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Chirality of Coiled Coils: Elasticity Matters
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Coiled coils are important protein-protein interaction motifs with high specificity that are used to
assemble macromolecular complexes. Their simple geometric organization, consisting of a helices
wrapped around each other, confers remarkable mechanical properties. A geometrical and mechanical
continuous model taking into account sequence effects and based on the superhelical winding of the
constituent helices is introduced, and a continuous family of solutions in which the oligomerization
interactions are satisfied is derived. From these solutions, geometric and structural properties, such as the
chirality and pitch of the coiled coil and the location of residues, are obtained. The theoretical predictions
are compared to x-ray data from the leucine zipper motif.
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Coiled coils consist of « helices wound together to form
a ropelike structure stabilized by hydrophobic interactions.
The coiled-coil motif is found in about 10% of the proteins
in the human genome [1]. Particular examples of coiled
coils are keratin and the muscle protein tropomyosin. The
widespread appearance of this motif is due in part to the
simplicity, versatility, and economy by which coiled-coil
forming sequences can achieve high specificity to select
particular binding partners from a large choice of similar
sequences, and in part to their mechanical properties. A
coiled coil can extend and twist to store elastic energy and,
accordingly, produce mechanical work. Whereas « helices
are right handed, the overall chirality of most coiled coils
built out of « helices, such as keratin, is left handed. This
difference was first observed by Crick [2] who gave a
geometric construction to reproduce both the handedness
of keratin fibers and its global structure. Crick’s construc-
tion was later generalized by Fraser and MacRae [3] who
provided a formula for the pitch of a general coiled coil
based on the periodicity of hydrophobic residues in the
sequence. Absent from these analyses is a justification of
this formula, a convincing explanation of the origin of the
coiled-coil chirality, and the response of coiled coils under
mechanical loads. The purpose of this Letter is to model
the relation between structure and mechanical properties of
coiled coils. We introduce a continuum representation that
takes into account sequence effects and model the long-
range elasticity of the structure. We assume that the coiled
coils are in a canonical shape where the central axis of each
« helix is itself a helix. We show that within the coiled-coil
structure, all residues lie on helices. Further, there exists a
continuum of possible structures with both chiralities sat-
isfying the geometric requirements that the hydrophobic
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sides of the helices face each other, thereby disqualifying
previous explanations [2,3] of chirality. The selection of a
specific structure within this continuum and therefore its
chirality is achieved by taking into account the mechanical
energy of deformation for each structure.

Coiled coils are made out of primitive helices wound
around each other; e.g., in a keratin dimer there are two
primitive helices, which are a helices. We parametrize
these structures in terms of curves on which residues lie
at discrete points. Consider a curve r(s) = (x, y, z) parame-
trized by its arclength s in the three-dimensional space with
fixed reference frame {e,, ey, e,. We use the Cosserat
moving frame {d;, d,, d3}, which is a right-handed ortho-
normal basis, built from the tangent director dj(s) =
t(s) =r’ = dr/ds. The two remaining directors d;(s)
and d,(s) lie in the plane spanned by the usual normal
n(s) and binormal b(s) vectors. The basis evolves accord-
ingtod! = Xd;, i =1,2,3, where k = (ky, K, k3) is
the vector of material curvatures, related to the geometric
curvature « and torsion 7 by (k, k3, k3) = (—K cOsg,
ksing, T + ¢'), where ¢’ is the excess twist [4], describ-
ing the material twist of a filament superimposed on its
torsion. That is, the angle between the normal and the
vector d; = nsin¢ — b cosd.

