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Shape of attractors for three-dimensional dissipative dynamical systems
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We introduce a method to bound attractors of dissipative dynamical systems in phase and parameter spaces.
The method is based on the determination of families of transversal sutfagséaces crossed by the flow in
only one direction This technique yields very restrictive geometric bounds in phase space for the attractors.
It also gives ranges of parameters of the system for which no chaotic behavior is possible. We illustrate our
method on different three-dimensional dissipative systems.
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[. INTRODUCTION sorbing ball in phase space and we want to obtain analytic
estimates about its geometric shape. Moreover, this would
We shall consider ordinary differential equations definingenable us to find an upper bound for its Lyapunov dimension
time evolution of three-dimensiongBD) dissipative dy- [2,3].
namical systems: Until very recently, approximated locations of attractors
_ _ _ in phase space have been obtained by the method of
x=P(x,y,2), y=0Q(Xx,Y,2), z=R(XY,2), (1) Lyapunov functions. The latter is a smooth positive definite
_ function that decreases along trajectories. This type of func-
with 9P/ox+dQ/ dy + dRI9z<0V(X,y,z). Usually the func-  tjon is a generalization of the energy function for mechanical
tions P, Q, andR are simple polynomials. These types of systems: in the presence of friction or other dissipation, the
systems are dissipative: volumes in phase space contract Ushergy decreases monotonically and the system stabilizes on
der the flow because the divergence of the vector fielgyn equilibrium state where the energy is minimal.
(P,Q,R) is always negative. Hence, the attractor of the sys- | et us consider, as an example, the Lorenz sysi&mn
tem is necessarily of dimension less than thieeay be an  defined by:
equilibrium point, a limit cycle, or a chaotic attractoin this
paper we are interested in the approximate location in phase
space of the global attractor of the system, which contains all

the dynamics evolving from all initial conditions. The global \yheres 1 b are positive parameters. For 1 ando andb

attractor is the set of points in phase space that can bgitrary, every trajectory approaches the origirt-as+o:
reached from some initial condition set at an arbitrary longy,q origin is globally stable. Hence there can be no limit

time in the past. The two fundamental properties of a globatycje nor chaos for<1. The proof of this important result
attractor are can be obtained by constructing an adequate Lyapunov func-

x=c(y—Xx), y=rx—y-—xz, z=xy—-bz, (2

(i) it is invariant under evolution: tion. There is no systematic way to construct these Lyapunov
(i) the distance of any solution from it vanishes asfunctions, but often it is wise to try expressions involving
oo sums of squares. Here we considéfx,y,z)=1/ox>+y?

+22. The surfaces of constaiM are concentric ellipsoids
This last property may simply be interpreted thus: if theabout the origin. The idea is to show that rik1 and
solution starts outside the global attractor, then it is attractegy y 7)+(0,0,0), thenV<0 along all trajectories. This

into it ast— +o0 and once inside it cannot escape. Whereagyould imply that each trajectory keeps moving to lovker
if the solution starts inside the global attractor, then it stayng hence penetrates smaller and smaller ellipsoids-as
inside. The global attractor contains all the asymptotic mo- ., gyt V(x,y,z) is bounded below by 0, so
tion for the dynamical system. It is common to talk of mul- V(x(1),y(1),z(t))—0 and hencéx(t),y(t),z(t))—0, as de-

tiple attractors for a dynamical system and each of them mayjreq” Now we calculate
in its own right be considered as the attractor for initial con-

ditions within its own basin of attraction. The notion of glo- ) 1. .
bal attractor corresponds to the union of all such dynamically V= 2(—xx+ yy+zz
invariant attracting sets possible. In particular, it contains all 7

possible structures such as equilibrium points, limit cycles, ) 5
etc. The global attractor is sometimes contained in an ab- =2(r+1)xy—2x*—2y*~2b7*

r+1 \2 r+1\2

2
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This last quantity is strictly negative f<1 and {,y,z) y
#(0,0,0). It is easy to see that the conditivifx,y,z)=0 N
implies (x,y,z)=(0,0,0). Therefore the origin is globally
stable forr<1.

The powerful aspect of this method is that one does not
need to integrate the equations to determine the qualitative
behavior of the trajectories. On the other hand, the difficult
feature of this technique is that there is no general way to
find adequate expressions fW(x,y,z), as said above. No
general ansatz is known for this function.

