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Extracting DNA Twist Rigidity from Experimental Supercoiling Data
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We use an elastic rod model with contact to study the extension versus rotation diagrams of single
supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted
DNA and, using experimental data, we obtain an estimate of the effective supercoiling radius and of the
twist rigidity of B-DNA. We find that the twist rigidity of DNA seems to vary widely with the nature
and concentration of the salt buffer in which it is immersed.
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FIG. 1 (color online). The magnetic tweezer experiment.
Primarily the DNA molecule simply is the carrier of
our genetic code. But in order to understand how a 2 m
long string of DNA can fit into a 10 �m nucleus, one has
to also consider its mechanical properties, namely, the
fact that the DNA double helix is a long and thin elastic
filament that can wrap around itself or other structures.
These mechanical properties will in general depend on
the sequence of base pairs (bp) of which the molecule is
made. Nevertheless the behavior of long molecules, i.e.,
more than a hundred bp, is well described by a coarse-
grained model known as the wormlike chain [1], where
DNA is considered as a semiflexible polymer with a
bending persistence length A. This is the contour length
over which correlations between the orientation of two
polymer segments is lost. It can be viewed as the ratio of
the elastic bending rigidity K0 to the thermal energy kBT;
hence K0 � AkBT. The commonly accepted value is A �
50 nm in a physiological buffer. In the magnetic tweezer
experiment [2] a single DNA molecule (of total contour
length L) is anchored on a glass surface at one end, and
glued to a magnetic bead at the other end, see Fig. 1. A
magnet controls the bead and transmits to it a twisting
moment and a pulling force F. The force is tuned via the
monitored distance between the magnet and the bead and
its intensity is measured using the Brownian motion of
the bead. In order to input a twist constraint into the
system, one gradually rotates the magnet around an axis
perpendicular to the glass surface. Experiments are car-
ried under constant force F, and the end-to-end distance Z
of the DNA molecule is recorded together with the num-
ber of turns, n, made on the bead. Since no direct mea-
surement of the twist moment is possible with magnetic
tweezers, the twist persistence length C is not directly
available. When no rotation is put in, the DNA molecule
behaves like a semiflexible polymer, i.e., the relative ex-
tension z � Z=L is a function of the temperature T, the
persistence length A, and the applied pulling force F [3]:

z�n � 0� � 1�
������������������������
kBT=�4AF�

q
: (1)

A refined version of this relation is used to extract A
0031-9007=04=93(19)=198107(4)$22.50 
values from the experimental data [4]. Then under gradu-
ally increased rotation, the extension z decreases with the
number of turns n put in and eventually the molecule
starts to wrap around itself. Geometrically speaking, the
DNA molecule is coiling around itself in a helical way.
Since the molecule is already a double helix, we refer to
this as supercoiling. Each helical wave of the superhelix
is called a plectoneme. Different theoretical studies have
been applied to this experiment, introducing the concepts
of wormlike rod chain [5], or the torsional directed walk
[6], but neglecting self-contact. Monte Carlo simulations
of a model chain with hard-wall contact and an effective
diameter have also been performed [7]. Plectonemic
structures were considered in [8] by introducing the
superhelix solution in the free energy of the chain.

Here we present an elastic model that specifically in-
cludes self-contact but leaves out thermal fluctuations.
Our point is that, in the regime where plectonemes are
formed, the relevant physical information is already
present in our zero-temperature elastic rod model with
hard-wall contact. In order to focus on supercoiling, we
2004 The American Physical Society 198107-1
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FIG. 2. Fitting the linear part of the response curve.
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consider the simplest elastic rod model that includes twist
effects and can have 3D shapes. Following the classic
terminology of the Euler planar elastica for twistless 2D
shapes, we call the present model the Kirchhoff ideal
elastica [9]. The elastic energy reads

E �
1

2

Z L

0
�K0�2�s� � K3�2�s��ds;

where s is the arclength, ��s� the curvature of the center
line, ��s� the twist rate of the cross section around the
center line (in the case of an ideal elastica � is a constant
of s), and K0 and K3 are the bending and twist rigidities,
respectively. The Kirchhoff equilibrium equations read

F 0�s� � p�s� � 0 (2)

M 0�s� � r0�s� � F�s� � 0 (3)

where F�s� and M�s� are the internal force and moment,
respectively. The external force per unit length p�s� can
model electrostatic repulsion, gravity or hard-wall con-
tact. The center line of the rod is given by r�s� and t�s� �
r0�s� is its tangent. In the case of an ideal elastica it can be
shown [10] that

