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Improving a method for the study of limit cycles of the Lienard equation
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In recent papers we have introduced a method for the study of limit cycles of thartisystemx=y
—F(x), y=—x, whereF(x) is an odd polynomial. The method gives a sequence of polynoiRjgle , whose
roots are related to the number and location of the limit cycles, and a sequence of algebraic approximations to
the bifurcation set of the system. In this paper, we present a variant of the method that gives very important
gualitative and quantitative improvementS$.1063-651X98)00506-9

PACS numbeg(s): 05.45+b, 02.30.Hq, 02.60.Lj, 03.2@.

In a previous papdrl], we have introduced a method for algebraic approximations are exact lower bounds and seem
studying the number and location of limit cycles of theto converge in a monotonous way to the exact bifurcation set

Liénard system: of the system. The fundamental aspect of this method is that
it is not perturbative in nature. It is not necessary to have a

dx dy small or a large parameter in order to apply it.
E:y_F(X)’ a© (1) In the present paper, we want to improve the results pre-

sented in Refs[1] and[3]. Let us consider, as a first ex-
where F(x) is an odd polynomial of arbitrary degree. The ample, the van der Pol system:
method is as follows: we consider a functibp(x,y) given

by x=y— e(x3/3—x),

n n-1 n—2 (5)
hn(X,y):y +gn—l,n(x)y +gn—2,n(x)y +oee

+091n(X)Y +gon(X), ) y=—X.

whereg; ,(x), with j=0,1,...n—1, are functions ok only |n this case we havE(x)= €(x*/3—x) and the polynomials
andn is an even integer. It is always possible to choose ther (x, ) have only one positive root of odd multiplicity for

functionsg; ,(x) such that each even value af and for arbitrary values of the param-
etere [we have indicated here the explicit dependencR,pf
. dhy,  dhy in e by writing R,(x,€)]. We call theamplitudeof the limit
&h”(x’y)=h”(x’y)=[y_F(X)]E_XE (3) cycle the maximum value of the coordinateon the limit

cycle and we will refer to it ax,,. For the van der Pol
is a function of the variabl& On|y (See also Re'[2]) Hence equation, this amplitude is a function efand we will write

we have Xmax(€)-
In Table I, we give the roots of the polynomiBl,(x, €)
ha(X,y) = Ry(X). (4)  for n between 2 and 20 and far=3. These sequences of

roots seems to converge in a monotonous way to the ampli-
The functionsg; ,(x) andR,(x) determined in this way tude of the limit cyclex,,,{€)=2.023, which is obtained by a
are polynomials. We have shown in Rdf] and[3] that the =~ numerical integration of the system.
polynomialsh,(x,y) and R,(x) give a lot of information As explained in Ref[1], the integral of each polynomial
about the number and location of the limit cycles of Ej.  Ra(X,€) along the limit cycle must be zero for all even val-
In particular, we have established in REf] the following ~ ues ofn:
conjecture: Let. be the number of limit cycles of Eq1).
Letr, be the number of positive roots Bf, (with n even of T
odd multiplicity. Then we havéi) L<r,,, (ii) if m>n then fo Rn(x(t),€)dt=0, (6)
rm—rn=2p with peN.
Moreover, we have also shown in Ref4] and[3] that
the polynomialsh,(x,y) and R,(x) allow us to construct WhereT is the period of the limit cycle.
algebraic approximations to each limit cycle and to the bi- Let us now describe for this example the improved
furcation curves of Eq(1). For the bifurcation set, these method that represents the new contribution of this paper.
We employ an idea utilized in the averaging methigfi we
replacex(t) by a cosf) in Eq. (6), wherea is an unknown
*Electronic address: giacomini@univ-tours.fr constant, and we replace the peribdy 27. After integra-

"Electronic address: seb@celfi.phys.univ-tours.fr tion, we obtain a polynomial im that we denot@%n(a,e):
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TABLE |. Values of the roots oR,(x,€) for system(5) with e=3.

n 2 4 6 8 10 12 14 16 18 20  Num.

Root 1.732 1.819 1863 1.890 1909 1923 1934 1943 1950 1955 2.023

. 27 predecessor. Moreover, for a given valueepff we taken
Rn(a,€)= fo Rn(a cogt),e)dt. (7)  sufficiently large , the root oR,(x,€) =0 will be as near as
we want tox,,,{€). For other recent results about the limit
cycle of the van der Pol equation see R¢fg.and[6].

