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Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability
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We study a dissipative dynamical system that models a parametric instability in a plasma. This instability is
due to the interaction of a whistler with the ion acoustic wave and a plasma oscillation near the lower hybrid
resonance. The amplitude of these three oscillations obey a three-dimensional system of ordinary differential
equations which exhibits chaos for certain parameter values. By using certain “integrability informations” we
have on the system, we get geometrical bounds for its chaotic attractor, leading to an upper bound for its
Lyapunov dimension. On the other hand, we also obtain ranges of values of the system’s parameters for which
there is no chaotic motion.
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I. INTRODUCTION ; *
akl=akbx—akl,

A whistler is a wave in a plasma which propagates paral-

lel to the magnetic field. It is produced by currents outsideWhere the amplitudes have been nondimensionalibet
the plasma at a frequency less than that of the electron CBf)'roportional to the amplitude of the electric field of the whis-

about the magnetic ied n he same sense a8 the elections! 1 andv; are the damping decremens of the exciec
the plasma g ybrid and acoustic waves normalized to the damping of the

Interactions between these whistler waves and lower hygecay-lnducedthwd) wave: v1 = v, v2=vxl vi,- De-

brid waves in a plasma are among the important phenomerR€nding on the relative values bicompared to £, 7,), the
taking place in the ionosphefé]. As it has been shown in Systém can relax to trivial equilibriunino oscillatior) or

[2], a whistler can destabilize a magnetoactive plasma b .tablllze on a_steady oscnla_tlon or even present chaotic mo-
exciting the lower hybrid wave together with the ion acoustiction- By studying the dynamics of the phasesagf b, , and
wave (the longitudinal compression wave in the ion density@k, it can be shown2] that they correlate as— + <. Hence

of a plasma This parametric excitation, although restrainedwe shall study syster{ll) with real amplitudes.

by the loss of energy which is given to the other nonresonant

waves, may become chaotic for certain ranges of value of the

pump amplitude. More specifically, the whistler at frequency II. THE DYNAMICS AND ROUTE TO CHAOS OF THE

wq excites a plasma wave at frequenayand the ion acous- PIKOVSKII-RABINOVITCH-TRAKHTENGERTS

tic wave at frequency), = wy— w,. We calla, the normal SYSTEM

amplitude of the wave at frequeney, and b, the normal
amplitude of the ion acoustic wave. As a result of the decay
of these excitations, at least a third synchronous wave igewrite systen(1) as
produced (of normal amplitude akl) which is linearly

damped and will act as a limiter for the instability. This
elementary limiting process may nevertheless induce compli-
cated oscillations of the three waves when the pump ampli-
tude is increased.

The differential equations for the amplitudes of the three
waves are obtained from the hydrodynamic equation for the
radio-frequency oscillation of an electron gas and from the
kinetic equation for the ion acoustic wave. The amplitudes
are assumed to be constant in space. The evolution equations
take the dimensionless form:

We setx=a,, y=b,, andz=a, andx,y,zeR* and

ag=— bXakl_ vyt hb; ,
FIG. 1. Double homoclinic trajectory for syste(®) with v,
b =aka; — v, +ha;, (1) =1, v,=4, v3=1, andh=3.99. The trajectory and three projec-
X 1 X tions are drawn. For only slightly greater valuestothe system
exhibits transient chaotic dynamics. Note that the homoclinic tra-
jectory heads back toward the origin by positwé&angent to the
*Electronic address: s.neukirch@ucl.ac.uk axis).
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FIG. 2. Schematic route to chaos for the systétn With »;=1, v,=4, andvz=1, we haveh,=2, hy=5, h,=~=4.8, andhy,
=3.99. As we shall see, for some other valuespand v,, hy,, does not exist.

