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Liénard systems, limit cycles, and Melnikov theory
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Liénard systems constitute a general class of two-dimensional autonomous systems, among which the van
der Pol equation is found. Recently Giacomini and Neukifehys. Rev. E57, 3809 (1997)] introduced a
sequence of polynomials whose roots are related to the number and location of limit cyclesastilsgstems.

We show that in the limit of these sequences, the same information is given by a polynomial which Melnikov
theory associates with a given ‘hiard system, and discuss the relationship existing among them.
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PACS numbe(s): 05.45+b, 02.30.Hq, 02.60.Lj, 03.2@.

[. INTRODUCTION discuss the relationship among them. The main observation
is that the limit of the roots of the sequence of the GN poly-
The interest of limit cycles, as isolated periodic orbits, isnomials converges to the roots of the Melnikov polynomials.
ubiquitous in the natural sciences and technology. The gen-
eral problem of finding the number of limit cycles for a spe-
cific dynamical system is a rather complicated problem, IIl. LIMIT CYCLES AND MELNIKOV THEORY
which has some connections to the already unsolved Hil-

bert's 16th bl H I I K The main idea is that the number, positions, and multi-
ers problem. HOowever, many resuits are we nownglicities of the limit cycles that bifurcate under perturbations

for some specific systems. In particular, there exists a theor re related to the number, positions, and multiplicities of the

which gstablishes a relationship between th? nqmber of "”.“ eros of the subharmonic Melnikov function for the system.
cycles in terms of the zeros of a function, which is the Meln"MeInikov analyses for perturbed systems have occurred in
kov function fpr sgbharmonic}s.. Among the diffgrential SYS” humerous work$3,4] since the pioneering work of Poincare
ter_ns possessing limit cycles, biard systems, which may be [5], mostly for the bifurcation of homoclinic and heteroclinic
written as orbits. A Melnikov theory of subharmonics and their bifur-

cations in forced oscillations was recently considered by Ya-
gasaki[6]. The theory associates a polynomial to a given
dynamical system. With the previous perspective in mind, a
1global bifurcation problem is thus reduced to a computa-
t}QnaI problem in terms of polynomials. In short, a Melnikov
polynomial gives the appropriate information about the num-
ber and location of limit cycles.

X+ f(x)x+g(x)=0, 1

are well known. They were first studied by biard in the

context of self-sustained oscillations. The applications o
these dynamical systems to natural sciences is enormous.
special case of a Lierd system is the van der Pol equation

X+e(x2—1)x+x=0, 2)

L A. General theory
which is probably the best known example of a system pos-

sessing a limit cycle. Equatiofl) may be written as a two- A general equation of the type

dimensional autonomous dynamical system in the following .

ways: x=f(xX)+eg(X,e,u) 4

x=y—eF(x), is considered, wherg(x) andg(x,&,u) are analytical irR?,
] ande<1, xe R? and x e R". The theory assumes that the
y=-9(x), 3) unperturbed system, i.e==0, has a one-parameter family of
periodic orbitsI',: y,(t),a e (0,°) and periodT,,.
whereF (x) = [5f(7)dr. Definition. The Melnikov function for system (4) along

Lienard systems have received special attention recenthihe cyclel’,, : y,(t) of period T, of the unperturbed system is
by Giacomini and NeukircHGN) [1]. The)( introduced a given by
sequence of polynomials associated to anhiel system,
with the particularity that the number and position of the ;
limit cycles is given by these polynomials. For a given e ity ity (s)ds
Liénard system, the subharmonic Melnikov thef2y3] pro- M (a,p)= fo e [d7 10 \g (7,(1),04)dt, (B)
vides a polynomial whose zeros give information about the
number of limit cycles and their approximate radii. Here we
address the problem of the number of limit cycles as viewedvhere the wedge product of two vectory x R? is defined
from the GN polynomials and from Melnikov theory, and as X\y=X;Y»—Y;Xy.
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With the previous definition and assuming the existence
of periodic orbits for the unperturbed system, the following
theorems are proved {i2].

Theorem 2.1. If there exists anagel and a ugeR"
such that

)-(=y—8(a1X+ a2X2+ a3X3+ e +a2n+1X2n+l)

y=—X, (8)

which for u=(ay, ... ,a,+1) has the form of systemv).

