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Liénard systems, limit cycles, and Melnikov theory

Miguel A. F. Sanjua´n
Departamento de Fı´sica e Instalaciones, ETS de Arquitectura, Universidad Polite´cnica de Madrid, 28040 Madrid, Spain

~Received 13 June 1997!

Liénard systems constitute a general class of two-dimensional autonomous systems, among which the van
der Pol equation is found. Recently Giacomini and Neukirch@Phys. Rev. E57, 3809 ~1997!# introduced a
sequence of polynomials whose roots are related to the number and location of limit cycles of Lie´nard systems.
We show that in the limit of these sequences, the same information is given by a polynomial which Melnikov
theory associates with a given Lie´nard system, and discuss the relationship existing among them.
@S1063-651X~98!00201-3#

PACS number~s!: 05.45.1b, 02.30.Hq, 02.60.Lj, 03.20.1i
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I. INTRODUCTION

The interest of limit cycles, as isolated periodic orbits,
ubiquitous in the natural sciences and technology. The g
eral problem of finding the number of limit cycles for a sp
cific dynamical system is a rather complicated proble
which has some connections to the already unsolved
bert’s 16th problem. However, many results are well kno
for some specific systems. In particular, there exists a the
which establishes a relationship between the number of l
cycles in terms of the zeros of a function, which is the Mel
kov function for subharmonics. Among the differential sy
tems possessing limit cycles, Lie´nard systems, which may b
written as

ẍ1 f ~x!ẋ1g~x!50, ~1!

are well known. They were first studied by Lie´nard in the
context of self-sustained oscillations. The applications
these dynamical systems to natural sciences is enormou
special case of a Lie´nard system is the van der Pol equati

ẍ1«~x221!ẋ1x50, ~2!

which is probably the best known example of a system p
sessing a limit cycle. Equation~1! may be written as a two
dimensional autonomous dynamical system in the follow
ways:

ẋ5y2«F~x!,

ẏ52g~x!, ~3!

whereF(x)5*0
x f (t)dt.

Liénard systems have received special attention rece
by Giacomini and Neukirch~GN! @1#. They introduced a
sequence of polynomials associated to a Lie´nard system,
with the particularity that the number and position of t
limit cycles is given by these polynomials. For a give
Liénard system, the subharmonic Melnikov theory@2,3# pro-
vides a polynomial whose zeros give information about
number of limit cycles and their approximate radii. Here w
address the problem of the number of limit cycles as view
from the GN polynomials and from Melnikov theory, an
571063-651X/98/57~1!/340~5!/$15.00
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discuss the relationship among them. The main observa
is that the limit of the roots of the sequence of the GN po
nomials converges to the roots of the Melnikov polynomia

II. LIMIT CYCLES AND MELNIKOV THEORY

The main idea is that the number, positions, and mu
plicities of the limit cycles that bifurcate under perturbatio
are related to the number, positions, and multiplicities of
zeros of the subharmonic Melnikov function for the syste
Melnikov analyses for perturbed systems have occurred
numerous works@3,4# since the pioneering work of Poincar´
@5#, mostly for the bifurcation of homoclinic and heteroclin
orbits. A Melnikov theory of subharmonics and their bifu
cations in forced oscillations was recently considered by Y
gasaki @6#. The theory associates a polynomial to a giv
dynamical system. With the previous perspective in mind
global bifurcation problem is thus reduced to a compu
tional problem in terms of polynomials. In short, a Melniko
polynomial gives the appropriate information about the nu
ber and location of limit cycles.

A. General theory

A general equation of the type

ẋ5 f ~x!1«g~x,«,m! ~4!

is considered, wheref (x) andg(x,«,m) are analytical inR2,
and «!1, xPR2 and mPRn. The theory assumes that th
unperturbed system, i.e.,«50, has a one-parameter family o
periodic orbitsGa :ga(t),aP(0,̀ ) and periodTa .

Definition. The Melnikov function for system (4) alon
the cycleGa :ga(t) of period Ta of the unperturbed system i
given by

M ~a,m!5E
0

Ta
e2*0

t ¹• f „ga~s!…dsf `g„ga~ t !,0,m…dt, ~5!

where the wedge product of two vectors x,yPR2 is defined
as x̀ y5x1y22y1x2.
340 © 1998 The American Physical Society
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With the previous definition and assuming the existen
of periodic orbits for the unperturbed system, the followi
theorems are proved in@2#.