(x,Y,2)T=F(x,y,2) = (hy— v;x—yz,hx— v,y source in this homoclinic bifurcation since at this poiht,
. =hye, @ strange invariant sénot stable is born.
+XZ,Xy—v32) . 2 This set becomes stable lat=hy,, when the heteroclinic

. . : . L bifurcation takes place: the leftespectively right part of
We will refer at this system as the Pikovskii-Rabinovitch- the 15 unstable manifold of the origin becomes connected
TrakhtengertsPRT) system as it has been introduced®).  yjth the 1D stable manifold of the limit cycléof saddle

The system is symmetrical about the transformation: _ type surrounding the equilibrium poinM , (respectively
—X,y— —Y. The four parameters are assumed to be positivey, _) (see Fig. 3 Note that up to now, the pointdl + are

We will briefly recall its important features. The origin || stable, so we have three competiting attractors in the
0(0,0,0) is asymptotically stable far<hy=+viv,. At h phase space.

=hpk, two stable equilibrium points The M .. points lose their stability in a subcritical Hopf
- bifurcation ath=hy.
V3 0 o —— The values ohy,, hye, andhys depend orv,, v,, andv
\Y/ I = \/—Z h—z , \/ —,Z= hs— . ) hos ''hes hf . p 1y P2s 3
( 41 ol o Vlvah—zo 0 vz and this defines hypersurfaces in the 4D parameter space.

) ) ) . o ) The Hopf bifurcation equation definiry, is
appear in a pitchfork bifurcation, as the origin loses its sta-

bility.
I1¥one increase$ further, different bifurcations occur as Avivg+ W (v = v)?+ (v F o) vl +h(v1 = v7)
the motion in phase space becomes more and more compli-
cated(see Fig. L X (v3+ v+ o) VW= vi,=0
At h=hy, a homoclinic bifurcation takes place: the one-
dimensional1D) unstable manifold of the origiftangent to .
the z=0 plang becomes connected with its 2D stable mani- (with v;>v1+v3). (3
fold (see Fig. 2 Note that in this figure, the homoclinic
trajectory heads back toward the origin through positive As for the homocliniclh=h,v;,7,,73)] and the hetero-
and tangent to the axis. Considering the orientation of the clinic [h=h,4{v,,v,,73)] bifurcation curves, we cannot cal-
two stable eigenvectors and the respective values of the tweulate them analytically and so we must approximate them
real negative eigenvalues, the finishing part of the honumerically (see Fig. 1 Nevertheless we will introduce
moclinic orbit (if there is oné will lie in the z=0 plane for  algebraic bounds to the homoclinic curve in the parameter
h<\(v3—v,)(v3— ;) andv3>r,; and v3>v, and will be
tangent to thez axis otherwise. In this latter case it could
well be that the homoclinic orbit reaches back to the origin
by negativez, but in numerical experiments, following the
orbit while changing parameters, we only saw a configura-
tion like in Fig. 2 (tangency toz axis, positivez) and we
conjecture that it is always the case. We believe that this
bifurcation plays an important role in the dynamics of the
system and that the so-called homoclinic explosions, intro-
duced in the study of the Lorenz system[Bl, occur here
also! Moreover, we assume that the chaotic motion has its

!In fact, the chaotic attractor of the PRT systé2h and the Lo- FIG. 3. Double heteroclinic trajectory for systef® with v,
renz attractor look similar. So do the routes to chaos of these twe=1, v,=4, v3=1, andh=4.8. We have drawn three projections of
systems. Nevertheless, the PRT system has one more nonlinearitye trajectory as well. For greater valuesipfthe system exhibits
and is more symmetric iRy. stable chaotic dynamics.
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space. Forv;=1, v,=4, andvz=1, we haveh,=2 and

hp=5. Thanks to numerical integration, we firigi,=4.8 A\‘ Iy 4 e
and hy,;=3.99. i §\\\\\\“QQQ,/'4£~; i
8 §§§§kﬁ§bﬁ/ﬂ%f’4
lIl. INTEGRALS OF MOTION Z 2 -
AND SEMIPERMEABLE SURFACES 2 : 10
We now turn to the “integrability information” we have 0

on system(2). We will show how to use this information to
study the chaotic features of the system. There are seven
known integrals of motion for systefd]: 10

. I]_: ()(24‘)/2_4-I‘1Z)e2,/t whenv= V1=Vr= V3/2.

