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We consider equilibrium configurations of inextensible, unshearable, isotropic, uniform and nat-
urally straight and prismatic rods when subject to end loads and clamped boundary conditions.
In a first paper [Neukirch & Henderson, 2002], we discussed symmetry properties of the equi-
librium configurations of the center line of the rod. Here, we are interested in the set of all
parameter values that yield equilibrium configurations that fulfill clamped boundary conditions.
We call this set the solution manifold and we compute it using a recently introduced continua-
tion algorithm. We then describe the topology of this manifold and how it comprises different
interconnected layers. We show that the border set of the different layers is the well-known
solution set of buckled rings.

Keywords : Numerical continuation; boundary value problem for twisted rods; surface following
algorithm.

1. Introduction

The equilibrium of a twisted rod is governed by the
Kirchhoff (ordinary differential) equations. Here, we
study equilibria of twisted rods that are subject to
boundary conditions: the rod is held at both ends
where moments and forces are applied. The way the
rod is held imposes boundary conditions on the so-
lutions of the equilibrium equations. We have to
treat a boundary value problem (BVP). A BVP
is driven by three numbers: ndim the dimension of
the differential system, nbc the number of boundary
conditions (that can either be initial conditions or

final conditions), and npar the number of free pa-
rameters (parameters of the differential system or
parameters that appear in the boundary conditions
themselves). The free parameters are sometimes
called global coordinates of the BVP. They span
the npar-dimensional global representation space, see
[Gáspár et al., 1997]. Of the numbers nbc and ndim,
only the difference k

def= nbc−ndim matters: this rep-
resents the number of extra boundary conditions in
the sense that an ndim BVP requires ndim boundary
conditions to be well stated (just as an ndim initial
value problem requires ndim initial conditions). If
the number npar of global coordinates is equal to
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Fig. 1. A rod with clamped boundary conditions: the axis � (joining point A1 to point A2) and the tangent of the rod at
both ends are aligned. The end-shortening Di of a configuration is the distance between the point A1 in that configuration
and the point A1 in a straight configuration: D1 = 0, 0 < D2 < L and L < D3 < 2L.

the number k of extra boundary conditions, then
the solution set (the set of all global coordinate val-
ues that yield solutions of the BVP) consist in one
or more disconnected points. Now if npar > k, the
solution set will be one (or many) npar − k dimen-
sional manifold(s) in the npar-D global representa-
tion space. Usually only boundary value problems
with npar− k = 1 are studied because (1) continua-
tion algorithms are restricted to path following and
(2) even when a solution manifold of higher dimen-
sion is obtained its complexity hampers its study.
Here, we present a case where the global representa-
tion space is four-dimensional (npar = 4) and where
there are two extra boundary equations (k = 2).
Hence the solution set is a (or many) surface(s) ly-
ing in a 4D space. For a slightly different problem,
in [Hoffman et al., 2002] some 2D sheets of the solu-
tion set have been computed but via a coordinated
family of a one-dimension parameter continuation.

We deal with the simplest twisted rod pos-
sible: inextensible, unshearable, isotropic, uniform
and naturally straight and prismatic. We call it
an ideal elastica. We choose conservative bound-
ary conditions that correspond to a very natural
way of holding and loading an elastic rod: clamped
boundary conditions (see Fig. 1). We make use of a

recent algorithm to compute our 2D solution man-
ifold which has two main components: the trivial
surface corresponding to straight shapes and the
post-buckling surface corresponding to buckled
shapes. We show how the post-buckling surface
comprises a countable infinity of connected layers
and that the scaffolding bearing the layers is the
well-known solution set of twisted rings (which are
in fact clamped configurations where the two ends
join).

The paper is organized as follows: in Sec. 2
we recall the reduction of the equilibrium Kirchhoff
equations we introduced in a first paper [Neukirch &
Henderson, 2002] and we state the BVP. In Sec. 3 we
show how we discretize the BVP and recall the con-
tinuation method. In Sec. 4 we describe the proper-
ties of the solution manifold.

2. The Model

We study the equilibrium of a rod when subjected
to external forces and moments. The rod is taken
to be ideal i.e. inextensible, unshearable, isotropic,
uniform and naturally straight and prismatic. We
use the fixed frame {ex, ey, ez}. As for the director
frame {d1,d2,d3}, we only consider d3 which is the



Classification of the Spatial Equilibria of the Clamped Elastica 1225

tangent to the center line. We have seen [Neukirch
& Henderson, 2002] that the equations governing
the equilibrium of the center line of such rods can
be expressed as two vectorial differential equations.