K0t0�s� � M�s� � t�s� (4)

K0d1
0�s� � �M�s� � ��K3 � K0�t�s��� d1�s� (5)

where d1�s� is a unit vector, lying in the cross section, that
follows the twist of the cross section around the center
line. For a DNA molecule, it is generally taken as the
vector pointing toward the major groove. For the parts
free of contact, we have p�s� � 0. In the case of self-
contact there are two points along the rod, say at ar-
clengths s1 and s2, where the interstrand distance jr�s1� �
r�s2�j is equal to twice the radius of the circular cross
section (which we denote by �). At point s1, we introduce
a finite jump in the force vector F�s�:

F �s < s1� � F�s > s1� � �F12
r�s1� � r�s2��=2� (6)

where �F12 is a positive real number. The same treatment
is done at point s2, with the same �F12 [10,11]. This
corresponds to having a Dirac function for p�s� in (2).
In the case of continuous sections of contact, p�s� is a
function with changing direction and intensity. In our
model we only consider cases where the contact occurs
either at discrete points or along straight lines. This model
has already been used [12,13] and is well described in
[11]. We numerically find equilibrium configurations
matching the boundary conditions using classical path
following techniques; first a self made algorithm relying
on multiple (or parallel) shooting, then using the code
AUTO [14] that discretizes the boundary value problem
with a refined finite differences scheme. The different
types of solutions (straight, buckled, supercoiled) are
found in the following way. We fix the radius � and the
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vertical component F of the force vector F�s � 0� acting
on the bead. We start with a straight rod with no rotation
�z � 1; n � 0� and we twist the rod gradually. This cor-
responds to following the z � 1 line on Fig. 2 (� is
proportional to n). At point b0, the path of straight solu-
tions crosses the path of buckled solutions. Following this
new path, configurations get more and more buckled, and
eventually (at point b1), we cross another path of solu-
tions with one discrete contact point. At b2, this latter
path will intersect a path of configurations with two
contact points. At b3 solutions with three discrete contact
points arise, and eventually, at b4, they bifurcate to
solutions including a line of contact in addition to discrete
contact points. We call them supercoiled configurations.
In a supercoiled configuration, the parts that are in con-
tinuous contact have a helical shape. We call this twin
superhelix a ply. The ply is defined by its radius � and its
helical angle � (see Fig. 1). Each time we choose a differ-
ent force F or radius �, the entire numerical continuation
has to be rerun. Since we do not consider thermal fluctua-
tions, it is no wonder that the first part (b0 to b2) of our
numerical response curve does not correspond to what is
found experimentally. On the other hand our model re-
produces quite precisely the part of the response curve
where the distance z decreases linearly with n, provided
we identify � not with the crystallographic radius of the
DNA molecule but with an effective supercoiling radius
due to electrostatic as well as entropic repulsion. We
numerically find that in the linear regime the helical
angle � does not vary with n. We fit numerical solution
curves as in [15] and find that � only depends on F, K0,
and �:

�2F � K0���� with ���� � 1:658�4: (7)
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FIG. 3. Experimental response curves with a 48 kbp DNA
molecule in a 10 mM phosphate buffer. The different curves
correspond to experiments carried out at fixed force (from
bottom to top, 0.25, 0.33, 0.44, 0.57, 0.74, 1.1, 1.31, 2.2, and
2.95 pN) [25].
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FIG. 4. Experimental data [26] taken with a 11 kbp DNA
molecule in a 150 mM phosphate and 5 mM magnesium
(Mg2� ) buffer. Forces are, from bottom to top, 0.45, 1.45,
and 4.3 pN. The curves are numerical results of simulations of
an elastic rod with contact with the values of � and K3=K0 of
Table II.

TABLE I. Results for the 48 kbp DNA molecule in a 10 mM
phosphate buffer. Fitting data at � � 0, as in [4], yields K0 �
�51� 2� nm kBT.

F �pN� � �rad� � �nm� K3=K0 K3=kBT �nm�

0.25 0.427 6.85 1.88 97
0.33 0.449 6.60 1.87 96
0.44 0.467 6.17 1.92 99
0.57 0.469 5.47 1.84 95
0.74 0.504 5.55 2.01 103
1.1 0.488 4.26 1.86 95
1.31 0.471 3.64 1.58 81
2.2 0.503 3.21 1.65 85
2.95 0.507 2.81 1.62 83
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This result enables us to extract the effective supercoiling
radius � and the twist rigidity K3 from magnetic tweezer
experiments on DNA. First we note that the number of
turns n applied to the magnetic bead can be interpreted as
the excess link of the DNA molecule: n � �Lk. Link is
normally defined for a closed ribbon but careful use of a
closure permits the introduction of the link of an open
DNA molecule [16,17]. We use the Călugăreanu-White-
Fuller theorem to decompose the excess link