M(ag.i0)=0 and M. (ag, o) %0, The Melnikov function for this system is

2
then for all sufficiently smalt+0, system (4) has a unique M(a,pu)=— {ax(t)+ax?(t) +agx3(t)+ - - -
hyperbolic limit cycle in an Q¢) neighborhood oFao. Fur- 0
thermore if M(ag, o) # 0, then for all sufficiently smalk + 8, X2 () Ix(t)dt. 9)
#0, system (4) has no cycle in an(€) neighborhood of
Fao' After substitutingx(t) from the periodic orbity,(t), we ob-

Theorem 2.2. If the equation Mag,uq)=0 has ex- t@in
actly k solutionsa; a; ... axel with M (aqg,up)#0 for | or
=1,... k, then for all sufficiently smalk+0, exactly k M(a”u):_f {a,a%co@t+a,a’coSt + azatcodt+ - - -
one-parameter families of hyperbolic limit cycles of system 0
(4) bifurcate from the period annulus a of the unperturbed
system at cycles through the pointga, ... oy on the Poin-
care sec_tlonE normal 1o the one-parameter family of peri- Clearly all odd terms are zero, and the even terms give the
odic orbitsT",,. If M (g, ) has no zeros for e | , then no r

- L : esult
one-parameter families of limit cycles of system (4) bifurcate
from a fore+#0.

+ 8y, 1" 2c0$" 2t} dt. (10)

. 2m 2n+2

Theorem 2.3. Under the same assumptions as the pre- f co" 2t dt= 82n+1 T, (11)
ceding theorems, if there exists age | and auy < R" such 0 n+1 /p2n+1
that

from which, as a consequence, it is derived that
M(ag,mo) =My(ag,puo)=---= M(amfl)(ao#o):oa
M(a,p)=—2ma? g §a a4 ...
M (ag,0)=0 and M, (@0, 10) #0 , 2 877

for some =1, ... n, then, for all sufficiently smak, there 2n+2) agn+1 a2t (12)
is an analytic functionu(e) = o+ O(e) such that for small n+1 /g2n+2

e # 0 system(4) has a unique limit cycle of multiplicity m in

an O(&) neighborhood of the cycle dﬁao' Based on the preceding theorems 2.1-2.3, and thg result ob-
tained for the Melnikov function associated with the haed

system, the following result due to Perko and co-workers

provides the necessary information about the number of limit

In this section we will consider Ligard systems of the cycles and their radii2,3].

B. Melnikov theory applied to Liénard systems

types Proposition. The Limard system, Eq. (8), for suffi-
_ ciently smalle#0, has at most n limit cycles. Furthermore it
x=y—eF(x), has exactly n hyperbolic limit cycles asymptotic to circles of

radiir;,j=1,2,... n ase—0 if and only if the nth degree
y=—g(x), (6)  Polynomial in P,

where g(x)=x and F(x) is a polynomial of odd degree. P(r2 n):ﬂJr §a3r2+---+ 2n+2| g, 2n

Notice that wherF (x) = (x3/3)—x, we have the van der Pol ' 2 8 n+1/p2n+2" *

equation. For the Lieard system we have a bifurcation from

the centerf(x)=(y,—x) and consequently/ - f(x)=0, so  has n positive roots%= rj2 J=1,...n.

that the Melnikov function is given by This result allows us to construct ldard systems with

the exact number of limit cycles and radii we wish. All we
Ta need to do is to write a polynomial with the chosen roots,
M(a,u)= fo FAG(va(1),0)dt. (7) " and afterwards find the coefficierasassociated to the poly-
nomial P(r?,n). In the following we will call this theVielni-

The unperturbed system has a one-parameter family of peri(-ov polynomigl since it is related to the Melnikov function

odic orbits T, :y,(t)=(a cod,a sin).ac(0p), and T, wough the expression
=2m, Va. 1

The perturbed Lieard system for & (x) of odd degree, P(r2,n)=— M(r, ). (13
containing all powers ix, may be written as 27r?
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C. Applications to some specific Lieard systems

2
Using the previous results, we compute all the cases of
Liénard systems considered by GN).
(1) The first case is foF (x)=a;x+asx>. The polyno-
mial P(r2,1) we obtain is given by
a; 3a
2= 1, 2782
P(r<,1) > g (14 v

This polynomial has one solution given by= —4a,/3a;.
Then if a;a3<0 the polynomialP(r2,1) has a unique posi-
tive root and hence a unique limit cycle, andaifaz>0 it
has no real roots and hence no limit cycles. This case has
been also considered in R¢T)].

(2) van der Pol equation, witlF(x)=(x%/3)—x . Then D
a;=—1 andaz=3. This is a subcase of the previous one
with the property that,az=—3<0, and consequently the
correspondingP(r?,1) polynomial has a unique positive
root, and hence a unique limit cycle of radius 2. GN[1] FIG. 1. This figure shows the two limit cycles which possess the
obtained an approximate numerical value of 2.001 for the-iénard system with (x) =x— ux®+x®, for u=2.5 ande =0.01.
maximum value ofk, using their method.