More than proving the stability of the equilibrium point,
this method also provides us with its basin of attraction. But
when the system exhibits another type of attragionit
cycle or chaotic attractprthe situation becomes more com-  FIG. 1. Two level curves of a functiov(x,y) in a two-
plicated. First, the position of the attractor cannot be deterdimensional2D) phase space/(x,y) =K is the lowest curve that
mined as easily as in the case of an equilibrium poirtere is crossed by the flow inward¥(x,y) =K, is the upper curve that
we only had to solvé®=Q=R=0). We would like to use a i§ crossed by the flow outwards. The global attractor of the system
method similar to the Lyapunov theorem to determine liS between these two curves.

least roughly the location of the attractor in phase space. Letk these curves will still be crossed inwards by the flow as
us callA the set of points defining the global attractor. This . : . . .
long as each one lies entirely in the region where€0. In

attractor has an extension in phase spakéas bigger than _ ) :

the origin 0(0,0,0) which was the attractor in the former Fi9- 1 we have drawn the set of points whefe=0. The
exampld. In the general case, it will not be possible to find aSmallest curve to be entirely crossed inwards is the curve
tangent to this setl/ =K. Symmetricaly, we have drawn the

fun%non V(fx,y,_z). suc.h thatr:/(x,y,z?<0 :jorh (X,y,Z.l)l b biggest level curve to be entirely crossed outwards by the
€ RP\A. In factV'is going to change sign and there will be o e ¢ rvev=K, which is also tangent to the sét

a set of points for whictV(x,y,z)=0. A first (naive as- _q

sumption is to say that the attractor is included in the region The time evolution of thev(x(t),y(t)) function for an
whereV(x,y,z)=0 sinceV decreases outside. As mentioned initial condition far from the origin is shown in Fig. 2. The
in [4] and as we shall see below, this argument is not correcglobal attractor of the system is included in the region of
To fully understand what happens here, one has to see thinghase space defined By <V(x,y)<K,. And if this region
geometrically, defining regions in phase space that are gldhas no equilibrium point we know from the Bendixon-

bally attracting. Poincaretheorem[1] that this attractor is a limit cycle. An
analogous region for a three-dimensiof@D) system may
Il. GEOMETRIC POINT OF VIEW contain limit cycles and/or chaotic attractors.

The region defined bi(;<V(X,y) <K, is an overestima-
Let us consider the level surfaces of the functiontion of the global attractor of the system. The method tells us
V(X,y,2) defined byV(x,y,z) =K in phase space. The quan- where the attractor is but not what the attractor is. This
tity V defined by means that the regiok; <V(x,y) <K, contains points that
lie on the attractor but also points that are not on the attrac-
AV \Y/ Vv tor. If we were more clevefor equivalently if the attractor
V= §_XP+WQ+ER (49 was not so complicatedve would find a bettel/ function
fitting the attractor more tightly. These considerations will be
developed in Sec. VI.
In order to find the last entering curi(x,y)=Kj; that
will be the upper bound for the attractor, authors usually try

is the scalar product between the vectBr@Q,R) tangent to
the trajectory at the point x(y,z) and the vector
(oVIox,oVIdy,dVIaz) normal to the surface at this point.

Hence, in the region whend is of constant sign, the level Vv
surfaces ofV(x,y,z) are crossed by the flow in only one N

direction. If V is of constant sign on the whole surface
V(x,y,z)=K, we call this surface a tranversal or a semiper-
meable surface. K,
Let us consider, as an example, the case of a two- M
dimensional dynamical system. Here we must study the level
curvesV(x,y) =K, associated to a given functiov(x,y). K,
Suppose that the level curves\dfare all closed and that the
value ofV is increasing with the distance from the oridin
Othe_r wordsy is a sink centered on the origirSuppose now FIG. 2. The time evolution of the functioi(x(t),y(t)) consid-
thatV is negative for points far from the origin and positive ered in Fig.(1). For some initial condition far from the origin, (¥

for points near the origin. The level curvi¥s=K with large  is decreasing at least untif(x,y)=K,. ThenV remains in the
K are crossed inwards by the flow. If we reduce the value ofegionK;<V(x,y)<Ks,.

4
-




5100 S. NEUKIRCH AND H. GIACOMINI PRE 61

can define an interior§;) and an exteriorD,), or the sur-
face is infinite, i.e., it separates also two regi@hsandD,
in phase space.

Each surface must be oriented; this means that the gradi-
ent must point toward the same regiod,(or D,) on the
whole surface.

Following is an example that illustrates the superiority of
the semipermeable surfaces method over the Lyapunov func-
tion method. Let us consider again the Lorenz syst@min
5 X [2] the following surface is introduced:

<

FIG. 3. The method of colinear gradients may sometimes be — Lx2+y2+ 22=0, (5)
o

misleading. Here the two level curvés=K; andV=K, are tan-
gent to the curve/=0, but only the first one is semipermeable.