2.1. The Kirchhoff statics
equations in reduced form

The way the rod is held (i.e. the boundary condi-
tions) imposes force f and moment m(s) on the rod.
We have that f = constant and the moment can be
expressed as a function of the center line r(s):

m(s) = f × r(s) + mK , (1)

where mK is an integration constant which includes
r(0). It shows that I0

def= m(s) · f is a constant of s.
Because we consider boundary conditions involving
the center line only, we simply consider the differ-
ential equations for it and its tangent:

ṙ = d3 (2)

ḋ3 = (f × r + mK)× d3 (3)

which have the following integrals of motion:

d3 · d3 = 1 , (4)

I1
def= (f × r + mK) · d3 (= m3) = constant, (5)

I2
def=

1
2
|(f × r + mK)|2 + d3 · f = constant. (6)

Note that nondimensionalization has been per-
formed in order that neither the length of the rod
(now set to 2π) nor any elastic rigidity appear. Con-
sidering Eqs. (2) and (3) as a set of six ordinary dif-
ferential equations, a rod configuration will depend
on both the parameters (f , mK) and the initial con-
ditions (d3(0), r(0)). In order to simplify the study,
we perform certain choices that do not reduce the
generality:

• We choose the origin of the arc-length such that
the point r(0) is at the middle of the rod, i.e.
s ∈ [−π;π].

• We choose the origin of the fixed frame such that
r(0) = 0 (then mK = m(0)).

• For the case f = 0 being treated in [Neukirch
& Henderson, 2002], we only consider the case of
non-null force and choose the ez axis along and in
the direction of f = (0, 0, f > 0). The integral of
motion I0 becomes I0 = fmz, with mz constant.

• We choose the ex and ey axes such that the rod
at s = 0 lies in the (ex, ez) plane (i.e. d3y(0) = 0).

• We note m(0) = (mx0,my0,mz0). We have seen
[Neukirch & Henderson, 2002] that we could re-
strict our study to solutions with my0 = 0 since
the ones with my0 	= 0 either do not fulfill
clamped boundary conditions or are congruent
to solutions having my0 = 0. Note that we will
refer to mz0 as simply mz since it does not de-
pend on s. The constant m3 is given by: m3 =
mx0d3x(0) + mzd3z(0).

2.2. Symmetries of the solutions

With d3y(0) = 0 and mK = (mx0, 0,mz)T , the solu-
tions of (2) and (3) have the following symmetries:

x(−s) = −x(s) , y(−s) = y(s) ,

z(−s) = −z(s)
(7)

d3x(−s) = d3x(s) , d3y(−s) = −d3y(s) ,

d3z(−s) = d3z(s)
(8)

2.3. Clamped boundary conditions

We consider the case where the rod is held in a
strong anchoring way: on both sides the position
and the tangent of the rod are fixed. Moreover in
what we call a clamped configuration, the tangent of
the rod at both ends is aligned with the axis joining
the two ends (see Fig. 1). These clamped boundary
conditions can be written as:

d3(−π) = d3(π) (9)

r(π)− r(−π) = kd3(π) with k ∈]− 2π; 2π] (10)

Using symmetries (7) and (8), the clamped bound-
ary conditions reduce to:

d3y(π) = 0 (11)

x(π)d3z(π)− z(π)d3x(π) = 0 (12)

2.4. Solution manifold

Writing, as a definition of the initial value θ0

d3(0) = (sin θ0, 0, cos θ0)T ,

we see that the system (2), (3) has one free initial
condition {θ0} and three parameters {mz, f,mx0}.
The problem of finding all the rod configurations
which satisfy clamped boundary conditions is equiv-
alent to the problem of finding all the set of values
of the global coordinates {mz , f,mx0, θ0} for which
the integration of (2), (3) yields solutions that fulfill
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Eqs. (11) and (12). Hence in the 4D global representation space spanned by {mz, f,mx0, θ0}, we are looking
for the 2D solution manifold implicitly defined by Eqs. (11) and (12). The computation of this solution
manifold is explained in Sec. 3. It has the following discrete symmetries:

(mz, f,mx0, θ0)→ (−mz, f,−mx0, θ0)

with (x, d3x, y, d3y, z, d3z)→ (x, d3x,−y,−d3y, z, d3z)
(13)