-2 X 2

(3) In this case we considd?(x)=0.8x—‘g‘x3+0.32x5. Ill. RELATIONSHIP BETWEEN MELNIKOV
Thena;=0.8,a;=— 3, andas=0.32. We obtain the Melni- AND GN POLYNOMIALS
kov polynomial GN [1] introduced a sequence of polynomialg(x,y) in
x andy, which is associated to every lriard system of the
P(r2,2)=0.4-0.52+0.1r%. (15  type given by Eq(6), with the following expression:

. . L . hn(X,Y) =Y+ Gn-10()Y" "+ -+ -+ g14(X)Y +Gon(X),
The polynomial has two different roots irf, with solutions (17
of 4 and 1, respectively, providing as positive roots the radii
2 and 1. The results obtained by Q] were 1.9992 and and whereg; ,(x), O<j<n—1 are polynomials irx. The
1.0034, respectively, for the maximum valuexof time derivative of the polynomic functioh,(x,y) is given
(4) The following case isF(x)=x>—ux3+x. Thena, by
=1, a3=—u, andas=1. We obtain the polynomial
. dhn(X,y) ahn(X,y)
ha(x,y) = —— —(=F()=——
y
P(r?,2)= 1 3—'ur2+ Er4
2 8 16" - where

X, (18

The polynomial has two different roots in’> given by 5
(3u/5)=i\Ou?—40. If 9u?—40>0, ie., if u>40/9

=2.1082, there are two roots and consequently the system

has two limit cycles. This is the limit valug*, which ap-

parently GN get in their calculations shown in Table 3 of
Ref.[1]. Figure 1 shows the two limit cycles of the Iniard

system withu= 2.5, fore=0.01.

(5) Finally, for F(x)=x(x*—1.6%)(x*—4)(x?—9). Ex- Y
panding the terms in powers of, F(x)=x'—15.56"°
+69.283—92.16 is obtained, from where we easily obtain
the a; coefficients. Then the Melnikov polynomial is given

by

—02.16 3X69.28 5X15.56 35
- r2— r4+ —rS.
2 8 16 128 -5

(16) 5 X 5

P(r?,3)=

This has a unique positive root irf given byr?=9.9134, FIG. 2. In this figure the unique limit cycle of the liard sys-
and then a unique limit cycle of radius=3.1486. Figure 2 tem with a polynomial function F(x)=x(x?>—1.6%)(x?
shows this unique limit cycle fog=0.01. —4)(x?—9) for e=0.01 is shown.
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dha(xy) | _ , ’
S g a0y G0y + 550
(19
and
ahp(X,
n;y L =nyn_l—l—(n—l)gnflyn(x)yn_z-}— T g1a(X),

(20

whereg; (x),0<j<n—1, stands for the derivative with re-
spect tox of the polynomialg; ,(x). Introducing Eqs(19)
and(20) into Eq. (18), the following relation holds:

ha(X,Y) =h-1200Y"+ (@n-24(X)
—F(X)0h_1,(X) = NXY" 1+ -+ (@ha(X)
—F(X)01(X) = 2XGp0(X))y
+on(X)F(X) =Xy n(X). (21)

Imposing that every coefficient of" be zero inh,(x,y)
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28
5

6_28.,4
— 3 X

Ry(X) = 7x10— $x8+ 2x (27
This polynomial has a unique positive root which is given by
r=1.8248> /3. GN gave results for the roots Bf,(x) until
n=20, and it seems that they converge towardvBjch is
precisely the root of the Melnikov polynomial(i2,1). On
the one hand, the root of the odd multiplicity gf ,(x) is
given by 5. The roots ofg,,(x) for n=4 [1] seem to
converge toward 2 as increases, as well.

Another interesting point of this research is the integration
along the limit cycle, since the integrand should change sign
in the region where limit cycles are expected. We can inte-
gratehn(x,y)an(x) along a limit cyclel’ ,:y,(t) of pe-
riod T*= 2. For the first iteration, the result is

2

2, o
1_T .

f hz(x,y)dt:
0

The result of the integral is another polynomial, whose root
gives precisely the radius of the van der Pol limit cyele
=2. Note that according to the definition Bh(x) from Eq.

