi
elliptic function cosine amplitude, whereas z(s)
through Legendre incomplete elliptic integrals of
I and III kind.

4 A meaningful degeneracy, h = 0: planar strain

In order to model elastica in space under a load �F,
we gave to the constant �V the structure h�F = �V.
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All the preceding treatment has then accordingly
developed with h > 0.

A special degeneracy arises when the vector
�V has the ẑ—component zero. In such a case, by
(2), we have h = 0, namely (see (6)), elastica be-
longs to a plane θ = θu. By (7), putting h = 0 and
ρ
√|ξ |/2 = γ , we get:

s = 2√|ξ |
∫ ρ

√|ξ |/2

0

dγ
√

1 − γ 4
,

which is the Jakob Bernoulli lemniscatic integral,
|γ | < 1. Accordingly, putting γ = cosϕ, it is easy
reduced to Legendre form:

s

√ |ξ |
2

=
∫ π/2

0

dϕ
√

1 − 1
2 sin2 ϕ

−
∫ arccos(ρ

√|ξ |/2)

0

dϕ
√

1 − 1
2 sin2 ϕ

.

Or:

ρ(s) =
√

2
|ξ |cn

[

s

√ |ξ |
2

− K
(

1√
2

)]

,

which provides the radial equation to polar para-
metric representation of planar elastica laid upon
plane θ = θu, K being the complete elliptic integral
of I kind. Let us pass to that providing z. By (13),
and [37] formula 312.03 p193, recalling that elliptic
integrals of I and II kind are odd functions of their
amplitude ϕ, we get:

z(s) = z∗ −
√ |ξ |

2

{

2E

[

s

√ |ξ |
2

− K
(

1√
2

)]

−F

[

s

√ |ξ |
2

− K
(

1√
2

)]

+2E
[

K
(

1√
2

)]

+ F
[

K
(

1√
2

)]}

being E(ϕ, k) the Legendre incomplete elliptic inte-
grals of II kind, where the value 1/

√
2 of modulus

in expressions for cn, F, E, has been omitted.
Our elastica is then always laid upon the same

plane θ = θu defined through the rod’s original
unstrained direction and the straightlines of �F, −�F.
Above formulae for ρ(s) and z(s) are then provid-
ing the “natural” equations of the elastica through
the parameter s ≥ 0 counted from �.

5 Conclusions

We construct exact analytic solutions to nonlinear
ODEs (4) describing large deflections in space of
a straight, prismatic, flexible rod bent under termi-
nal active thrust of whichever direction co-planar
to the rod straightline. We face with great defor-
mations, but not so large to go off limits of lin-
ear elasticity: nevertheless the analytical problem
succeeds in being highly nonlinear. Originary dis-
couraging equations have been reduced to a more
tractable form, by passing from� x̂ ŷ ẑ to Oxyz and
after, from Oxyz to cylindrical coordinates. Main
achievements:

1. the torsional angle θ of the double curvature
elastica �, is soon found as proportional to
arc-length s;

2. the planar radius ρ on the polar reference
upon Oxy is an elliptic, and then periodic,
function of arc-length s, with upper bound A:

A(h, ξ) =
√

1
2ξ

(√
16 + h4ξ2 − h2ξ

)

;

3. z = z(s) is computed by a formula where ellip-
tic integrals of both III and I kind appear;

4. ρ and z can also be obtained as functions of
polar anomaly θ ;

5. the alternative: compression/tension, namely
ξ > 0 or ξ < 0, on the elastica’s shape, is
solely impacting the k modulus (10), which is
conditioning both ρ(θ) and z(s);

6. elastica’s planar projection �ρθ of equation
ρ = f (θ), shows a geometric pattern which
will repeat itself, around A, periodically after

N turns: 1/2 ≤ N ≤ (1/π)K
(

1/
√

2
)

, when-

ever N is rational. If not, the �ρθ path will not
close upon itself;

7. the special case h = 0 gives back the same
lemniscatic integral discovered by Jakob Ber-
noulli in 1694 just while he was working about
planar elastica. In addition, z = z(s) is given
by a formula with elliptic integrals of II and I
kind, and not III and I any more.

Let us close with a motivational note: recent
aerospace, offshore, and long-span constructions,
which have been or are being manufactured, should
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challenge the researchers to try to develop nonlin-
ear analyses to the same degree of simplicity of
computation like those established for the linear
ones.
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