. which represents a certain bourtd double congfor the
Hence, tangency does not mean one-way crossing.

attractor and is calculated by means of the Lyapunov func-

i . L tion method. IN 8], the following family of surfaces is intro-
to find K, with the help of Lagrange multiplieri®,6]: they  y,ced:

find the extrema ol on V=0 by introducing the function
V—kV (k is the Lagrange multipli¢r This boils down to
findipg the points in phase space where the gradientg of F
andV are colinear. This method only works when the prob-
lem is simple because there are cases where tangency does —2gr—(g—1)%2—/(o—1)*+40r(c—1)?

ax’+y?+z°=R with R=<0,a<0. (6)

or

not mean one way crossing. The level cufee surface in > =<a

3D systemsmay be tangent at some point but may cross the 20

curveV=0 at some other poif), see Fig. 3. —20r—(0— 1)+ (c—1)*+40r(0—1)?
Besides, for 3D systems, this method is more difficult to < 5 , (7

apply because it is then necessary to study the sign of the 20

function V(x,y,z), which depends on three variables. It is (he gyrfaced6) are semipermeable and they define a better
relatively easy to find subsets of positive and negative sigif,und than surface) for the attractor of2).

for the V function, but it is rather difficult to find the level
curves ofV that are entirely included in each subset, since v METHODS TO OBTAIN SEMIPERMEABLE

the parameters of the vector field are includedjrtogether SURFACES
with the parameters of the functiok. Hence, even if

V(x,y,2) is a polynomial, the problem is quite difficult. As said in Sec. lll, it is easier to check whether a surface

is semipermeable or not than to insure that a function pos-
sesses the Lyapunov property. But there is no general
Ill. SEMIPERMEABLE SURFACES METHOD method to obtain these surfaces.[8] we have determined

) . several families of semipermeable surfaces for the Lorenz
If we exploit further the geometric aspect of the problem, oy stem guided by the time-dependent integrals of motion that
we notice that it is necessary for the functid(x,y,z) to be  exist for special values of the parameters of the system. Let
of constant sign only on the level Séfx,y,z)=K and notin  ys give an example of the application of this method: the

an entire space subset. It means that we have to $tidyk Lorenz system(2) has the first integral (x,y,z,t)=(x?

instead oV in the entire phase space. Thanks to the equality” 202)€*”* whenb=20 ando andr are arbitrary(an easy
V=K, which permits us to replace one of the variables bycalc_ulatlon shows thatll/dt=0). Let us now consider the
the others, this new function will have only two variables. Of family of surfaces
course, we restrict our studies to problems where this re- Vv 2 207=K 8
placement is possibfeThen the analysis is much easier: we (x,2)=x gz=r, ®)
only have to study the sign of a two variable function when
the variables vary on the entire surfa@ehich means gener-
ally that we study the sign in alt?).

The semipermeable surfaces introduced in this conte

must have the two following properties. and is invariant: an initial condition on this surface deter-

Bach surfacéor, if it is not connected, each piece of the mines a trajectory that remains on the surface for all time.

surface must divide the phase space in wo dlsconnectec?Sesides, all the trajectories of the system are attracted by this

regionsD, andD; either the surface is closed and then WCinvariant surface, as can be seen in Eig. 4. It is clear that the

existence of these families of surfaces gives a lot of infor-

mation about the dynamics of the system. The behavior of

For quadratie/ functions, it has been shown fii] that the study  trajectories is extremely simple in all the phase space with
of V|y_ was equivalent to the study ¥fin the entire phase space. the exception of the invariant surfagé=2cz. This surface

whereK is an arbitrary constant. It is easy to show that

=—DbK. Hence, each surface of the family is transversal.
he direction of crossing depends on the sign of the constant
. A particular surface of the family is obtained f&r=0,
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FIG. 4. The dashed curves represent semi-permeable surfaces FIG. 5. Semipermeable surfacéd) with a;<0, b<2c, a,
(8) in the casé= 20 for system(2). The bold curve is the invariant =—-2¢a,, a;=1 for the system(2) together with its chaotic at-
surface defined by Eq8) with K=0. We also show some trajec- tractor.
tories of the system.
. Using the method explained above, we have determined,
c_ontalns the global attractor of the system for the dase from the other known integrals of motion of the Lorenz sys-
=20. tem, several other families of semipermeable surfa8edn

