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Number of limit cycles of the Lienard equation
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In this paper, we study a Lirrd system of the form=y—F(x), y=—x, whereF(x) is an odd polyno-
mial. We introduce a method that gives a sequence of algebraic approximations to the equation of each limit
cycle of the system. This sequence seems to converge to the exact equation of each limit cycle. We obtain also
a sequence of polynomial,(x) whose roots of odd multiplicity are related to the number and location of the
limit cycles of the system.S1063-651X97)02809-2

PACS numbg(s): 05.45+b, 02.30.Hqg , 02.60.Lj , 03.28.

A two-dimensional autonomous dynamical system is de-

2
fined by two coupled first order differential equations of the B +e(x2—1) d_x +x=0. (3
form dt? dt
x=P(x,y), y=Q(X,y), (1) Equations(2) and (3) are equivalent, as can be seen by dif-
ferentiating Eq(2) with respect ta and puttingdy/dt=x.
whereP and Q are two functions of the variablesandy In 1928, the French engineer lniard[15] gave a criterion
and the overdots denote a time derivative. for the uniqueness of periodic solutions for a general class of

Such a dynamical system appears very often within sevequations, for which the van der Pol equation is a special
eral branches of science, such as biology, chemistry, astr@ase
physics, mechanics, electronics, fluid mechanics,[éte6].

One of the most difficult problems connected with the d2x dx
study of system(1) is the question of the number of limit — +f(x) 5y +x=0. (4)
7 - . ; dt? dt
cycles. A limit cycle is an isolated closed trajectory. Isolated

means that the neighboring trajectories are not closed; they , _ )
spiral either toward or away from the limit cycle. If all neigh- Lienard transformed Ed4) to a first order system by setting
boring trajectories approach the limit cycle, we say that thedX/dt=z, yielding

limit cycle is stable or attracting. Otherwise the limit cycle is

unstable or, in exceptional cases, half stable. Stable limit d_X:Z d—z=—x—f(x)z )
cycles are very important in science. They model systems dt 7 dt '

that exhibit self-sustained oscillations. In other words, these

systems oscillate even in the absence of external periodim fact, in his proof, Limard used a form equivalent to Eq.
forcing. Of the countless examples that could be given, we&bs), obtaining through the change of variakdey—F(x),
mention only a few: the beating of a heart, chemical reacwhereF (x) = [5f(7)dr:

tions that oscillate spontaneously, self-excited vibrations in

bridges and airplane wings, etc. In each case, there is a stan- dx dy

dard oscillation of some preferred period, wave form, and Y R, T (6)
amplitude. If the system is slightly perturbated, it always

returns to the standard cycle. Limit cycles are an inherentl
nonlinear phenomenon; they cannot occur in linear syste
[7-12.

The first physical model to appear in the literature that ca
be transformed to a system of tyg#) containing a limit
cycle is due to Rayleighl3]. The following equation,
l(dy)3 dy
3\ dt dt

m3f£quation(4) is referred to as a Liward equation and both
gquations(S) and(6) are called Lieard systems. They are a
rParticular case of Eq.l).
In 1942, Levinson and Smitli6] suggested the following
generalization of systern®):

dx dy

o (2 G YR g =TI, @)

E'ﬁ'&'

+y=0,

which originated in connection with a theory of the oscilla- or equivalently,

tion of a violin string, was derived by Rayleigh in 1877.

In 1927, the Dutch scientist van der Fdl4] described d_X:Z d—zz—g(x)—f(x)z @)
self-excited oscillations in an electrical circuit with a triode dt 7 dt '
tube with resistive properties that change with the current.
The equation derived by van der Pol reads Systemg7) and(8) are equivalent to
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FIG. 1. The limit cycle of th_e van der Pol e*quatic()exterior FIG. 3. The limit cycles of Eq(6) with F(x) given by Eq.(11)
curvg and the algebraic approximatidr(x,y) =Kg. (bold curve$ and their algebraic approximatiorghin curves:
he(x,y) =Kg 1 andhg(x,y) =Kg .
2
d_x +1(x) d_x +9(x)=0, 9) We will explain our method through the analysis of a very
dt? dt well known case, the van der Pol equation. In this case, we
have
which is sometimes referred to as the generalizethavie F(x)=e(x3/3—x). (10)

equation.