fszz(x(t))dIZZazfr[
0
(28)

gives rise to a set of ordinary differential equations for the(25) the last integral coincides with twice the Melnikov func-

polynomials g; ,(x),0<j<n—1. Moreover, the symmetry
(x,¥)—(—x,—Yy), which is shared b¥y,(x,y), imposes cer-
tain conditions for the polynomialg; ,(x), as well. The re-
sult of this construction defines the polynomid®s(x)=

h,(x,y), which may be written as

Rn(X) = —~gon(X)F(X) =XG1 a(X). (22

Application to the van der Pol equation
Following GN[1], for the van der Pol equation, the fol-
lowing polynomial is introduced:

ha(X,y) =y?+ g1 AX)y+do.AX). (23

The symmetry X,y)— (—X, —Y) of the limit cycle solutions
imposes thaig; x)=0. On the other hand, the condition
that the coefficients of? andy be zero inh,(x,y), implies
thatgojz(x)=x2+ k. Consequently the following polynomial
is obtained:

ho(x,y)=y?+Xx2+Kk. (24)

For e=0, system(6) is Hamiltonian, with Hamiltonian
function H(x,y) = (x?/2)+ (y?/2). This shows that the poly-
nomial h,(x,y) is physically related to the energy. For the
time derivative we have

ha(X,y) =Ra(X) = — g A X)F(X) —Xg; AX) = — 2XF(x).
(25)

The root of this polynomiaR,(x) is exactly 3. For the
iterationn=4, it is derived from Eq(22) that
Ra(X) = = 9o 4 X)F(X) = X9y 4X), (26)

where g§ (X)=4x3—4x[F(x)]* and g; 4x) = $x3{(x?/5)

tion.
We can repeat the calculations with higher order polyno-
mials R,(x) and the result is

2, 2@
ha(x,y)dt= f Ra(x(1)dt
0 0

28

=a*n{-8+2a

(29

This new polynomial, obtained after the integration, has a
unigue positive rootv=2, which is precisely the unique root
obtained through the Melnikov theory, and which coincides
with the radius of the limit cycle. However the calculations
for R,(x),n=6 do not seem to give the same result. There is
no similar result for theg; ,(x) polynomials.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed all the lnard cases calculating the
Melnikov polynomial and comparing with the calculations
carried out by GN'1]. Based on that, the following observa-
tions are established

Observation 1. For each Lismard system we obtain the
polynomial Rr?,n), which is associated with the subhar-
monic Melnikov function. For the van der Pol equation, this
polynomial has a unique positive root of value 2. Asso-
ciated to the van der Pol equation we have a polynomial
Rn(x) of even degre8(n—2)+4,n=2,4,6 . ... This poly-
nomial has a unique positive roet,< «, starting froma,
=4/3. Accordingly, as n increasef,(x) increases its de-
gree and the unique root it possesggsseems to converge
to the roota of the Melnikov polynomial.

Since the Melnikov polynomialP(r2,n) provides the
same information as the GN polynomi#tsg(x), it is derived
that the number of limit cycles of the Inard system to

—1}. Consequently, we obtain a polynomial of degree 10which they are associated is less than or equal to the number

whose terms are

of roots inr? of P(r2,n). Moreover, sinceP(r?,n) is of
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degreen in r?, its roots come in pairs, which at least is
consistent with the GN conjectufé].

Observation 2. Analogously for each system we obtain
the polynomial g,(x), which by construction is a polyno-
mial of odd degre€8(n—3)+2, n=4,6, ....According to
GN [1] the unique root it possessesfs> «, whose starting

SANJUAN 57

using different methods is carried out. One of the main con-
clusions is that, in the limit, the GN sequence of polynomials
provides the same information concerning the number of
limit cycles and their radii as the polynomial associated with
the Lienard system through the subharmonic Melnikov
theory. The Melnikov polynomial is afith degree in?, and

value isp,= /5, for the van der Pol system. As n increasesits number of zeros is less than or equal to the number of

the degree of g,(x) increases, and it is conjectured that it
has a unique positive rogs,,, which converges toward the
root of the Melnikov potentiad.

Finally we may conclude all this with the following con-
jecture

Conjecture. For a given Limard system, there are as-
sociated a Melnikov polynomial F(n), and two sequence
of polynomials R(x), n=24,6... and gu(x),n
=4,6,8 . ...For a fixed given value of B4, the three poly-
nomials possess a unique positive root givenahy,,, and
B, respectivelya,< a< B, , and with the property that as n
increasesa,,— a and B,— a.

Summarizing, a comparative analysis of héed systems

limit cycles. Furthermore, since it is of odd degree, the roots
come in pairs. This gives an explanation for the GN conjec-
ture relative to the number and position of limit cycles. Fi-
nally, a relationship among them is conjectured in the limit
asn increases.
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