hThe fa_mily_ of sgrfalce$8) otr)]t_aincladbalbove enablﬁ? u; 1 the chaotic regime, only a bounded region of the phase space
characterize in a simple way this global attractor. The deter . filed by these surfaces and the global attractor of the

mination of this family of surfaces follows immediately from system must be contained in this region. In this way, we have

the existence of the mteg.ral (.Jf motion th.ﬁ:.ZO'. . obtained some information on the shape and location of the
_Now the natural question is whewm 20, is it still pOS- g1oha) attractor. These results are more restrictive than simi-
sible to find similar families of surfaces that the flow crosses, previous bounds that have been found by other authors
in only one direction? In this case we shall no longer have afjue to the method of Lyapunov functiofi). '
our disposgl an in_tegral of motion, and these sgmipermeable The integrals of motion give us a hint that is of funda-
surfaces will not fill the phasg space becayse m_the gener?rllental importance for obtaining semipermeable surfaces. In
case the global attractor is not contained in a WOyt \when looking for these types of surfaces without having
dimensional set. In order to find semipermeable surfaces ig previous idea of their mathematical expression we are
t_he general case, whdn# 2o, we proceed as _fOIIOWS' We taced with high algebraic difficulties. Nevertheless, some
first propose a surface of the same mathematical form as th§ stems do not have integrals of motion, or at least, suffi-
integral of motion, but with arbitrary coefficients, i.e., ciently simple integrals of motion to be found with the stan-
(9) dard methods. In this paper we present an alternative method
for determining semipermeables surfaces. This method is a
Then we calculateV on the surface and obtaiMV:o variation of a technique introduced jd2] for finding inte-
=(2a,0+ay)xy+a;(b—20)x?>+bas. We now have an ex- grals of motion. It can be applied to polynomial systems, i.e.,
pression that depends only on two variablesndy. We  systems wher®,Q,R are polynomials in the three variables
must determine the coefficierds, a,, andaz in such away X.Y,Z.
that this expression has the same sign for arbitrary values of We shall introduce the new method by analyzing a con-

V(x,z)=a;x>+a,z+as.

x andy. We must hence set,= —2ca,, which yields crete example: the Lorenz system. We shall obtain again the
. semipermeable surfaces determined above from the alterna-
V‘V=0=a1(b—2cr)x2+ bas. (10)  tive method. As the Lorenz system is linear with respect to

each one of the three variableg/,z, we propose a function

As a; must be nonzero we can take=1 without loss of V(x,y,7) linear inz

generality. If we consideb> 20, we must sed;>0 to get a

first family of semipermeable surfaces and if we consider V=h(x,y)z+ho(Xx,y), (12)
<20, we must set;<0 to get a second family of semiper-

meable surfaces. We show the latter family as well as somaherehg(x,y) andh;(x,y) are arbitrary functions of and

trajectories of the system in Fig. 5. y. We define a functioM (x,y,z) as follows:
As we can see from Fig. 5, in the region filled by the
surfaces the dynamics of the system is very simple. The M(x,y,2)=V+L(x,y,2)V, (12)

complex behavior can only occur in the region of phase

space that is not occupied by these surfaces. The global atthereL(x,y,z) is a polynomial of degrem—1 (n is the
tractor of the system must be located in the region maximum degree of the polynomia Q,R). Since for the
>20x%2. Lorenz systemn=2, L(x,y,z) wil be of the form
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L(X,Y,2) = ag+ a1 X+ ayy+ a3z, where theq; are arbitrary
parameters. The sign ™y, is given by the sign oMy .
In order to simplify the study of the sign d¥l in phase
space, we shall impose conditions on the functibg,y),
h,(x,y) and on the parameters;. We shall obtain these
conditions by imposing tha¥l must be a function of only
one variable, for instance, the variableThe explicit expres-
sion of M(x,y,2) is

oh,
M (X,y,Z) = ( a’3h1(X,y) - X_> 22

aay

+

azho(X,y) + (@g—b+ a;x+ asy)hi(X,y)

dhg dh, dhy
—xWﬂL(rx—y)Wﬂr(y—x)W z

+ (gt a;x+ azy)hg(X,y)

ohy ohg
+th1(X,Y)+(fX—Y)WJFU(V—X)W-

13

As the coefficient o2 must be zero we obtain the following
expression forh;(x,y): hi(X,y)=g1(X)exp(asy/x), where
g1(x) is an arbitrary function ok. Because we want to ob-
tain a functionV defined in all phase space, we takg=0.
The coefficient oz in the expressioril3) must also be zero.
This condition leads to the following equationwd—b

+ a1 X+ ayy)g1(X) + o(y—Xx)g1(x) =xdhg/dy. The general
solution of this equation is hg(X,y)=21/2X[ 2Xxgy(X)
+Y(—2b+2ap+ 2a;x+ azy)91(X) + oy (—2x+Y) g1 (X)],
whereggy(x) is an arbitrary function ok. Now the resulting
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b
M(x)=Kgb+ a; (b—l)(l—; +ko+r X
b o’ 3ba? a
2 2 71 1) 2 “1 2\,3
+| 1+ ) 20+ pn 5y X 2U(chl)x.