Polypeptide sequences that specify «-helical coiled
coils can be characterized by sequence elements [5] with
periodicity p. One prominent class is recognized by a
heptad repeat motif [6] where p = 7. Positions of the
residues within the heptad are labeled A through G, with
positions A and D typically occupied by hydrophobic
residues. These hydrophobic sites lie along a twisted hy-
drophobic strip that drives its association with another
similar helix. To maximize the burial of these residues,
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the primitive helix is distorted, introducing a bending of the
helical axis and a twisting about this axis, which affects the
disposition of the side chains. We first consider the posi-
tions of the residues on a canonical « helix, which is
modeled as an elastic filament. The axis of the « helix is
identified with the center line of the filament and the
residues at positions A, B, ..., G all lie on a cylinder of
radius p; see Fig. 1. When the filament is straight and
unstressed, i.e., the idealized form of an « helix, the center
line of the filament is the z axis and the director frame for
the filament is {dy, d,, d3 = t} = {ey, ey, e,}. The residues
A and D provide the interaction strip defined by two
curves, respectively, joining the A and D residues (see
Fig. 1). The interface curve is the center of this strip. On
the cylinder representing the idealized a helix, the inter-
face curve for a heptad repeat is a left-handed helix. With
respect to the center line r(s) of the filament, this helix is
defined by the material line:

d pp(s) = cos(7s)dy(s) + sin(7s)d,(s). (1)

The twist 7 is an intrinsic filament property defined by the
periodicity of hydrophobic residues. To compute 7, we
observe that there are 3.6 residues in every a-helix turn,
that is, an angle a = 27/3.6 = 57/9 = 100° between
residue. Each A residue has an angular offset of —/9
radians with respect to the previous A residue. Since the
rise per residue is iy = 1.5 A, we have # = —7/9/(7 X
1.5) = —0.033 rad/A. In general, let « be the angle be-
tween each residue (positive if the primitive helix is right
handed, negative otherwise), p the periodicity, then

—7 + (ap + 7)mod2r
Pho '

2

3=

The sign of 7 gives the chirality of the interface curve.

FIG. 1 (color online). Left: Idealized « helix with hydrophobic
side chains at position A and position D in a heptad repeat.
Middle: The primitive « helix. Right: The imaginary cylinder
with residues lying at position A, B, ..., G with hydrophobic
strip (solid double line) and interface curve (dashed line).

We now consider a canonical superhelix, that is, a
configuration where the center line r(s) of the filament is
itself a helix, of radius R, axis e,, and pitch 277R/ tan@ [the
helical angle 0 is the angle between the tangent t(s) and
the superhelical axis e,; see Fig. 2]. The center line of
the filament in the superhelical configuration is r(s) =
(+R sing(s), —R cosi(s), scosf + z5), where i(s) =
(sind)s/R + i is the equatorial angle, in the (x, y) plane,
perpendicular to the axis of the superhelix. The (constant)
curvature and torsion of the superhelix are x = sin’6/R
and 7 = sinf cosf/R. The normal n(s) always faces to-
ward the superhelical axis. The force that holds two (a
dimer) or more « helices to coil around each other is the
hydrophobic interaction. In these superhelical structures
hydrophobic residues are sequestered from the solvent by
clustering in the coil interior. In the case of dimers, sym-
metry implies that the hydrophobic residues face toward
the superhelical axis. This fact can be expressed geomet-
rically by requiring that in the superhelical configuration
dpp(s) = —n(s), V 5. Using Eq. (1), we have

cos(f7s+@d)=0,Vs, hence d(s)=m/2—%s. (3)
We conclude that the excess twist ¢’(s) in the superhelical
configuration is the opposite of the intrinsic twist 7 of the
hydrophobic strip in the undistorted a-helix structure. In
the general case of n primitive filaments, the hydrophobic
residues do not necessarily face the central axis.
Nevertheless, rotational symmetry of the structure (with
primitive filaments identical to each other up to a rota-
tion) leads to interface curves facing a prescribed direction
(see Fig. 4 of [7]), which implies, again, that ¢'(s) = —7.
This last condition has another unforeseen consequence.