Theorem 2.1. If there exists ana0PI and a m0PRn

such that

M ~a0 ,m0!50 and Ma~a0 ,m0!5” 0,

then for all sufficiently small«Þ0, system (4) has a uniqu
hyperbolic limit cycle in an O(«) neighborhood ofGa0

. Fur-

thermore if M(a0 ,m0)Þ0, then for all sufficiently small«
Þ0, system (4) has no cycle in an O(e) neighborhood of
Ga0

.

Theorem 2.2. If the equation M(a0 ,m0)50 has ex-
actly k solutionsa1,a2,•••,akPI with Ma(a0 ,m0)Þ0 for j
51, . . . ,k, then for all sufficiently small«Þ0, exactly k
one-parameter families of hyperbolic limit cycles of syst
(4) bifurcate from the period annulus a of the unperturb
system at cycles through the pointsa1,a2,•••,ak on the Poin-
caré sectionS normal to the one-parameter family of per
odic orbitsGa . If M (a0 ,m0) has no zeros foraPI , then no
one-parameter families of limit cycles of system (4) bifurc
from a for «Þ0.

Theorem 2.3. Under the same assumptions as the p
ceding theorems, if there exists ana0PI and am0PRn such
that

M ~a0 ,m0!5Ma~a0 ,m0!5•••5Ma
~m21!~a0 ,m0!50,

Ma
~m!~a0 ,m0!50 and Mm j

~a0 ,m0!Þ0

for some j51, . . . ,n, then, for all sufficiently small«, there
is an analytic functionm(«)5m01O(«) such that for small
«Þ0 system~4! has a unique limit cycle of multiplicity m in
an O(«) neighborhood of the cycle ofGa0

.

B. Melnikov theory applied to Liénard systems

In this section we will consider Lie´nard systems of the
types

ẋ5y2«F~x!,

ẏ52g~x!, ~6!

where g(x)5x and F(x) is a polynomial of odd degree
Notice that whenF(x)5(x3/3)2x, we have the van der Po
equation. For the Lie´nard system we have a bifurcation fro
the centerf (x)5(y,2x) and consequently¹• f (x)50, so
that the Melnikov function is given by

M ~a,m!5E
0

Ta
f `g„ga~ t !,0,m…dt. ~7!

The unperturbed system has a one-parameter family of p
odic orbits Ga :ga(t)5(a cost,a sint),aP(0,̀ ), and Ta
52p, ;a.

The perturbed Lie´nard system for aF(x) of odd degree,
containing all powers inx, may be written as
e

e

-

ri-

ẋ5y2«~a1x1a2x21a3x31•••1a2n11x2n11!

ẏ52x, ~8!

which for m5(a1 , . . . ,a2n11) has the form of system~4!.
The Melnikov function for this system is

M ~a,m!52E
0

2p

$a1x~ t !1a2x2~ t !1a3x3~ t !1•••

1a2n11x2n11~ t !%x~ t !dt. ~9!

After substitutingx(t) from the periodic orbitga(t), we ob-
tain

M ~a,m!52E
0

2p

$a1a2cos2t1a2a3cos3t1a3a4cos4t1•••

1a2n11a2n12cos2n12t%dt. ~10!

Clearly all odd terms are zero, and the even terms give
result

E
0

2p

cos2n12t dt5S 2n12

n11 D a2n11

22n11
p, ~11!

from which, as a consequence, it is derived that

M ~a,m!522pa2H a1

2
1

3

8
a3a21•••

1S 2n12

n11 D a2n11

22n12
a2nJ . ~12!

Based on the preceding theorems 2.1–2.3, and the resul
tained for the Melnikov function associated with the Lie´nard
system, the following result due to Perko and co-work
provides the necessary information about the number of li
cycles and their radii@2,3#.