(15

For our purposeM (x) must be of definite sign for arbitrary
values ofx, so we must taker;=0 andM(x) becomes

_ b >
M(x)=bky+ 1—% X<, (16

The resulting expression for the functidhis V(x,z) =K,
—X?[20-+z. The family of surface®/=0 is semipermeable
for Ko>0 if b<2¢ and forKy<O0 if b>2¢. If b=20, for
Ko=0 we obtain the known invariant surface. In this way we
arrive again at the results obtained with the help of an inte-
gral of motion of the Lorenz system. In Sec. IV we shall
make use of both methods to find semipermeable surfaces.
The first method has already been succesfully employed in
[3,8,9 for the study of the Rabinovich, Lorenz, and Rikitake
systems. For systems where we do not know any integral of
motion, we shall use the alternative method. Both methods
will yield bounds for the attractors in phase space, range of
values of the parameters for which no chaotic behavior is
possible, and make out part of the basin of attraction of the
equilibrium points.

V. RESULTS ON PARTICULAR SYSTEMS

We shall first consider the system:

X=—s(x+y), y=-y—-sxz z=v+sxy, (17

expression oM is a function ofx andy. We do not want to Wheresandv are positive parameters. This system has been
obtain the more general semipermeable surface of the fordtroduced in the context of the qualitative study of the Lo-

the differents steps of the algorithm. Hence, it is sufficient to?P/9x+dQ/dy+ dR/9z= —s—1<0. Hence, this system
considerg,(x)=1, which yields contracts volumes in all phase space. No integral of motion

is known in the literature for this model. By appling the
Painlevemethod[11], we find that the quantity

M(x,y) = %(azx—o-)y3+{2b0'—2ao(r+[—2a2(b+ 1)
X

(X,y,z,t) = (x*+8xy—4y?+ 4x°z)e¥™ (18

1 is an integral of motion for the case=3 andv=0. Using
+3agazt apo]x+3arax’}—y? the method described in Sec. IV for the Lorenz model, we
2 propose a family of surfaces of the form

+{b—ag—bay+ai—bo+ago V=d+cx*+by?+axy+exz=0. (19

Flai(2ag—b—1)+ a,r]x The expression of/ on the surface/=0 is given by

+(1+ @) X%+ apXQo(X) + axgg(x)}i—/ Viv=o= —x[ds(a+2e)x+ve’x*+cs(a—2e)x®
+2ds(b+e)y+a(—e+as+es)x?y

+ aol’ - br+ afll’x + a’ogo(x) + C(]_Xgo(x)

, +s(2bc—2ce+e?)x%y

— oXgy(X). (14 5

+(—2be+3abst+aest2begxy
We want to obtain a function only of the variable so we +2bs(b+e)y?] (20)

take ag=b, a,=0, and gy(X)=—a;/o(b—1)x—(1
+ af)x2/2cr+ Ko, whereKy is an arbitrary constant. The re- Owing to the factox in the above expression, we have to set
sulting expression foM is b= —e in order to obtain a function that does not change
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sign. After that,V|V:0 contains a common facto®® multi-
plied by a second degree polynomialyih The discriminant
of this polynomial is a polynomial of degree 6 iwhich
must be negative for ak. Since the coefficientg— 4c)?s?
of x® is positive, we must take=e/4. After that, the dis-
criminant is given by

A=(as+es—e)[edga+2e)+(—a’e+a’s+a’es
+8e%)x?+2e’s(a—2e)x*]. (21)
If we sete=0 this expression cannot be negative. Therefore,

without loss of generality we can set —1. So, the family
of surfaces becomes

4
V:d—z+axy+y2—xzz=0. (22

-2 0 2

. X
Moreover,V|y—, is given by

FIG. 6. Chaotic attractor of syste(h7) with v =5/2,s=3. The

attractor is bounded by surfa¢2?) with a=—1 andd=1 (condi-

V]y_o=x?| 2[s(1—a)—1]y?>+a[s(1—a)—1]xy tion (i), (iv)).
x4 introduced in Sec. IV. We have obtained the following fam-
+s(a+2) " —uvx?+ds(2—a) (23)  ily of surfaces with this method:
V=a;x2+y?+(z+a;)2—a,=0. (25)

and the discriminanA is

The scalar product on the surface is given b
A=—[s(1-a)—1]@s(at2)x* produ uriace s given by
—{8v+as(1—a)— 1]hC+8ds(2—a)). (24) V]y=o=(s— 1)y2+szz+z(u+23a1)+a§s+alv—a4(s |