(mz, f,mx0, θ0)→ (mz, f,−mx0,−θ0)

with (x, d3x, y, d3y , z, d3z)→ (−x,−d3x,−y,−d3y, z, d3z)
(14)

(mz, f,mx0, θ0)→ (mz,−f,mx0, θ0 + π)

with (x, d3x, y, d3y , z, d3z)→ (−x,−d3x,−y,−d3y,−z,−d3z)
(15)

Symmetry 13 is what is left of the continuous
register symmetry. Symmetry 14 comes from the
freedom of choosing the orientation of the ex axis.
Symmetry 15 comes from the freedom of choosing
the orientation of the ez axis, hence the sign of the
constant f which is here taken positive.

2.5. End shortening

We define the end-shortening d as:

d
def= 1− (r(π)− r(−π)) · d3(π)

2π
= 1− k

2π
. (16)

This is the difference of the distance between the
ends when the rod is buckled compared to the dis-
tance between the ends when the rod is straight
(= 2π). Circularly closed configurations (also called
rings) have d = 1. Taking into account the symme-
tries of the center line we can write:

d = 1− x(π)d3x(π) + z(π)d3z(π)
π

. (17)

It is sometimes assumed that the rod has con-
stant values of the end shortening. The problem
then boils down to following 1D-curves on the 2D
solution manifold (see [Coleman & Swigon, 2000;
Li & Maddocks, 1994; Dichmann et al., 1996]). This
can be done by using classic path following al-
gorithms, see [Allgower & Georg, 1997; Govaerts,
2000; Beyn et al., 2002] and references therein.

3. Numerics: Discretization and
Continuation

The reduced 6D system is:

ẋ = d3y ḋ3x = fxd3z −mzd3y

ẏ = d3y ḋ3y = fyd3z −mx0d3z + mzd3x

ż = d3z ḋ3z = −fxd3x − fyd3y + mx0d3y .

x(0) = 0 d3x(0) = sin θ0

y(0) = 0 d3y(0) = 0

z(0) = 0 d3z(0) = cos θ0

(18)

d3y(π) = 0

x(π)d3z(π)− z(π)d3x(π) = 0

We wish to compute the solution manifold of
this system over some part of the global represen-
tation space. We first discretize using a conserva-
tive second-order finite difference scheme, then use
a recently developed continuation method to find a
polygonal tiling of the surface.

3.1. Discretization of the reduced
6D system

We discretize Eq. (18) using the Keller box scheme
[Keller, 1976] which is second-order, and stable.
With a nonuniform mesh {si}, for i = 0, . . . , N ,
and

s0 + s1

2
= 0 , si−1 < si,

sN−1 + sN

2
= π

and the notation (with hi = si+1 − si)

Ag(si+ 1
2
) def=

g(si+1) + g(si)
2

= g

(
si+1 + si

2

)
+ O(h2

i ) (19)

Dg(si+ 1
2
) def=

g(si+1)− g(si)
si+1 − si

= ġ

(
si+1 + si

2

)
+ O(h2

i ) (20)
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the box scheme is then
Dx = Ad3x Dd3x = fAxAd3z −mzAd3y

Dy = Ad3y Dd3y = fAyAd3z −mx0Ad3z + mzAd3x

Dz = Ad3z Dd3z = −fAxAd3x − fAyAd3y + mx0Ad3y

Ax(s 1
2
) = 0 Ad3x(s 1

2
) = sin θ0

Ay(s 1
2
) = 0 Ad3y(s 1

2
) = 0

Az(s 1
2
) = 0 Ad3z(s 1

2
) = cos θ0 .

Ax(sN− 1
2
)Ad3z(sN− 1

2
)− Az(sN− 1

2
)Ad3x(sN− 1

2
) = 0

Ad3y(sN− 1
2
) = 0

This is a second-order approximation for both the
differential equation and the boundary conditions,
and it has the same invariants as the differential
equation. Note that for any two functions u(s) and
v(s):

D(u(si+ 1
2
)v(si+ 1

2
)) ≡ Au(si+ 1

2
)Dv(si+ 1

2
)

+ Du(si+ 1
2
)Av(si+ 1

2
) (21)

Using the discrete equations, and this identity, we
have

D(d2
3x + d2

3y + d2
3z)=D(d3.d3)=0

D(fx2 + fy2 − 2mx0y + 2d3z)=DI1 =0 .

D(fxd3y + (mx0 − fy)d3x + mzd3z)=DI2 =0 .