Proposition. The Liénard system, Eq. (8), for suffi
ciently smalleÞ0, has at most n limit cycles. Furthermore
has exactly n hyperbolic limit cycles asymptotic to circles
radii r j , j 51,2, . . . ,n as«→0 if and only if the nth degree
polynomial in r2,

P~r 2,n!5
a1

2
1

3

8
a3r 21•••1S 2n12

n11 D a2n11

22n12
r 2n,

has n positive roots r25r j
2 , j 51, . . . ,n.

This result allows us to construct Lie´nard systems with
the exact number of limit cycles and radii we wish. All w
need to do is to write a polynomial with the chosen roo
and afterwards find the coefficientsai associated to the poly
nomialP(r 2,n). In the following we will call this theMelni-
kov polynomial, since it is related to the Melnikov function
through the expression

P~r 2,n!52
1

2pr 2
M ~r ,m!. ~13!
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C. Applications to some specific Lie´nard systems

Using the previous results, we compute all the cases
Liénard systems considered by GN@1#.

~1! The first case is forF(x)5a1x1a3x3. The polyno-
mial P(r 2,1) we obtain is given by

P~r 2,1!5
a1

2
1

3a3

8
r 2. ~14!

This polynomial has one solution given byr 2524a1/3a3 .
Then if a1a3,0 the polynomialP(r 2,1) has a unique posi
tive root and hence a unique limit cycle, and ifa1a3.0 it
has no real roots and hence no limit cycles. This case
been also considered in Ref.@7#.

~2! van der Pol equation, withF(x)5(x3/3)2x . Then
a1521 and a35 1

3. This is a subcase of the previous o
with the property thata1a352 1

3 ,0, and consequently th
correspondingP(r 2,1) polynomial has a unique positiv
root, and hence a unique limit cycle of radiusr 52. GN @1#
obtained an approximate numerical value of 2.001 for
maximum value ofx, using their method.

~3! In this case we considerF(x)50.8x2 4
3 x310.32x5.

Thena150.8, a352 4
3, anda550.32. We obtain the Melni-

kov polynomial

P~r 2,2!50.420.5r 210.1r 4. ~15!

The polynomial has two different roots inr 2, with solutions
of 4 and 1, respectively, providing as positive roots the ra
2 and 1. The results obtained by GN@1# were 1.9992 and
1.0034, respectively, for the maximum value ofx.

~4! The following case isF(x)5x52mx31x. Then a1
51, a352m, anda551. We obtain the polynomial

P~r 2,2!5
1

2
2

3m

8
r 21

5

16
r 4.

The polynomial has two different roots inr 2 given by
(3m/5)6 1

5 A9m2240. If 9m2240.0, i.e., if m.A40/9
52.1082, there are two roots and consequently the sys
has two limit cycles. This is the limit valuem* , which ap-
parently GN get in their calculations shown in Table 3
Ref. @1#. Figure 1 shows the two limit cycles of the Lie´nard
system withm52.5, for «50.01.

~5! Finally, for F(x)5x(x221.62)(x224)(x229). Ex-
panding the terms in powers ofx, F(x)5x7215.56x5

169.28x3292.16x is obtained, from where we easily obta
the ai coefficients. Then the Melnikov polynomial is give
by

P~r 2,3!5
292.16

2
2

3369.28

8
r 22

5315.56

16
r 41

35

128
r 6.

~16!

This has a unique positive root inr 2 given by r 259.9134,
and then a unique limit cycle of radiusr'3.1486. Figure 2
shows this unique limit cycle for«50.01.
of

as

e

ii

m

f

III. RELATIONSHIP BETWEEN MELNIKOV
AND GN POLYNOMIALS

GN @1# introduced a sequence of polynomialshn(x,y) in
x andy, which is associated to every Lie´nard system of the
type given by Eq.~6!, with the following expression:

hn~x,y!5yn1gn21,n~x!yn211•••1g1,n~x!y1g0,n~x!,
~17!

and wheregj ,n(x), 0< j <n21 are polynomials inx. The
time derivative of the polynomic functionhn(x,y) is given
by

ḣn~x,y!5
]hn~x,y!

]x
„y2F~x!…2

]hn~x,y!

]y
x, ~18!

where

FIG. 1. This figure shows the two limit cycles which possess
Liénard system withF(x)5x2mx31x5, for m52.5 and«50.01.