26
Since A must be negative for alt, the coefficient—2[s(1

“a)—1]s(a+2) of x4 must be negative, which is satisfied and it is of definite sign when the following conditions are

in each of the three following cases satisfied:
(i) —2<a<1 ands>1/1-a>0, s>1, 4a,s’+v?<0, a;<0. (27
(i) a<—2 and <s<1/1-a,
(i) —2<a and 1/t a<s<0. We have a family ofx-axis hyperboloid of revolution and
After that, we must impose th&t has no real root, which each surface consists of two separated pieces. In Fig. 8 we
is satisfied in each one of the two following cases: see the chaotic attractor of systéh¥) and one of the semi-
(iv) d(a®—4)s?+{v + ta’[s(1—a)—1]}?<0, permeable surfaces. For each negative value,pthe opti-

(v) d(4—a%>0 and s(a+2){v+3afs(1—a)—1]}
<0.

Therefore, in order to havA negative for allx, we may
combine any one of the three cass (i), (iii) with anyone
of the two casesiv), (v). We then have six different cases to
consider. Two cases are particulary interestifg:(iv) and
(i), (v). In the casdi), (iv) the chaotic attractor is bounded
by the semi-permeable surfac€?) as shown in Fig. 6. In »
the casdii), (v), the semipermeable surfaces are crossed by
the flow in the upper direction. If we set=0 then the sur-
faces divide the phase space in three disconnected regior
and the two equilibrium point&vhich are attracting heyare
separated by these surfaces. This means that, for values of
andv that satisfy(ii), (v), we know a part of the basin of
attraction of each one of the two points. This also means tha
trajectories cannot wander from one equilibrium point to an-
other and hence there is no chaos for these values of th
parametergsee Fig. 7.

Continuing the study of systeii17), we have looked for  FIG. 7. System(17) with v=1, s=1/4. The surfacg22) with
new integrals of motion but we have not been able to findd=0, a= —5/2 reveals part of the basin of attraction of each one of
any. In consequence, we have applied the alternative methabde equilibrium points. No chaotic behavior is possible in this case.

-2
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- 3 ) Y
x -
FIG. 8. Chaotic attractor of systefd?) with v=>5/2 ands=3

and a semipermeable surfa@s) with a;= —1 anda,= — v?/4s?.

mal surface is obtained fa,= —v?/4s2. For this value of _ _
a, varyinga, within negative values, we have a monopara- FIG. 9. The chaotic attractor of syste(®0) with A= 2.04 con-
metric family of semipermeable surfaces. The optimal surtained in between planes1 andd>4.08) and @=—3 andd

face is the envolvent of the family, defined by <.—0.04). Note that the chaotic attractor is winding around zhe
Y axis.
V=0, a =0, (28) V]y_o=2a%y?—y(1+aA+a® +ad (33
ie. is semipermeable if
P A=(1+aA+a’?-4a%d<0. (39)
Iy +y?—x?z=0, (29 This condition yields two different cases.

A< —(&)¥3=—-1.88. Here there exist values af for

It is remarkable that this last surface is a particular case ofvhich (1+aA+a® =0 and for these values there are semi-
the family (22) with a=0 andd=v?/4s?, satisfying condi- permeable plane¥d. The z axis is surrounded by these

tions (i), (iv). planes. The chaotic attractor, when it exists, turns around this
We now consider the system axis. Now, the semipermeable planes prevent this situation
_ . _ from occuring, so the chaotic attractor cannot exist in this

X=y, y=z, z=-Az+ty?—X, (30  case.