_In this paper, we will consider the cagéx)=x andF(x) ~ we propose a functionh,(x,y)=y?+g; AX)y+doAX),
given by an arbitrary odd polynomial of degree The fun-  \whereg, (x) andg, Ax) are arbitrary functions of. Here,
damental problem for this type of system is the determinathe second subindex makes reference to the degree of the
tion of the number of Iimit cycles for a given %ol_ynomial polynomial h, with respect to they variable. Then we cal-
F(x) [17-26. Form=3, i.e., forF(x) =a;x+agx, it has culateh,=[y—F(x)]dh,/dx—xdh,/dy. This quantity is a
been shown if17] that the system has a unique limit cycle second degree polynomial in the varialgleWe will choose

if a;a3<0 and no limit cycle ifa;a;>0. Form=5 it has : L
been shown ii27] that the maximum number of limit cycles 912X) andgoAx) in such a way that the coefficients of

is two. Form>5, there are no general results about the num@nd ¥ in h, are zero. Fzrom these conditions, we obtain
ber of limit cycles of Eq(6). 01,2(X) =Ky andgg AX) =X +kq, wherekg apd k_1 are e_lrbl-
In this paper, we present a method that gives informatior@y constants. A& (x) is an odd polynomial, ifX,y) is a
about the number of limit cycles of E) and their location  Peint of the limit cycle of Eq(6), then the point -, —y)
in phase space, for a given odd polynomf{x). This also belongs to this I|m|t_cycle_. The equation of a limit cycle
method gives also a sequence of algebraic approximations ff EG- (6) must be invariant by the transformation
the Cartesian equation of the limit cycles. x,y)—(—x,~y). We want the functiorh,(x,y) to have
this symmetry too. Thus we takk;=0. We then have
h,=R,(X) = — 2XF(X) = — 2ex?(x?/3—1). The polynomial
R»(x) is even and it has exactly one positive root of odd
multiplicity, i.e., x=1/3.
If we integrate the functionh, along the limit
cycle, we havef Jh,(x(t),y(t))dt=[JR,(x(t))dt, where T
is the period; but fghz(x(t),y(t))dtzh2(x(T),y(T))
—h,(x(0),y(0))=0. Consequently, we find jR,(x(t))dt
=0. This last equality tells us that there cannot be any limit
1 2 cycle in a region of the phase plane wh&gx) is of con-
stant sign. For the van der Pol systeRy(Xx) has a root of
odd multiplicity atx= 3, hence the maximum value &f
for the limit cycle must be greater tha/8. The curves de-
fined byh,(x,y)=x2+y?+k,=0 are closed foky,<O0.
As the next step of our procedure, we propose a fourth
degree polynomial iny for the function h,(x,y), i.e.,
ha(X,y) =y*+0s4)y> +024X)y* +91.4X)Y +do4(X)
FIG. 2. The limit cycle of the van der Pol equatidexterior ~ (polynomialsh,(x,y) with n odd do not give useful infor-
curve and the algebraic approximatidng(x,y)=K]g. mation about the limit cycles of the system since the level
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TABLE I. For each value oh we give the value of the root &,(x) and the value oK}, for the van der
Pol equation.

n 2 4 6 8 10 12 14 16 18 20

Root 1732 1.824 1869 1896 1914 1.927 1.937 1.944 1.950 1.955
K 3 12.3 545 2476 1141 5305 24773 116050 544806-2x1C°

curvesh,(x,y) are open and the polynomiaR,(x) have curveh,(x,y)=K>0 must be equal to the root &%,(x), we
always a single root of odd multiplicity at=0). By impos-  find a particular value oK for eachn even. Let us call this

ing the condition thah, must be a function of onlx, we  valueK7. The level curveh,(x,y) =Kj represents an alge-

find hy=R4(x), whereR,(x) is an even polynomial of tenth Praic approximation to the limit cycle.

degree. The roots dR,(x) depend ore, hence in the fol- In Figs. 1 and 2 we show this curve for the values6

lowing, we will takee=1. For this caseR,(x) has only one andn=18, respectively. In TabIeJ we give the values of the

positive root of odd multiplicity, given by=1.824. This 00tS 0fRy(x) and the values oK, for 2<n<20. The nu-

root is greater than the root &,(x). Obviously, the maxi- Merical value of the maximum of on the limit cycle, deter-

mum value ofx for the limit cycle must be greater than this Mined from a numerical integration of E¢f), with F(x)

value. defined by EQ(10), is Xpa=2.01 (e=1). Itis clear that the
We have in this way a new lower bound for the maximumroots of Ry(x) seem to converge t&,, and the curves

value ofx on the limit cycle. Moreover, the number of posi- fn(X,y) =K seem to converge to the limit cycle.