= (x2—y?+27%)e* whenv,=v,=v3=. FIG. 4. Chaotic attractor of systef®) bounded by the upper-

3=(x2+y?)e?*” whenh=0,v;=v,=». most semipermeable surfat® with b=0 anda=aj.

14=y?—(z+h)? whenv,=r;=0.

ls=x2+(z—h)2 whenv,;=r3=0. 1/4
Ng=(y?+2%)e*" whenv,=r;=v andh=0. <a< —a..
.|7=(X2—22)ez"t WhenV1:V3:V andh=0. h_,l(y _1)(]} _;) 2
Integrals of motion of higher degree have been searched roente e

for, but none were founf#4]. Thanks to a rescalingye can ) ) o )
setvy=1 [in fact there was na; in system(1), it has been In this case, the chaotic attractor, when it exists, is compelled

introduced to enable to existencelgfandls]. In [5]it has (O €volve above the uppermost surféde(b=0,a=a;), see
been shown that the existence of an integral of motion for &19- 4- This case also establishes that, for these values,of
certain value of the parameters generally comes togethéfe: @ndh, all the asymptotic motiorichaotic or nok takes
with the existence of transverse sections that exist for a muchlace in thez>0 half space.
wider range of the parameters. These transverse sections, (1B) v;>3, v,>3, h<\/(v;—3)(vo—3)<\vv,, Vb
also called semipermeable surfa¢esa 3D phase space they <0 if ae]—;a,] or Yb>0 if ae[a;;+*]. The origin
are surfaces, crossed in one way by the trajectprigeld  0(0,0,0) is the only equilibrium point in this case, and the
important exact information about the asymptotic behaviorsemipermeable surfacéd) establish its asymptotic stability
of the system. (i.e., all trajectories in phase space eventually stabilize on the
Hence the existence of the integigl when v;=v,=% origin).
leads us to seek semipermeable surfaces with the following (1C) v;<3, v,<3, ¥(h,b=0) andac[a,,a,]. The sur-

~NoO ok, wWNERE

algebraic form: faces prevent any homoclinic trajectory from returning to the
origin by strictly positivez (see Fig. 5. So for these values
Ri(x,y,2)=z—a(x*+y?) —b=0. (4)  of the parameters, and v, there is no homoclinic bifurca-
tion and hence no chaotic motidfh.
SurfacesR; are paraboloids of revolution about tkeaxis. The existence of integrals of motidp and| 5 lead us to

As explained in[5-7], we compute the scalar product be- propose
tween the normal vector dR; and the vector field and we

evaluate this scalar product on the surféje=0: Ry(X,Y,2)=X2(a+h)+y2(a—h)+2h(z— a)?— 8. (6)
R1|Rl:0(xyy):a(21’2_ 1)y*+(1-4ah)xy Calculating the scalar product, one finds

+a(2v;—1)x*—b. (5)

Rl\Rlzo is a quadratic polynomial iry, it has constant sign

[and hence surfacdd) are semipermeablén the three fol-

lowing cases:

(1A) When v;>3, v,>3, h>+\/(v;—3)(v,—3), Vb
=0,
Y=sX
1/4 -6 -4 -2 2 4 6
0<a1= -1

h+ V(r1— 3)(v,— 3)

FIG. 5. Semipermeable surfac& prevent the homoclinic bi-
furcation from taking place whem,<3, v,<3, Yh. The coeffi-
cientsis chosen in order that the three equilibrium points are on the
2(X,y,Z)—>(X,y,Z)/v3, h—> h/ V3, t—>tV3, Vl,Z_) V1’2/ V3. prOjeCtion.
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and conditions under which they
are semipermeable. A
= a?h/[2v;(1—v;)] with i=1,2.

z z
¢ L |© i R
D -
B<A, 1
/ NV
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Rz\R =0(y,z)=2h22( Vl—1)+22ah(1—2v1)+y2(h—a) T-he center of these semipermeable eIIip_sc('@i)sand their
2 size both depend oa. So one has to consider the envelope