, _ A> —(%)Y3 The chaotic attractor may exist in this case
whereA is a constant parameter. This system has been reyng when it exists, it is stuck in between two families of
cently introduced 13] as the simplest systelfsince it has semipermeable planes, one abovedt0) and one below
only one nonlinear quadratic term in the vector fjedcthib- (d<0) (see Fig. 9.
iting chaotic behavior(for A=2). By applying different " Now we consider once again the classical Lorenz system
methods, we have not been able to find integrals of motion) tor which several families of semipermeable surfaces
for .thIS system. As the system |s_I|near with respect to;the have been found if8]. By using the alternative method, we
variable, we propose for the family of surfaces a funcion  paye found an interesting family of surfaces that gives im-

linear inz, of the form portant information about the behavior of the orbits on the
B chaotic attractor. We propose the following form for the fam-
V=01(%.y)Z+go(X.Y), (3D) ily of surfaces:
wheregO(x,y) and gl(x,y) are arbitfary functions ox and V(X,Y,2)=01(X,2)y +go(X,2) =0, (35)
y. Following the method introduced in Sec. IV for the Lorenz
system, we find that the following family of surfaces whereg;(x,z) andg(x,z) are arbitrary functions of andz.
Following the method employed above, we find
1
V=z—ax+| A+ 5)y—d=0, (32 01(x,2)=1 and go(x,z)=a;x3—2a,0xz+ayX,
(36)

with the scalar product on the surface given by which yields
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V(X,y,z)=y+a;x>—2a,0Xxz+ ayx. (37
If we write these surfaces as
1 y
= 2 - -
Z 2a10_ a1X +a2 X)’ (38)

the scalar product in this case could be of constant sign, bu

the surfacegwhich are disconnectédare not oriented: the

gradient vector does not point toward the same space subsi-

for x>0 and for x<0 (this is due to the—y/x term).
Whereas if we writeV as

y= _X(a1X2_2a10'2+ a2), (39)
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FIG. 11. Chaotic attractor of syste(d4) with azé, b=2,c

the surfaces are connected and oriented and the scalar prads4, and thez>0 sheet of the semipermeable surfddé) with

uct on the surfaces is
Vly=o=X[—4aio’2’+zf(x) +g(x)], (40)
where
f(x)=—1—2a,0+2a,bo+2a,0°+4a,a,0%+ 4a20°x?,
g(x)=a,+r—ayo—aso+(a,—3a,0—2a,a,0)x?
(41)

—afox*.

We see that40) changes sign at=0. Therefore this family

ki=—3.5 andk,=1.

1+4a,0(1—b—0)+8a,a,0%(2ba;o—1)
+4aZ0?[(b—1)?+ o(4r—2+ o+ 2b)]<0.
(43

When x<0 the surface$37) are crossed by trajectories in
one way and whex>0 they are crossed by trajectories in
the opposite way. Hence, these surfaces do not represent an
external bound for the chaotic attractor when it exists.

We recall that the Lorenz attractor is formed by the addi-

of surfaces is not strictly semipermeable. Nevertheless, wgon of two wings, each wing lying around the equilibrium
shall obtain some important information from it. Hence, wepoints C* and C~, respectively. Therefore each surface of

shall study the cases in which the functiondaZs®z?

+zf(x)+g(x) holds the same sigh/(x,z) € R%. This hap-
pens when the two following conditions are satisfied:

2a,0(20—b)+1=0, (42

the family separates the attractor in two winding regions.
One region is contained irR>0 and the other one is con-
tained inx<<0 (see Fig. 1D

Let us study the behavior of a trajectory around the “posi-
tive” wing (around the equilibrium poin€™). The trajec-
tory wanders arounc* until it “decides” to cross thex

FIG. 10. Two surfaces (37) with
=—-1109/498) and 4,=1/500;a,=292/201)

(a;=—1/500; a,
represented for

negativex. The wing of the attractor around the equilibrium point (a= % b=2,c=4) on the planex=y. We see that all the trajec-

C™ is restricted in the region between the two surfaces. The trajectories initially in the z<0 half-space eventually cross the=0

tories that cross the above surfaeg &nda; positive) from right to
left are the trajectories that go to the other wiiig x>0).

FIG. 12. Semipermeable surfaces in the 0 half-space K;
e[—12.7;10, k,=1) and in thez>0 half-space K, e[ —10;
—3.5], k,=—1) together with a projection of the chaotic attractor

plane. Hence, the asymptotic behavior takes place irzth@ half-
plane.