tive roots of odd muiltiplicity is equal to the number of limit ~ We have also studied the case

cycles of the system. The condition tHat must be a func-

tion only of x imposes a first order trivial differential equa- F(X)=0.8— 4x3+0.32¢°. (11)

tion for each functiory; ,(x). These equations can be solved

by direct integration and we obtain in this way all the func-

tions g; ,(x). We take all the integration constants that ap-This system has exactly two limit cycl¢$8]. We have cal-

pear when we solve these equations equal to zero. In thigulated the polynomials,(x,y) andR,(x) up ton=16. The

way, the level curves,(x,y)=K are all closed for positive polynomialsR,(x) have exactly two positive roots of odd

values ofK and even values af. Moreover, the function ~multiplicity. We conjecture that,=2 V¥n even. For each

h4(x,y) is a polynomial inx andy. value of n, we determine two value&;, and K},. The
We have found the same results for greater values of eveclosed curve$i,(x,y) =K}, andh,(x,y) =K, provide alge-

n. We have calculatetl,(x,y) andR,(x) up to order 20. In  braic approximations to each cycle for each valua @ven.

all cases, the polynomiaRR,(x) have only one positive root In Figs. 3 and 4 we show these curves for6 and

of odd multiplicity. Letr,, be the number of such roots. For n=14, respectively. We also show the limit cycles obtained

the van der Pol equation, it seems thigt=1 Vn even. by numerical integration. In Table Il, we give the values of

These roots approach in a monotonous fashion the maximushe roots of R,(x) and the values oK?*, and K’, for

value of x on the limit cycle. The functiondi,(x,y) are  2<n=<16. These roots seem to converge to the maximum

polynomials in x and y for all n. The level curves values ofx for each cyclgthe numerical values of the maxi-

h,(x,y) =K are all closed for positive values &f. By im-  mum of x on each limit cycle arexys=1.0034 and

posing the condition that the maximum value ofon the Xmax. 2= 1.9992, respectively The curvesh,(x,y) =K}, and

h,(x,y)=K}, seem to converge to each one of the limit

N cycles of the system.

- For all the cases that we have studied, we have found that
the values of the constanks), go to zero or infinity when
TABLE II. For each value ofh, we give the two roots oR,(x)
and the values oK?; andK;, for Eqg. (6), with F(x) given by Eq.
(12).
X
) - 2 n Root one Khy Root two K?,
J 2 0.852 0.726 1.854 3.439
4 0.905 0.711 1.885 14.5
6 0.931 0.739 1.905 67.59
o 8 0.945 0.784 1.920 334
10 0.955 0.840 1.931 1712
12 0.962 0.903 1.938 8973
FIG. 4. The limit cycles of Eq(6) with F(x) given by Eq.(11) 14 0.967 0.974 1.945 47741
(bold curve$ and their algebraic approximationhin curves: 16 0.971 1.052 1.950 254400

h1(X,y) =Kiz1 andhy,(x,y) =Ki, .
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log,, [Kn] TABLE IV. For each even value af, between 2 and 20, we
give the roots of the polynomiaR,, g,,, andgsz,, respectively,
for the van der Pol equation.
15
n Root of R, Root ofg; , Root of g3,
1 2 1.7321
. 4 1.8248 2.2361
5 L 6 1.8697 2.1924 2.2361
. 8 1.8965 2.1658 2.2063
" . - - T 10 1.9144 2.1475 2.1854
12 1.9273 2.1341 2.1697
FIG. 5. We show, for the van der Pol equation, the curve g 1.937 21236 21574
logio(K7) s a function oh. 16 1.9446 2.1152 2.1474
18 1.9507 2.1083 2.1391

- 20 1.9558 2.1025 2.1321
n—oo. In fact, it is easy to see from Tables | and Il that the

asymptotic behavior ok s with n (for a given limit cycle is
given by

two roots has occurred and this phenomenon has been an-
KX =a(Xmao", (12) nounced by the lowering of the value of one of the roots of
R,(X). We conjecture that,=1 Vn even, greater than 4.
wherea is a constant that depends on the cyclee Fig. 5. The numerical analysis of this system seems to indicate that