So if exact floating computations were done, the dif-
ference scheme would preserve the same quantities
as the differential equations.

3.2. Continuation

The discrete equations are a nonlinear system of the
form

F (u), F : IR6N+10 → IR6N+8 .

The dimension 6N + 10 comes from the fact that
at each of the N + 1 mesh points we have six quan-
tities (x, y, z, d3x, d3y, d3z), and that we have four
free parameters (mz, f,mx0, θ0). The dimension
6N + 8 comes from the fact that we write match-
ing equations at N points for the six quantities
(x, y, z, d3x, d3y, d3z) and besides that we have eight
boundary conditions. We use the multiple param-
eter continuation algorithm, described in detail in
[Henderson, 2002], to compute the solutions of this
system. This algorithm requires two calculations:
finding a basis for the null space of the Jacobian
Fu (this is the tangent space of the solution

Fig. 2. The block structure of the Jacobian Fu. IC stands
for initial conditions. FC stands for final conditions.

manifold), and projecting a point onto the manifold
orthogonal to the tangent space.

The Jacobian Fu is a bordered band matrix
with a border of four columns corresponding to
derivatives w.r.t (mz, f,mx0, θ0), and eight rows
corresponding to the boundary conditions. It is a
rectangular system. We can find a basis for the tan-
gent space Φ (a (6N +10)×2 matrix with orthonor-
mal columns), by finding a basis for the null space
of the Jacobian

Fu(u)Φ = 0 .

This is done by the usual version of Gaussian elimi-
nation for banded systems with partial pivoting for
the first 6(N − 1) equations, which leaves a 14× 16
submatrix. Then, by appending two zero rows, the
Lapack singular value decomposition can be used
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on that subblock to find a basis for the null space.
The basis in the original coordinates can then found
by back-solves.

Projecting a point s in the tangent space at a
point ui onto F = 0 orthogonal to the tangent space
means solving the nonlinear system for u:

F (u) = 0 ,

ΦT (u− ui) = s

We use Newton’s method and the same modified
band solver. The Jacobian has the same block struc-
ture as above, but two full rows have been added,
which makes it a (6N + 10) × (6N + 10) system.
Partial pivoting to eliminate the first 6(N−1) equa-
tions results in a full 16 × 16 submatrix which we
factor using full pivoting. If the Jacobian Fu(ui)
is full rank the Jacobian of this bordered system
is nonsingular, so there will be some ball |s| < R
in which Newton’s method converges starting from
ũ = u + Φs.

With these two operations, we can find a polyg-
onal tiling of F (u) = 0. This will be done using
polygons in the tangent spaces Φi, at a set of points
{ui}

F (ui) = 0 , i = 0, . . . ,m− 1 .

Each point has an associated polygon Pi, which is
initially a square, and which is updated by subtract-
ing a half-plane at each step of the continuation. We
begin with an initial point u0 and one tile M0 (tile
i is the set of points ui + Φis, where |s| ≤ Ri and s
lies in the polygon Pi)

F (u0) = 0 ,

M0 = {u0, R0,Φ0, P0}
P0 = |s|∞ ≤ R0 .

At each step of the algorithm we select a new point
um, which is the projection of a point sm on tile i
onto F = 0. Tile i is chosen such that the poly-
gon Pi has at least one vertex which is outside
the circle |s| = Ri. If v ∈ vertices(P ) and |vm| >
Ri, sm = RivP /|vP |. If the polygons are updated
according to the procedure described below, this
guarantees that the new point um is not closer than
Rj to any other point uj (see [Henderson, 2002]).
This keeps the continuation moving outward.

The polygon for tile m is initially the square
Pm = {s‖s|∞ ≤ Rm}. We identify each tile i that
overlaps the new tile, (|um−u < i| ≤ Rm +Ri), and

Fig. 3. The basis of the continuation: a new tile is added for
any ui whose polygon Pi has a vertex outside |s| = Ri. The
new tile is centered at a point which is the projection onto
F = 0 of the intersection of a line between the origin and the
exterior vertex and the circle |s| = Ri. The figure represents
the projection of nearby tiles into the tangent space at ui.

!