�n ���Lk � �Tw�Wr (8)

where �Lk (�Tw) is the difference between the actual
link (twist) and the intrinsic link (twist) of the double
helix. The writheWr is the average number of crossings of
the center line one sees when looking at the molecule
from all possible viewpoints. Mechanical balance of the
ply imposes a relation between the twist rate and the
helical angle � [11]:

� � �� �K0�tan2�� sin2��=�2�K3�; (9)

where  � �1 stands for the chirality of the ply [18].
Since the twist rate is constant along the rod, we have
�Tw � �L=�2!�. Generally writhe is not additive, but
using Fuller’s theorem [19] with a carefully chosen ref-
erence curve we may write Wr � Wrloop �Wrtails �
Wrply (we neglect Wrloop and Wrtails). Directly computing
the writhe from the double integral yields [16]

Wrply � �� �Lply sin2�=�4!��: (10)

The total contour length L of the DNA molecule is given
and we write Lply � L� Lloop � Ltails. We neglect Lloop

and we set Ltails=Z��� � L=Z�0� in order to account for
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thermal fluctuations in the non-supercoiled region.
Positive supercoiling (n > 0) yields a left handed ply
( � �1) and from (8)–(10) we have

�Lk
L

�
sin2�
4!�

�
K0

K3

�
1

cos2�
� 1

�
� 1�

Z
Z�0�

�
: (11)

The intrinsic twist of the DNA double helix is Lk0 �
L=H, where H � 3:57 nm is its pitch. We introduce the
supercoiling ratio � � �Lk=Lk0 � nH=L and invert
Eq. (11) to arrive at an approximation of the linear part
of the response curve in the ��; z� plane:

z
z�0�

� 1�
K0

K3

�
1

cos2�
� 1

�
�

4!�
H sin2�

�: (12)

Given that experiments are carried at given (fixed) F and
that K0 is obtained from (1) with K0 � AkBT, to extract
198107-3



TABLE II. Results for the 11 kbp DNA molecule in a
150 mM phosphate and 5 mM magnesium (Mg2� ) buffer.
Fitting data at � � 0, as in [4], yields K0 � �57� 3� nm kBT.

F �pN� � �rad� � �nm� K3=K0 K3=kBT �nm�

0.45 0.307 2.79 1.09 62.5
1.45 0.319 1.67 1.00 57.3
4.3 0.348 1.15 0.99 56.5
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information from the experimental data such as in Fig. 3
or Fig. 4, we need, for each curve in the ��; z� plane:
(i) the relative extension at � � 0, which we denote by
z�0�, (ii) the slope, which we denote by #, (iii) and the
ordinate at the origin, which we denote by z$, of the
straight line fitting the linear part of the response curve.
Using (7) and (12) we obtain an equation for �:

#H sin2� � �4!z�0�
����������������������
K0����=F

q
: (13)

With � known, we obtain the effective supercoiling ra-
dius from (7) and the effective stiffness ratio from (12):

K3=K0 � �1� 1= cos2��=�1� z$=z�0��: (14)

In order to check the consistency of our method, we have
performed numerical simulations of supercoiled configu-
rations using � and K3=K0 values from Table II. The
resulting curves (each one starting at its b4 point) are
plotted in Fig. 4. From the results shown in Table I and II,
we see that the effective supercoiling radius decreases
with the intensity of the pulling force, and with the
strength of the salt buffer and can go down to values
barely larger than the DNA crystallographic radius, sup-
porting the tight supercoiling hypothesis [20]. Present
values are fairly smaller than values coming from analy-
sis of equilibrium distributions of supercoiled plasmids
[21]. Our values of K3 can be compared to the results of
[22] where another microtechnique was used and a value
of K3 ’ 100 nm kBT (in a 100 mM NaCl� 40 mM Tris-
HCl buffer) was found. Previous measurements of K3

based on different biochemical techniques (e.g., fluores-
cence depolarization [23]) yield values ranging from 50
to 100 nm kBT [24]. Also Monte Carlo and other statis-
tical physics methods applied to the data in [2] yield K3

values from 75 to 120 nm kBT (see [5,22] for detailed
discussions). The present result seems to indicate that the
divalent magnesium ions have an important effect on the
twist rigidity of DNA (or at least an effect clearly differ-
ent from that of monovalent ions).
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