We have also considered systé@) with it has exactly one limit cycle.
s 5 For all the cases that we have studied, we have found that
F(X)=X= ux*+Xx, (13 two types of behavior of,, are possiblefi) r,=r/, for arbi-

trary even values ofi andn’. In this case the number of
limit cycles of the system is given by this common value of
the number of positive roots of odd multiplicity &,(x). (i)

wherew is an arbitrary parameter. It has been provef2ir]
that this system has exactly two limit cycles j@r2.5. It is
clear that this system has no limit cycle fpr<2 because A
r,=0 in that case. Hence, betwegn-2 andu = 2.5 there is The values o_fn changes with; in this cas;e the valuels of,

a bifurcation valueu* such that foru<u* the system has decreases witin; moreover we have,—r,=2p for n">n
no limit cycles and foru>u* the system has exactly two @ndpeN. The roots ofR,(x) seem to disappear by pairs,
limit cycles. Whenu=pu* the system undergoes a saddle-Whenn increases.

node bifurcation. Guided by the particular cases that we have analyzed, we
By applying our method, we can obtain lower bounds foréstablish the following conjecture.
the value ofu*. For each even value of we calculate the Conjecture:Let| be the number of limit cycles of E¢6).

maximum value ofu for whichr, is zero. This value ofx Let r,, be the number of positive roots &,(x) (with n
represents a lower bound far*. The results of these calcu- even of odd multiplicity. Then we havéi) |<r, Vn even;
lations are given in Table Ill. The values @f;, seem to (i) if n’>n thenr,—r/=2p with pe N.

converge very quickly, in a monotonous way, whess . We have also analyzed the roots of the polynomigls,
Numerical integrations of syste(6) with F(x) given by Eq.  with 0<j<n-—1. For odd values of, the roots of these
(13) seem to confirm that lim,..uh=pu*. polynomials are also related to the number and location of

Let us point out that it is the first time, to our knowledge, the limit cycles of the system. For instance, for the van der
that a bifurcation value of this type can be estimated in suclpo| equation, the polynomialg; ,(x) with j odd have ex-
a way, that is, by employing an analytical method instead ofctly one positive root of odd multiplicity. These roots are an
a numerical integration of the system. _ upper bound tax.,.. For a given odd value of, the se-

We have also analyzed systé) with F(x) given by guence of roots ofj; ,(x) decreases monotonously with
and seems to converge to the valuexgfy. The best upper
bounds are given by the roots gf ,(x), as can be seen in
For this case we have,=r ,= 3. However, the second posi- Table IV. The reasons for such behavior of the roots of the

tive root of R,(x) is smaller than the second positive root of Pelynomialsg; »(x) with j odd are not clear to us.
R,(x). Indeed forn=6 we findrg=1. An annihilation of We have shown in this paper that the polyno-
mials hn(xvy):yn+gn—l,n(x)ynil+gn—2,n(x)yn72

TABLE Ill. We give in this table, for each even value af  +---+0;1,(X)Y+don(X) give a lot of information about the

between 2 and 20, a lower bound; for the value ofu*. This  number and location of the limit cycles of E@), in the case

sequence seems to converge rapidly towatd whereF (x) is an odd polynomidlfor the case wherE (x) is

not an odd polynomial, the limit cycles are not invariant

n2 4 6 8 10 12 14 16 18 20  ynder the transformationx(y)— (—x,—y) and the results

W' 2 2.057 2.079 2.090 2.096 2.100 2.103 2.105 2.106 2.1074r€ not conclusive The curvesh,(x,y) =K{ give algebraic
approximations to each limit cycle. These algebraic approxi-

F(x)=x(x*—1.6°)(x2—4)(x*—9). (14)
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mations seem to converge to the limit cycles of the systemthey give upper bounds to the value xf,, for each limit
The positive roots of odd multiplicity of the polynomials cycle.

R.(X)=h,(x,y) are related to the number of limit cycles of

Eq. (6) and they give lower bounds for the valuesxgf, of
each limit cycle. Moreover, the roots @f; ,(x), with odd

All the relevant information about the limit cycles of Eq.
(6) seems to be contained in the polynomilajéx,y). These
polynomials are very easy to calculate with an algebraic ma-

values ofj are also related to the number of limit cycles andnipulator program.
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