Fig. 4. Updating the polygons: one half-plane is removed
for each overlapping point. Again, the figure represents the
projection of nearby points and polygons into the tangent
space at ui. If the manifold were flat the half spaces defined
by αim and αmi are complementary, so there would be no
gap between the polygons.
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subtract a half-plane from polygons Pm and Pi:

Pi ← Pi ∩ {s|s · ΦT
i (ui − um) ≤ αim}

Pm ← Pm ∩ {s|s · ΦT
m(um − ui) ≤ αmi}

αij =
1
2

(
1 +

R2
i −R2

j

|uj − ui|2
)

.

In the figures showing the surface we draw the
polygons in the tangent space, so that the surface
is made up of planar polygonal facets. The gaps are
due to the projections into different tangent spaces,
and the size of the gaps (and the distance between
a point in the polygon and its projection onto the
surface) is related to the ratio of the radius and the
curvature of the surface. We have chosen the radius
so that this is less than a prescribed tolerance.

4. Results and Discussion

We applied this algorithm to the nonlinear two-
point boundary value problem defined by (2), (3),
(11) and (12). The computation was done in the
domain −10 ≤ mz ≤ 10, −10 ≤ mx0 ≤ 10, and
0 ≤ f ≤ 16, with 100 mesh points. An initial
point on the manifold was obtained by shooting,
and the continuation was restricted to the first oc-
tant (mz ≥ 0, mx0 ≥ 0, f ≥ 0) and θ0 was con-
sidered modulo 2π. At points where the manifold
crosses the symmetry planes mz = 0 or mx0 = 0,
symmetries (13) or (14) were used to get new seed
points (and hence new parts of the manifold) with-
out leaving the first octant. Provided the domain is
chosen large enough, we could get the complete first
eight layers (n = 1− to n = 4+) and some parts of
higher n layers.

4.1. Special curves

The solution manifold comprises different impor-
tant paths in the parameter space (mz,mx0, θ0, f).

4.1.1. Buckling curves

The trivial planes {θ0 = 0 modπ,mx0 = 0} cor-
respond to configurations of straight rod (d = 0)
twisted or not. On these planes, buckling curves
connect straight solutions to buckled solutions
(d > 0). When θ0 = 0 mod 2π the equation of the
buckling curves is:

(cos π
√

m2
z − 4f − cos πmz)

√
m2

z − 4f

= 2πf sin π
√

m2
z − 4f, with m2

z > 4f . (22)

�4 �2 2 4
mz

�4

�3

�2

�1

1

2

3

4
f

Fig. 5. The thick line (m2
z = 4f) is the buckling curve for a

rod of infinite length; while the plain, dotted, dashed curves
are the curves of the first, second and third (resp.) buckling
modes for a finite rod [Eq. (22)].

Equation (22) defines a countable infinity of curves.
Each curve corresponds to a buckling mode. The
buckling mode are numbered b = 1, 2, 3 starting
with the curve nearest to the origin (see Fig. 5).
Since we restrict our study to positive f , we use the
symmetry (15) to fold the (f < 0, θ0 = 0) part of
each buckling curve to (f > 0, θ0 = π). Note that
at f = 0, the freedom of choosing the z axis implies
a degeneracy for the angle θ0 which results in the
presence of two buckling circles: (f,mz,mx0) = ±wb

(0, cos θ0, sin θ0), where wb is the bth strictly posi-
tive solution of tan πwb = πwb.

4.1.2. Planar (untwisted) elastica curves

Other important paths are curves correspond-
ing to the planar elastica solutions (defined by
{m3 = 0, I1 = 0}). Planar elastica are divided
into two families: inflexional and noninflexional
[Love, 1944].

The curves for the pth noninflexional planar
elastica are:

πmx0 = 2pK
(

4f
m2

x0

)
and θ0 = π mod 2π (23)

πmx0 = 2pK
(
− 4f

m2
x0

)
and θ0 = 0 mod 2π (24)

where K(m) is the complete elliptic integral of the
first kind (see Appendix of [Neukirch & Hender-
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son, 2002]). Again we only consider the f ≥ 0 part
of these curves. Then on (23) d ≤ 1 (resp. d ≥ 1)
when p is odd (resp. even). And on (24) d ≥ 1 (resp.
d ≤ 1) when p is odd (resp. even).

The curve for the pth (p odd) inflexional planar
elastica is:

π
√

f = (p + 1)K
(
m2

x0

4f

)

and θ0 = π mod 2π (0 ≤ d < 2) (25)

The curve for the pth (p even) inflexional planar
elastica is:

−2
√

m

2
cos ŝπ cos θπ

= (−1)
p
2 sign(sin θ0)

√
1− cos2 θπ

×
(
π − 2√

f
(E(ŝπ,m)− E(m))

)

and mx0 = 0 (0 ≤ d < 2) (26)

with m = (cos θ0 + 1)/2, ŝπ = am(π
√
f+K(m),m)

and cos θπ = −1 + (cos θ0 + 1) sin2(ŝπ).