5106 S. NEUKIRCH AND H. GIACOMINI PRE 61

=0 plane and goes wandering around the other equilibrium V=y+k;+(a+k,)x—(1+ak,+ kg)ln|z|=0. (45)
point. All the essence of complexity in the system comes
from the fact that we do not know when the trajectory “de- Each one of these surfaces consists of two disconnected
cides” to jump to the other side of the plame=0. Here is  sheets. One sheet lies entirelyzr-0 and the other one in
the interesting feature of this family of surfac¥). Thex  z<0. The two sheets are obtained from the expression
>0 side of this surface is placed betweenxix0 plane and
the “positive” wing of the attractor. Becaus@7) is semi- y+ki+(a+ky)x
permeable in thex>0 half-space, once the trajectory has z=xex T ltaktk2
crossed this surface, it cannot go on wandering around the 2772
pointC™* and it is compelled to go winding around the other-l-he scalar product on the surface is given by
equilibrium pointC~. We may consider such surfaces as a
separation between the two wings of the attractor. Besides, 1
surfaceq37) give a bound in phase space for the period-one V|y-o=—b(1+ak,+ kg)z +[Kkikp,+c(1+ak,+ k%)]
limit cycles around each equilibrium point.

The last example we shall consider is the classicasho —(a+ky)z—ky(1+ak,+ k%)ln| Z|
system:

(46)

. . . =0eff(z).
Xx=-y—z, y=x+ay, z=b+z(x—c), (44)
The functionf(z) must be of constant sign on each sheet

wherea,b,c are positive parameters. For certain values of(46), i.e., forz>0 and forz<0, respectively. From the study
these parameters, this system has a chaotic attré®igr  of this one variable function, we find that the necessary and

11). Moreover, it has two equilibrium points whea®  sufficient conditions for each sheet to be semipermeable are
=4ab. One of the points B;,,) is nested inside the chaotic

attractor and the other oné§,,) is outside the chaotic re- f(z")z (a+ky)<0 with i=1,2,

gion. This system has a nonconstant divergence and there are

no known integrals of motion for it. Nevertheless, using the b(1+ak,+k3)(a+ky) >0, (47)
new method, we find the following family of semipermeable

surfaces: with

Ko(1+aky+k3)— Vk3(1+ak,+k3)2+4b(1+ak,+k3)(a+ky)
a=- 2(atky) '

(48)

Ko(1+aky+k3) + Vk5(1+aky+k3)2+4b(1+ak,+k3) (a+ks,)
2=~ 2(atky) '

(49

These conditions can be satisfied when the chaotic attracteimple example sel4], p. 42.

exists (for example, whera=2,c=4b=2). In fact thez Some authors define entering regions as a combination of
<0 half-space is filled by semipermeable surfaces crossedifferent functiong 15]. The surface surrounding the attrac-
by the flow upward. Hence, this proves that for such valuesor is then defined by multiple equations, each one valid for
of the parameters, the asymptotic+) behavior takes a precise region in phase space. This is a way to tackle the
place in thez>0 half-space, where the chaotic attractor mustcomplexity of the attractor. As regards our method, when
lie entirely (see Fig. 12 Moreover, there are also semiper- more than one surrounding surface is known, one has to
meable surfaces lying in the>0 half-space, bounding the consider the composition of the different surfaces. This

chaotic attractor quite more tightlgee Fig. 11 yields a tighter bound for the attractor. It is likely that by
considering many more equations of surfaces, we could get
VI. GETTING CLOSER TO THE ATTRACTOR even nearer to the attractor. To stick to the attragtbaotic

or limit cycle), we should consider an infinite combination of

So far we have introduced a method to get geometricurfaces.
bounds on the attractors of dissipative systems. These If we want to bound the attractor with only one type of
bounds are sometimes tight and sometimes loose. The nateguation and we want this bound to get tighter and tighter,
ral question that arises is, can we get closer to the attractof?e shall have to refine the equation of the surface at each

If we consider each point on a semipermeable surfacgtep. This is what is done ifl6,17 for the van der Pol
surrounding an attractor as an initial condition=Q) and  system, where the attractor is a limit cy¢iehich equation is
integrate numerically, the set of points at0 will define  given by an unknown transcendental funcjioit each step
another semipermeable surfa@eith a different shape As  of the procedure, the curve bounding the limit cycle is de-
t—+o, the surface will merge with the attractéfor a  fined by a particular level curve of a polynomial function in
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two variables, of increasing degree. This curwehich is

semipermeablds getting closer and closer to the limit cycle.
Taking the limit, the curvedefined by an infinite series in

two variable$ seems to merge with the limit cycle.

VIl. CONCLUSIONS

We have shown that the method introduced8hfor the
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namical systems, showing that semipermeable surfaces en-
able us to bound the chaotic attractor in phase space or reveal
ranges of parameters’ values for which no chaotic behavior

is possible in these dissipative systems. This last aspect of
the method represents an important theoretical progress in
the study of 3D dissipative dynamical systems.
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