X(vp—vy) + v1(2ha?— B) (7)  of all the ellipsoids(9) whenh<a, solving
when eliminating thex variable, or Ra(X,y,z,a) =0, (10
R =2hZ(v,— 1)+ 2zah(1—2v,) +x2(h+ dR,
2IR,=0(X,2) (v2=1)+2zah(1-2vy) +x*(h+a) o (xY.2,0)=0.
X(vp=v1) +va(2ha®~ B) 8
One finds

when eliminating they variable. Depending or and B3, the Ahz—=x2+y2
surfaces(6) can be ellipsoids or hyperboloids of revolution E.- o
(with y or z axis) with one or two sheetésee Fig. 6. Y| x2+(z—h)2=h2.
Case A of Fig. 6 proves that(h,v,,v,) the asymptotic
motion is bounded in phase space. The attragtqmust lie This Corresponds to the inner intersection of a paraboloid and
inside the smallest ellipsoid. We have thus to consider th@ cylinder. The cylinder is the same as the one we find in
ellipsoid with the smallest radiusg). If we do so, we get case(AB). It establishes that all asymptotic motion fog
something which still depends am, for example, wherv, >3, ¥(v2,h) takes place in the>0 half space. As for the
>1 andv,>1%: parabola, it does not introduce any improvement to surface
(4) with a=a, andb=0.
def In case B, the surfacd$) with =0 show that there can
R,(X,Y,2,@)=R,(8=2ha?)=x2(a+h)+y%(a—h) be no homoclinic bifurcation for/1> v, and v2<_1,_ Vh be-
cause the 1D unstable manifold of the origin is separated
+2h(z— a)?—2ha?=0. 9 from the 2D stable manifold by the semipermeable surfaces.

(11)
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Case(BC) shows that there can be no homoclinic bifur-
cation forv,< 3%, ¥ (v,,h) for the same reason as in the case
(10).

Case C shows that there can be no homoclinic bifurcation
for v;,<3 and v,<3, Vh for the same reason as in the
previous case.

Case D yields bounds for the chaotic attractor. Here for
eachv,; and v,, we have to consider the surface with the
smallestB. Then as we still have one free parameigwe
calculate the envelope of the family of surfaces dox —h.
This yields

E,=vi(v;—1)(x%+y?)[8hz— (x*+y?)] FIG. 7. Chaotic attractor of systef®) with v,=1, v,=4, v,

) 22 o 5 =1, andh=6 bounded by the envelope of surfadés in case E
+2h?(1-2v)4(x2—y?)+222]=0 (12 gefined by Eq(12) with i =2 andz>0.

with i=1,2 and the restriction One naturally wonders whether surfat) is entirely
21 —1)2 semipermeable or ngéand if yes under what conditiong-or
4hz— (X2+y?) < — h2(y'—<0_ (13)  v1=v2>1, we can be sure the answer is yes because in this
vi(vi—1) case surface&) are semipermeable both in cases D and E

and so is their envelope. Now if surfa¢g?) is a semiper-
meable surface, we could wonder if there is an integral of
motion (with the same algebraic fornattached to it. Taking
v;=0 ory;=1 in Eq.(12), we findE,=2z?—y?+x? which
corresponds td,. And taking =3, we find E,=[4hz
—(x?*+y?)]? which corresponds tb,.

(2,/2_1)2) The existence of integrals of motidn, I3, I andl;

For points &,y,z) for which the inequality(13) does not
hold, the closest surface from the attractor is the surfége
with «=—h andB=A;. Yet better bounds are found in the
next case E where the envelofi®) is to be considered with

i =2 and for—h<a<h which yields the restrictions

2v,—1)2
—h2£<4hz—(x2+y2)

<h?
va(vy—1)

lead us to propose

va(va—1)

14) Ra(X,y,2) =X2A+y2+(A—1)Z2—B. (15)
The parentheses mean that the upper inequality is
no use bhecause the envelop&?) does not reach Mz
>(x%+y?) +h?(2v,—1)%/[vy(v,—1)]. Besides, thanks
to surfaceg4), we know that the chaotic attractor lies in the
zone where z>1/4[h—+/(v1—3)(vo—3)]1(X* + y?) >
(1/4h)(x*+y?)>(1/4n)(x*+y?) = (h14)(2v, = 1)?/[va(v2  Depending om andB the surface15) can be ellipsoids or
—1)]. Hence surfac€l2) with i=2 in case E is a bound for hyperboloids of revolutioriwith y or z axis) with one or two
the chaotic attractor with no restrictidqeee Fig. 7. sheetqsee Fig. 8.