4.1.3. Planar rings (twisted or not)

Planar rings correspond to helices (u− = u0) of null
pitch angle (θ(s) ≡ θ0 = (π/2) + kπ). They lie on
the subset m3mz = f of the post-buckling surface.
This corresponds to:

+ N -covered planar untwisted rings at: f = 0,
mz = −N sin η, mx0 = N cos η, with η = θ0

mod π.
+ N -covered planar twisted rings at: mz = ±N ,

θ0 = (π/2) + kπ, f = (−1)kmzmx0 (k integer).

4.2. Surface when length is infinite

Now the global post-buckling surface has some-
how to include all these special paths. Let us start
by considering what happens in the case of infi-
nite length (with f ≥ 0). The configuration of
the rod is associated with the homoclinic orbit
in the phase plane (θ, ω) when m3 = mz and
f > (1/4)m2

z (see [Neukirch & Henderson, 2002;
van der Heijden & Thompson, 2000]). There is only
one buckling curve:

m2
z = 4f, mx0 = 0 and θ0 = 0 mod 2π (27)

and there is only one path for the planar elastica:

m2
x0 = 4f, mz = 0 and θ0 = π mod 2π (28)

0
1

2
3

4
mz

0
1

2
3

4f

0

1

2

3

4

mx0

0
1

2
3mz

0
1

2
3f

Fig. 6. Post-buckling surface in the case of infinite length
(homoclinic orbit). The surface joins the buckling curve
(plain blue, θ0 = 0) to the planar curve (dotted red, θ0 = π).

and the post-buckling surface:

m2
x0 + m2

z = 4f with θ0 = 2 arctan
(
mx0

mz

)
∈ [0;π]

(29)

simply joins the buckling curve to the planar elas-
tica curve (see Fig. 6).

As we go from infinite length to finite length, we
see that the unique buckling curve splits up into dif-
ferent buckling modes. In the same way the unique
planar elastica path splits up into different paths.
We may then imprudently conclude that in the fi-
nite length case, the solution manifold consists of
disconnected layers, each layer connecting the bth
buckling curve to the pth planar curve with b = p.
The first problem is that each p planar elastica path
is in fact made of two paths: inflexional and non-
inflexional, so there cannot be a one-to-one corre-
spondence with the b = p buckling mode.

It turns out that the post-buckling surface is
not disconnected, but nevertheless can be divided
in layers. Each layer contains solutions for which
the period T in the phase plane (θ, ω) is such that
the pulsation:

Ω =
2π
T

(30)
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Fig. 7. Sketch of the disposition of the different layers of the post-buckling surface together with important special paths of
solutions (corresponding to planar or closed configurations). The harmonics are sorted according to their Ω = N +M value.
The borders that part the different harmonics are the buckled rings that appear for integer value of Ω and the twisted planar
rings that exist for continuous value of Ω. All planar configurations but even inflexional ones have an integer Ω. Above (resp.
under) the line of planar twisted rings, u− > u0 (resp. u− < u0) and u− = u0 on the line.

is bounded by two following integers (see Fig. 7).
The period T is the period of θ(s) and can be
tracked numerically with d3z(s) = cos θ(s). The lay-
ers are labeled with an integer n:

(odd) n = 1 + 2 Int
(

Ω− 1
2

)
if u− > u0 , (31)

(even) n = 2 + 2 Int
(

Ω− 1
2

)
if u− < u0 , (32)

where u− = cos θ(s = T/2), u0 = cos θ0 and
Int(x) = i such that i ≤ x < i + 1. The la-
bel n is completed by a sign ± which is the sign
of d − 1 with d given by Eq. (16). Nevertheless,
numerics show that all the different layers asymp-
totically (f → +∞) tend either to (29) or to the
set (mx0 = 0, θ0 = 0, m2

z ≤ 4f). This accumulation
of layers at large f explains numerical difficulties
encountered there (see [Domokos & Holmes, 1993;
Karolyi & Domokos, 1999]).