a b c¢ d‘

FIG. 2 (color online). (a) Undistorted filament with twisted
hydrophobic strip, (b) filament twisted in such a way that the
hydrophobic strip is straight, (c) left-handed coiled coil with two
facing hydrophobic strips (# = —0.1 rad), (d) two parallel
twisted filaments (6 = 0), (e) right-handed coiled coil with
two facing hydrophobic strips (§ = +0.1 rad). In the last three
configurations, the interface curve faces inward. Note that the
twist (black lines on the filaments) is lower in the left-handed
case.
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All A residues lie on a helix of radius R4 with R} = (R —
pcosm/7)? + p>cos’@sin’ar/7, and helical angle 6, given
by tand, = (R4/R) tanf. Similarly, all other residues (B
through G) lie on (different) helices. Remarkably, there is
no condition either on the superhelical angle 6 or on the
superhelical radius R. That is, for a given value of R, there
exists a one-parameter continuous family of coiled coils
parametrized by the superhelical angle 8, which all satisfy
the hydrophobic constraint, as seen in Fig. 2. Hence, de-
spite the conventional wisdom based on [2,3], the chirality
of a coiled coil (given by the sign of #) cannot be solely
determined from the geometric properties of the hydro-
phobic strip of the primitive helices. A selection mecha-
nism is now discussed.

Based on this geometric construction, we consider the
mechanical aspects of the structures. We analyze the pre-
dicted conformations of the structure in the relaxed (un-
stressed) state and under external axial loads. To begin, we
consider n identical primitive « helices as elastic filaments
of length L that are naturally straight and untwisted. To
form a coiled coil, an « helix will have to bend and twist,
but for simplicity in the following treatment, we assume
the primitive filaments to be inextensible. We also assume
that when the n primitive filaments coil around one an-
other, the energy associated with the hydrophobic interac-
tions is much larger than the one associated with the elastic
deformations [an estimate based on [8] gives Epygo =
5.1kT per residue, to be compared to Eg,, = 0.16kT per
residue (computed with values from Table I)]. Thus, the
hydrophobic interface is rigidly maintained and the geo-
metric constraint (3) specifies the function ¢(s). The en-
ergy cost associated with the elastic deformations of each
filament can be written, phenomenologically, as the sum of
the square of the three material curvatures

1 L 2 2 2
Eq = 5”[0 (By ki + Byk; + B3k3)ds, @)

where B (s), B,(s) are the (local) bending rigidities along
dy, d, and B;(s) is the twist rigidity. For long deformations
taking place over many residues, the bending and twisting
rigidities are averaged and replaced by effective constant
rigidities BT = BST = B and B§T = C [10]. Equation (4)
is applicable to general conformations of an elastic rod,
which can be specified by any values of the curvatures k.
Here we consider the case where the center lines of the
deformed filaments are helices and the superhelix has a

TABLE 1. Comparison of the superhelical angle (20) from x-
ray data (see [9]) with Eq. (8). Radii and rises given in A.

X-ray data Model
Oligomer Res./turn Rise/res. R 20 7 (rad/A) 260
Dimer 3.62 1.51 49 —234° -0.039 -—22°
Trimer 3.60 1.53 67 —26.8° —0.033 —25°
Tetramer 3.59 1.52 76 —-26.0° -0.030 -—26°

fixed (known) radius R and a constant helical angle 6 in
which case k = sin’6/R and 7 = sinf cosf/R.

To the energy of elastic deformations E, we add the
work done by an external force F and torque M, which we
consider acting along the superhelical axis e,. The total
energy is E = n [§ Vds with

2 F M
%) — — cosH — R sind.

n n
&)

With R constant, V depends only on 6, and a minimum in
the energy is obtained when dV/d6# = 0, that is,

B sin*@  C /sin26
y — Bsin <s1n _

2 R® 2\ 2R

2Bsin’6 cosf + Ccos(26)(sinf cosd — #R)
F M
+ R?>— sinf — R— cosf = 0. (6)
n n

The solution of this equation gives the superhelical angle 6
as a function of the intrinsic parameters of the coiled
structure (the rigidities B and C, and the twist 7 of the
hydrophobic strip) when the structure undergoes tensile
(F # 0) and torsional (M # 0) deformation. We first focus
on the case with no external load (F = 0 = M). Then, the
rest state is characterized by a superhelical angle 8 = 6,
solution of