O'I'he scalar product on the surface is

Rgr,=0=X°A(1=v1) + (1= vp)y’+h(A+1)xy—B.
(16)

_—[20%+ (v1= ) ?] = V(v = vp) (407 + (v1— 1))

N 1
e _~ (17)
—[2h?=4(v; = 1)(v,— 1) ]=4V(v1— 1) (v~ D[ (v1—1)(v,—1)—h?]
2+ = 2 ) (18)
2h
- (2h2_4V1V2) * ViVo— h2
A3i = . (19)
2h?
|
In case F of Fig. 8, the semipermeable ellipsoids state thainly equilibrium point, is stable.
for these parameter valueb3< v,v,) the origin is asymp- Case H provides a bound for the chaotic attrattee Fig.

totically stable. 9) whenv,>1 andv,>v;.
Case G is of no interest since here the origin, which is the Case J proves that there is no homoclinic bifurcatamd

036202-5



S. NEUKIRCH PHYSICAL REVIEW E 63 036202

B<0 R,>0 B>0 R,<0

FIG. 8. Shape of the surfaces
(15) and conditions for them to be
semipermeable. The values of
A, Ay, andAs. are given by
Egs. (17), (18), and (19), respec-
tively.

W< (v1)v,-1)
A in[A1] >V,

h*< (v 1)(v,~1) € v,v,
A in[A1]

A
i [AAL] -

hence no chaotic motigrior v,> v, andv,<1 for the same part of a possible homoclinic curve would not be tangent to

reason as in case B. the z axis. So this case does not yield any new information.
In case K, the surfaced5) are semipermeable whem We have drawn in Fig. 10 the curdg,(v,,v,)=+>

<\(r;,—1)(v,—1) and this prevents the existence of a ho-Which is the linev,=r;+1 [cf. Eq. (3)].

moclinic curve tangent to theaxis in its finishing part. But For each ¢, v,) above this line, there is a value bffor

for h<\(v;—1)(v,— 1), as we saw earlier, the finishing Which the equilibrium pointsM .. lose their stability in a
subcritical Hopf bifurcation. There are also two different val-

ues of h for which the system undergoes homoclinic and
heteroclinic bifurcations.

For (v1,v,) under this line, the equilibrium points! .
never lose their stability as is increased but there may still
be values ofh for which the homoclinic and heteroclinic
bifurcation take place.

Nevertheless we know from surfacé$), (6), and (15)
that for (v1,v,), the zone where i,<1 and v,<wv;) or
(v,<1/2), there can be no homoclinioor heteroclini¢ bi-
furcation Vh. Hence in between this zone and the ling
=v,+1, there must be curves for whidh= + andhy,
=+, We have drawn, thanks to numerical integration, the
curvesh,.= 100 anch,,= 100 which are supposed to be very
near the ‘" curves. These results on the parameter space
drawn in Fig. 10 can be used to understand the different
-10-7.5 -5 =2.5 2.5 5 7.5 10 behaviors of the three waves in the plasma. Our method en-
ables us to state that for certain values of the damping dec-
rementsy, andv,

FIG. 9. Semipermeable surface§l5 in case H
=\J=A;, x*— (A, —1)z% with A,,<0) and chaotic attractor of
System(Z) W|th V]_:l, V2:4, V3:1, andh:6. (V2<1m V2< Vl)UV2<%, (20)
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v th= inﬁnity — VT V3 _h+Z(t) y(t)
’ (‘ V= 1+v, :’,2=v1 h,.=100 M(t)=| —h—z(t) —vi—v;3 =x(t) |. (23
- 4 —y(t) =X(t) —vi—v