FIG. 2. In this figure the unique limit cycle of the Lie´nard sys-
tem with a polynomial function F(x)5x(x221.62)(x2

24)(x229) for «50.01 is shown.
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]hn~x,y!

]x
5gn21,n8 ~x!yn211•••1g1,n8 ~x!y1g0,n8 ~x!

~19!

and

]hn~x,y!

]y
5nyn211~n21!gn21,n~x!yn221•••1g1,n~x!,

~20!

wheregj ,n8 (x),0< j <n21, stands for the derivative with re
spect tox of the polynomialgj ,n(x). Introducing Eqs.~19!
and ~20! into Eq. ~18!, the following relation holds:

ḣn~x,y!5gn21,n8 ~x!yn1„gn22,n8 ~x!

2F~x!gn21,n8 ~x!2nx…yn211•••1„g0,n8 ~x!

2F~x!g1,n8 ~x!22xg2,n~x!…y

1g0,n8 ~x!F~x!2xg1,n~x!. ~21!

Imposing that every coefficient ofyn be zero in ḣn(x,y)
gives rise to a set of ordinary differential equations for t
polynomials gj ,n(x),0< j <n21. Moreover, the symmetry
(x,y)→(2x,2y), which is shared byhn(x,y), imposes cer-
tain conditions for the polynomialsgj ,n(x), as well. The re-
sult of this construction defines the polynomialsRn(x)5

ḣn(x,y), which may be written as

Rn~x!52g0,n8 ~x!F~x!2xg1,n~x!. ~22!

Application to the van der Pol equation

Following GN @1#, for the van der Pol equation, the fo
lowing polynomial is introduced:

h2~x,y!5y21g1,2~x!y1g0,2~x!. ~23!

The symmetry (x,y)→(2x,2y) of the limit cycle solutions
imposes thatg1,2(x)50. On the other hand, the conditio
that the coefficients ofy2 andy be zero inḣ2(x,y), implies
that g0,2(x)5x21k. Consequently the following polynomia
is obtained:

h2~x,y!5y21x21k. ~24!

For «50, system~6! is Hamiltonian, with Hamiltonian
function H(x,y)5(x2/2)1(y2/2). This shows that the poly
nomial h2(x,y) is physically related to the energy. For th
time derivative we have

ḣ2~x,y!5R2~x!52g0,28 ~x!F~x!2xg1,28 ~x!522xF~x!.
~25!

The root of this polynomialR2(x) is exactly A3. For the
iterationn54, it is derived from Eq.~22! that

R4~x!52g0,48 ~x!F~x!2xg1,4~x!, ~26!

where g0,48 (x)54x324x@F(x)#2 and g1,4(x)5 4
3 x3$(x2/5)

21%. Consequently, we obtain a polynomial of degree
whose terms are
0

R4~x!5 4
27x102 4

3 x81 28
5 x62 28

3 x4. ~27!

This polynomial has a unique positive root which is given
r 51.8248.A3. GN gave results for the roots ofRn(x) until
n520, and it seems that they converge toward 2,which is
precisely the root of the Melnikov polynomial P(r 2,1). On
the one hand, the root of the odd multiplicity ofg1,4(x) is
given by A5. The roots ofg1,n(x) for n>4 @1# seem to
converge toward 2 asn increases, as well.

Another interesting point of this research is the integrat
along the limit cycle, since the integrand should change s
in the region where limit cycles are expected. We can in
grate ḣn(x,y)5Rn(x) along a limit cycleGa :ga(t) of pe-
riod Ta52p. For the first iteration, the result is

E
0

2p

ḣ2~x,y!dt5E
0

2p

R2„x~ t !…dt52a2pH 12
a2

4 J .

~28!

The result of the integral is another polynomial, whose ro
gives precisely the radius of the van der Pol limit cyclea
52. Note that according to the definition ofR2(x) from Eq.
~25! the last integral coincides with twice the Melnikov fun
tion.

We can repeat the calculations with higher order polyn
mials Rn(x) and the result is

E
0

2p

ḣ4~x,y!dt5E
0

2p

R4„x~ t !…dt

5a4p$2 28
4 1 28

8 a22 35
48a41 7

96a6%.

~29!