4.3. Connectivity of the layers

Here are the properties of the layers:

• Each n− layer contains the d ∈ [0, 1] part of the
nth inflexional planar elastica. And each n+ layer

contains the d ∈ [1, 2] part of the nth inflexional
planar elastica. This property can be used to ac-
tually compute each layer by a 2D continuation:
to get the n± layer we take starting point(s) along
the corresponding inflexional planar elastica and
we do not permit the continuation to cross the
d = 1 set.

• Each layer n− contains the nth buckling curve,
but also the d ∈ [0, 1] part of the path of
the nth noninflexional planar elastica [Eq. (23)
(resp. (24)) with p = n for n odd (resp. n even)].

• Each layer n+ contains the d ∈ [1, 2] part of
the path of the pth noninflexional planar elas-
tica [Eq. (23) (resp. (24)) with p = n + 1 (resp.
p = n− 1) for n odd (resp. n even)].

• Each layer n± has a part going to f → +∞ (each
part n− is connected to the buckling curve which
goes to f → +∞ and each part n+ is connected
to the nth inflexional planar elastica path which
goes to f → +∞).

A natural question arises: what happens when
we change layer? Or put another way: what
are the boundaries of the layers? We have seen
[Neukirch & Henderson, 2002] that if starting
with a (clamped) configuration with label n±
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and wanting to continually deform it to another
(clamped) configuration with a different label, we
had to pass through a circularly closed configura-
tion (i.e. d = 1). Hence in the parameter space the
different layers n± are bounded by the set of solu-
tions with d = 1: planar or buckled rings.

4.4. The d = 1 skeleton

The set of closed configurations plays the role of the
skeleton of the post-buckling surface: it connects
the n± layers with one another. Closed solutions
are of two kinds: planar rings and buckled (3D)
rings. These configurations have been extensively
studied in [Li & Maddocks, 1994; Dichmann et al.,
1996]. There, a strictly positive integer N was de-
fined to account for the covering of the ring: the
number of times the center line of the rod covers it-
self. Along the planar ring branches N = |mz| and
the twisting moment m3 = ±mx0. As stated in [Li
& Maddocks, 1994], on a branch of N -covered pla-
nar rings, branches of buckled rings are going to
bifurcate each time

|mx0(N,M)| = √M + 2N
√
M , (33)

with M a strictly positive integer labeling the buck-
ling modes. The two integers (N,M) were used to
label the buckled ring branches. It has been re-
marked that the (N1,M1) branch emanating from
the M1th bifurcation point of the N1-covered planar
ring branch eventually joining the N1th bifurcation
point of the M1-covered planar ring branch. In short
N and M could be exchanged.

This property is consistent with our present
findings: we first redefine the label M along a planar
twisted ring branch:

M
def=
√

N2 + m2
x0 −N . (34)

Hence M monotonically increases with the twist-
ing moment, M ∈ [0; +∞[, and bifurcation points
correspond to M reaching integer values. Moreover
along planar ring branches, as seen in [Neukirch &
Henderson, 2002], Ω =

√
m2

z + m2
x0 which yields

Ω = M + N . (35)

At a bifurcation point Ω is then an integer and along
the buckled ring branch emanating from this bifur-
cation point, Ω is to keep this integer value: other-
wise the trajectory in phase plane would cease to be
closed and the rod shape would cease to be a ring
(see [Neukirch & Henderson, 2002]). This property
of constant Ω along the buckled ring branches can

be seen as a necessary (but not sufficient) condi-
tion of the exchanging N ↔M property mentioned
above.

We should add that as seen in [Neukirch &
Henderson, 2002], in the case of closed rods, the
translational invariance in arc-length (s → s + δ)
implies that solutions with my0 	= 0 exist. Associ-
ated to any closed solution with (mz,mx0, θ0, f) and
my0 = 0, there are solutions of same shape with the
same mz and f but with m̃y0 	= 0, θ̃0 and m̃x0 such
that:

mx0 sin θ0 + mz cos θ0

= m3 = m̃x0 sin θ̃0 + mz cos θ̃0 (36)

and

1
2

(m2
x0 + m2

z) + f cos θ0

= I2 =
1
2

(m̃2
x0 + m̃2

y0 + m2
z) + f cos θ̃0 . (37)

This defines a set of 1D continuum, each equiva-
lent to S1, of solutions associated with each dis-
crete solution we compute. This together with the
continuum associated with the registered symme-
try yield the T 2 torus of solutions studied in [Li &
Maddocks, 1994; Dichmann et al., 1996; Domokos
& Healey, 2001].