— 2(B/C)sin*6 cosb,/ cos26, = sinb, cosf, — #R.
(7

For small angles 6, the left-hand side is of order 0(08);
hence,

A few comments are in order. First, an important conse-
quence of Eq. (8) is that equilibrium requires that the
chirality of the coiled structure (i.e., the sign of 6,)) is given
by the chirality of the hydrophobic strip (i.e., the sign of 7)
and not by the chirality of the primitive a helix. For
example, in the case of an undecad repeat (p = 11), the
hydrophobic strip on the primitive helix is right handed and
the coiled coil formed is right handed as well [11]. Second,
we remark that in the limit B/C — 0 in Eq. (7), we recover
Eq. (15.6), page 458 of [3] (with P = 277R/ tanf,, At =
7hy, and h = hjcosfy). This classic formula of the bio-
chemistry literature is usually attributed to Fraser and
MacRae [3] where it is given without derivation. Hence
Eq. (7) can be seen as a correction to the empirical obser-
vation of Fraser and MacRae, but more importantly Eq. (6)
is a generalization to the case where external loads are
present. A different formula for the pitch of a coiled coil as
a function of the twist 7 based also on elastic theory has
been proposed in [12]. However, we disagree with their
results. For instance, the limit B/C — 0 of Eq. (7) leads
(exactly and for all 7 and all 6,) to Fraser and MacRae’s
formula, whereas the same limit of Eq. 9 in [12], does not
recover the well-tested empirical law of Fraser and
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FIG. 3. The mechanical state of the superhelical configuration
is at the intersection of the two curves describing the twist k3 in
the protofilaments. In the tensile regime, the mechanical state is
shifted toward smaller 6 (in absolute values) and higher twist.

MacRae. The reason for this discrepancy stems from dif-
ferences in the basic geometric assumptions; whereas [12]
considers the averaged deformation of the middle line of
the structure, we consider deformations of individual «
helices. Note also that Eqs. (6) and (7) yield good agree-
ment with experiments performed on elastic filaments [13]
provided 7 is identified with a pretwist. Third, we remark
that superhelical geometry implies a fundamental coupling
between extension and rotation. Pulling on a structure
changes its superhelical angle 6, which changes both its
extension and its overall rotation. The deformation of
coiled coils under external loads is given by Eq. (6) (see
Fig. 3).

Structurally, the heptad repeat is the best characterized
motif in the class of coiled coils, and there are numerous
crystal structures of variant leucine zipper proteins. In
order to test the validity of approximation (8), we use the
crystal data provided in [9] to compare the experimental
superhelical angle 6 (as given by x-ray data) to the one
computed by Eq. (8). The comparison in Table I shows
good quantitative agreement.

This analysis of coiled coils is also directly applicable to
other superhelical structures stabilized through other
mechanisms. For instance, the triple helix of collagen, a
right-handed superhelix, is held together by hydrogen
bonds between the primitive collagen helices. Never-
theless, from a geometric and mechanical perspective,
these superhelical structures can be treated in the same
way as coiled coils. Each individual strand is a left-handed
helix with a repeating motif of p = 3 residues: Gly-X-Y.
The glycine residues have to face the interior of the struc-

ture (in this sense they play the same role as the hydro-
phobic residues in coiled coils). There are 10 residues per 3
turns, that is « = —377/5, which implies a positive shift of
7r/5 rad between glycine residues [14]. Equation (2) with a
rise h per residue of 2.86 Ayields # =0.0732 rad/A. The
positive sign confirms that the triple helix is right handed.

We introduced a continuum elastic model reconciling
the mechanical and structural properties of coiled coils.
The coiled coil is considered to comprise two or more
elastic filaments that are uniform and isotropic in their
elastic properties. The model explains how the observed
chirality of the coiled coils is due to both the location of
specific residues and the requirement that the constituent
helices are at equilibrium in the coiled-coil configuration.
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