This new polynomial, obtained after the integration, has
unique positive roota52, which is precisely the unique roo
obtained through the Melnikov theory, and which coincid
with the radius of the limit cycle. However the calculation
for Rn(x),n>6 do not seem to give the same result. There
no similar result for thegj ,n(x) polynomials.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed all the Lie´nard cases calculating th
Melnikov polynomial and comparing with the calculation
carried out by GN@1#. Based on that, the following observa
tions are established

Observation 1. For each Liénard system we obtain th
polynomial P(r 2,n), which is associated with the subha
monic Melnikov function. For the van der Pol equation, th
polynomial has a unique positive root of value r52. Asso-
ciated to the van der Pol equation we have a polynom
Rn(x) of even degree3(n22)14, n52,4,6, . . . . This poly-
nomial has a unique positive rootan,a, starting froma2

5A3. Accordingly, as n increases, Rn(x) increases its de-
gree and the unique root it possessesan seems to converge
to the roota of the Melnikov polynomial.

Since the Melnikov polynomialP(r 2,n) provides the
same information as the GN polynomialsRn(x), it is derived
that the number of limit cycles of the Lie´nard system to
which they are associated is less than or equal to the num
of roots in r 2 of P(r 2,n). Moreover, sinceP(r 2,n) is of
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degreen in r 2, its roots come in pairs, which at least
consistent with the GN conjecture@1#.

Observation 2. Analogously for each system we obta
the polynomial g1,n(x), which by construction is a polyno
mial of odd degree3(n23)12, n54,6, . . . .According to
GN [1] the unique root it possesses isbn.a, whose starting
value isb45A5, for the van der Pol system. As n increas
the degree of g1,n(x) increases, and it is conjectured that
has a unique positive rootbn , which converges toward th
root of the Melnikov potentiala.

Finally we may conclude all this with the following con
jecture

Conjecture. For a given Liénard system, there are as
sociated a Melnikov polynomial P(r2,n), and two sequence
of polynomials Rn(x), n52,4,6, . . . and g1,n(x),n
54,6,8, . . . .For a fixed given value of n>4, the three poly-
nomials possess a unique positive root given bya,an , and
bn respectively, an,a,bn , and with the property that as n
increasesan→a and bn→a.

Summarizing, a comparative analysis of Lie´nard systems
s

using different methods is carried out. One of the main c
clusions is that, in the limit, the GN sequence of polynomi
provides the same information concerning the number
limit cycles and their radii as the polynomial associated w
the Liénard system through the subharmonic Melnik
theory. The Melnikov polynomial is ofnth degree inr 2, and
its number of zeros is less than or equal to the numbe
limit cycles. Furthermore, since it is of odd degree, the ro
come in pairs. This gives an explanation for the GN conj
ture relative to the number and position of limit cycles. F
nally, a relationship among them is conjectured in the lim
asn increases.

ACKNOWLEDGMENTS

This research was motivated after reading Ref.@1#, which
S. Neukirch sent to me before its publication. I wish to tha
him for that. Stimulating discussions with R. Klages, A.
Bogo, and J. I. Hernando are also acknowledged.
P.
@1# H. Giacomini and S. Neukirch, Phys. Rev. E56, 3809~1997!.
@2# T. R. Blows and L. M. Perko, SIAM~Soc. Ind. Appl. Math.!

Rev.36, 341 ~1994!.
@3# L. Perko, Differential Equations and Dynamical System

~Springer-Verlag, New York, 1991!.
@4# J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dy-

namical Systems and Bifurcations of Vector Fields~Springer-
Verlag, New York, 1983!; S. Wiggins,Introduction to Applied
Nonlinear Dynamical Systems and Chaos~Springer-Verlag,
New York, 1990!.
@5# H. Poincare´, Acta Math.13, 1 ~1890!. A good historical review

of the influence of the pioneering work of H. Poincare´ in the
modern theory of dynamical systems can be found in
Holmes, Phys. Rep.193, 137 ~1990!.

@6# K. Yagasaki, SIAM J. Appl. Math.56, 1720~1996!.
@7# A. Lins, W. de Melo, and C. Pugh,On Liénard’s Equation,

Lecture Notes in Mathematics Vol. 597~Springer-Verlag, New
York, 1977!.