4.5. Description of the figures

The continuation code can output the data in dif-
ferent formats (e.g. the VBM file format [Paffen-
roth, 1998]). We have used OpenDX to post-process
the data and plot the figures presented here. We
show θ0 projections of the layers in the half space
(mz,mx0, f ≥ 0). Due to symmetry (15) the pro-
jections in the f ≤ 0 are the same. We also make
use of the two other symmetries (13) and (14) to
only show a quarter of each layer n±. Neverthe-
less each one of these quarters does not correspond
to the truncation of the layers in a specified oc-
tant of the (mz,mx0, f ≥ 0) half space. Indeed the
quarters we show do cross the planes mz = 0 or
mx0 = 0.

In Sec. 4.3 we stated that each n± layer com-
prises an inflectional elastica path and a noninflex-
ional elastica path. We now use these paths (instead
of the mz = 0 or mx0 = 0 planes) to clip each layer
into four quarters. A quarter is defined as a part
of a layer that joins the inflectional and noninflec-
tional planar elastica paths. A layer, which is itself
bounded by d = 1 paths, contains four quarters
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Fig. 8. A quarter of layer 1− in the half space (mz, mx0, f ≥ 0). Yellow curves correspond to twisted rings (either planar or
buckled), orange circles (at f = 0) to untwisted planar rings, red curves to noninflexional planar elastica, and purple curves
to inflexional planar elastica. Blue curves are the buckling curves.

Fig. 9. A quarter of layer 1+ in the half space (mz, mx0, f ≥ 0).
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Fig. 10. A quarter of layer 2− in the half space (mz, mx0, f ≥ 0).

Fig. 11. A quarter of layer 2+ in the half space (mz, mx0, f ≥ 0).
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Fig. 12. A quarter of layer 3− in the half space (mz, mx0, f ≥ 0).

Fig. 13. A quarter of layer 3+ in the half space (mz, mx0, f ≥ 0).
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Fig. 14. A quarter of layer 4− in the half space (mz, mx0, f ≥ 0).

Fig. 15. A quarter of layer 4+ in the half space (mz, mx0, f ≥ 0).



Classification of the Spatial Equilibria of the Clamped Elastica 1237

Fig. 16. Layers 1±, 2±, 3± and 4± for d around 1 in the entire half space (mz, mx0, f ≥ 0).

Fig. 17. Layers 1±, 2±, 3± and 4± in one octant of the space (mz, mx0, f).
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Fig. 18. The boundary of the quarter of 1− and the quarter of 1+ is the (N = 1, M = 1) path of the buckled rings solution
set. The boundary of the quarter of 1− and the two quaters of 2+ is the (N = 1, M ∈]0; 1]) path of the planar twisted rings
solution set and the (N = 1, M = 0) path of the planar untwisted rings solution set.

that are split by the inflectional and noninflectional
planar elastica paths belonging to it. In the case of
a n− layer, we further need the buckling curve to
part the quarters. For example, to compute one of
the four quarters of layer 2-, we take a seed point
and we prevent the continuation to either cross any
d = 1 path or the second buckling curve or the
p = 2 inflexional planar elastica curve or the p = 2
noninflexional elastica curve.

In Figs. 8–15 a quarter of each layer from
n = 1− to n = 4+ is shown. Having one quarter
of a layer, one can get the other three quarters (and
hence the entire layer) by using symmetries (13)
and (14). So by reflecting each of the quarters, we
produced Fig. 16, but we only kept end-shortening
values near 1 (i.e |d − 1|/d less than few %). This
unravels the connectivity of the layers. In Fig. 17 all
the d values are kept but we only show the layers in
one octant. Figure 18 shows how the buckled rings
(N = 1, M = 1) path is the border that parts layers
1− and 1+, and how the planar ring paths (N = 1,
M ∈ [0; 1]) forms the border that parts layers 1−
and 2+.

5. Conclusion

In this paper we have shown how a recently in-
troduced continuation algorithm could be used to
compute the solution manifold of a boundary value
problem arising from elasticity theory. The set of
all possible buckled configurations of a twisted rod
held in a (aligned) strong anchoring way has been
computed. Making use of the symmetries of the
problem (both of the material and of the bound-
ary conditions), a reduction of the Kirchhoff
equilibrium equations has been performed and the
properties of the solution manifold described. More-
over, we have shown how this solution manifold
could be split into layers making its display eas-
ier, the borders of the layers being the well-known
1D solution set of buckled rings.
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