At first sight, this trick seems to be of no help since one still
needs numerical integration to evaluate the eigenvalues of
the matrixM (t). But if we consider that the values ®(t),

y(t), andz(t) on the chaotic attractor are boundgalanks to

the semipermeable surfagewe may bound the eigenvalues

1.25

075 of M(t). The set of pointsZ, which lie above surfacé4)
a(\\J“ with b=0 anda=a,, inside surfac€6) in case(AB), above
05 - \-\“‘\0‘0 surface(12) with i=2, and outside of the cone defined by
’ “0«\00 surface(15) in case H, is a rather tight bound for the chaotic
B /t\o attractor:
K (x,y,2)eZ |ff:
A%
05 1 15 2 25 3 L X2 +y?
=7 (24)

FIG. 10. Elements of the bifurcation diagram for systém h— ‘/(Vl_ %)(Vz_ %) ,

Note that there is chaotic motion possible under the line v,

+1, which means that the system can be chaotic for Soeeen if h?=x%+(z—h)?, (25)

the equilibrium points remain stable for di. The curveshy,

=100 andh,e=100 were obtained numerically by a continuation 0=<v,(v,—1)(x>+y?)[8hz— (x*+y?)]

method USINGUATHEMATICA . 9 2, 2 o 2
+2h“[(1—2v,) (X" —y“)+227], (26)

the amplitudes of the three waves will not become chaotic 0=A, X2+ y2+ (A, — 1) 22 27)

for any value of the pump. Above this region in the plane

(v1,v,), we have to rely on numerical integration to draw a Settingv;=1, v,=4, v3=1, andh=6 and looking for the
frontier hp,=+% (which seems to be a linebetween two Mmaximum real part of the eigenvalues Mif(t) for (x,y,z)
regions: in the lower regiofwhich contains our exact region € Z (for these values of parameters, , = —0.6), we found
(20)] the instability in the plasma will never lead to chaotic (unlike in [9]) that the largest real part is realized fory
behavior as in the upper region where there will be a value of=5.82, z=4.8. Hence one finds that,+ u,=<4.31 which
the pumph= h,, for which the amplitudes of the waves will Yields D, =2.418. Numerical integration yields,=0.39,
have a chaotic behavior. m2=—0.001, andus=—6.39: D =2.061.

V. CONCLUSION
IV. BOUNDING THE LYAPUNOV DIMENSION
) In this work we have studied the dynamics of a 3D dissi-
Let us consider now the three Lyapunov exponents alongative system which arises in the study of a parametric in-
the attractoru;>0= u,> u3. Thanks to numerical integra-  stapility in a plasma.

tion, we know thaju; + u,>0, hence the Kaplan-Yorke for-  \we have established that the analytic information we have
mula for the Lyapunov dimension reads on the integrability of the system can be used to get infor-
mation on the chaotic dynamics of this system. More specifi-
Mmqt o cally, we have shown that one can use the algebraic form of

D =2+—"—. (21) the integrals of motiorfexisting for specific parameters val-

M . .
’ ues to bound the chaotic attractor in phase space and to

bound the chaotic dynamics in the parameter sghgein-
troducing analytic bounds to the homoclinic bifurcation
curves. These results enable us to give information on the
range of parameters for which the instability can lead to
M1t o (22 chaos.
M1t ot vt votg We have also shown that one can use the geometric
bounds introduced for the chaotic attractor to derive an upper
An upper bound of the(positive sum of the first two bound for its Lyapunov dimension. W(_a believe that t_his
Lyapunov exponents may be calculated by considering th8€thod can be used on any system with a constant diver-
maximum real part of the eigenvalues of the matd(t) ~ 9ence, regardless of its dimension.
=(V-F)I-L(t), whereL(t) is the Jacobian matrix of the
vector field andl is the 3D identity matri8]. For system
(2), mq1tp, is bounded by the maximum real part of the The author would like to thank Y. Elskens for useful
eigenvalues of comments.

Using the relationu,+ po+ puz=—(v1+vyo+v3), we can
write D, as

DL:2+
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