Surprisingly enough, the polynomiai,(a, €) have the same Let us consider a second example:

qualitative properties as the polynomid®(x,€). Each of
them has only one positive root of odd multiplicity for arbi- _
trary values ofe. The values of these roots farbetween 2 x=y— e(x°— Jax3+Xx),
and 20 are given in Table Il for the case 3. We can verify ®
that each one of these roots represents a lower bound for
Xma{ €=3). This sequence of roots seems to converge to
Xma{ €=3) much more rapidly than the sequence of roots of
the polynomialsR,(x,€) and they represent excellent ap- Wheree anda are arbitrary positive parameters. This system
proximations to the value of the amplitude of the limit cycle. has been carefully studied by Rychkpx] and can have at
This behavior of the roots of the polynomia?ﬁ(a,e) is  most two limit _cyclgs. Since there are two parameters, the
merely anexperimentafact. At present, we have no rigorous Pifurcation set is given by a curve in the parameter plane

arguments to explain these results. We have observed th(§’|“)-R (13 h h that th thod ted i
behavior of the roots of the polynomiaR,(a) for other n Ref. [3], we have shown that the method presented in

> . ) . Ref. [1] allows us to obtain a sequence of exact algebraic
Lienard systems of typ€) and the conjecture estabhshe_d " Jower bounds to the bifurcation set of systems like ).
[1] (and given also abovyebout the roots of the polynomials

R,(x) seems to be valid also for the roots of the “averaged” Here, we will show that by using the polynomiaf,(a)
A instead of the polynomialR,(x), we can considerably im-
polynomialsR,(a).

X . .. prove the results presented in RES].

For a given value of, we can obtain the approximation In the first quadrant of the planee@) there exists a
of the amplij[udexmax(e) as a fqnction ofe by considering bifurcation curveB(e,a)=0. On this cu,rve, the system un-
the curve g|vgn t?y the equatlolﬁn(x,e)_—o._ I:|owever, a dergoes a saddle-node bifurcati@ee Ref[3] for a descrip-
better approximation is found by considerifig,(a,€)=0  tion of this type of bifurcation Obviously, this function
instead. In Fig. Lrespectively, Fig. & we give the curve  B(¢ 4)=0 is not known and no analytical method for ob-
Rn(x,€) =0 [respectively R,(a,e)=0] for several values of taining it for arbitrary values of the parameters exists.

n and the numerical curve,,,{€) obtained from a numeri- We will obtain algebraic approximations to the curve
cal integration of the system. As we can see from these figg ¢ 4)=0 from the polynomial®R,(x, €, @) andR,(a, €, ).
ures, the improvement obtained with the new method is veryye will call B, (e,a)=0 the algebraic approximations ob-

important and has two different qualitative aspects:the tained from the polynomialR,(x, e, ) andén(e,a)=0 the

curvesR,(a,e)=0 are nearer to the ngmerical curve than thecurves obtained from the ponnomialA%n(a €,0). As ex-
curve Rn(x,€)=0; (ii) the :ilsymptotlc .behaV|o(when € plained in Ref.[3], the functionB,(e,a) is obtained from
— or e—0) of the curvesR,(x,€)=0 is the correct one inhe conditions
(even for smalin).

The amplitudex,,,,(€) of the limit cycle of the van der
Pol equation tend to the value 2 when»o or e—0: Ry(X,€,a)=0, dﬁ(x,e,a)zo. (9)

y: —X,

M Xmad(€)=liM Xy €)=2.
€—® e—0
In the same way, the functidﬁn(e,a) is obtained from the
This asymptotic behavior is correctly given by the curvesconditions
R,(a,e)=0 for all even values ofi.
Despite the fact that the c;urvés,(x,e)zo do not have dR

the correct asymptotic behavior, each one represents an exact R.(a,e,a)=0, —(a,e a)=0. (10)
lower bound to the functior,,,{€) and is closer to it than its

TABLE IlI. Values of the roots oR,(a,€) for system(5) with e=3.

n 2 4 6 8 10 12 14 16 18 20 Num.

Root 2 2 2003 2006 2.008 2.010 2.011 2012 2.013 2.014 2.023
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FIG. 1. Plots ofR,(x,€)=0 for n=2 to n=16 for system(5).
The dashed line is the,,{€) calculated numerically.

FIG. 3. Plots ofB,(a,e)=0 forn=2, 6 and 10 for syster(8).
The dashed line i8(«,€)=0 calculated numerically.

The algebraic equation(9) [respectively(10)] determine

the double root oR,(x, €, a) [respectivelyR,(a,e,a)] and When compared to the numerical bifurcation curve. Both
give a relation betweem and «, which we write B,(e, @) families of curvesB,(e,a)=0 andB,(e,a)=0 give lower
=0 [respectivelyB,(e,a) =0]. The curves8,(e,a)=0 are  bounds to the unknown exact bifurcation culge,«)=0.
shown in Fig. 3 for several values af The curveB(e,)  FOr the curves,(e,a) =0, this result has been established
=0, calculated from numerical integration of the system, isin [3]. But for the curvesB,(e,a)=0 it is anexperimental
also given. In Fig. 4, we show the curvBs(e,@)=0 and  fact that cannot be proved in a simple way.

B(e,a). Again, the improvement obtained with the polyno- L€t us point out that, despite the fact that the curves
mials Ifzn(a,e,a) is very important. The curvel%n(e,a)=0 B,(€,a) =0 have not the correct asymptotic behavior, for a

represent better approximations to the cuB(e,«) =0 than glv(en v)alu: c(:):r: E)Zea\ga:]ueear()::s ?/\t/);a\llyaercn![ ]'I)otmhetheiaec(:qtu\?anlﬁg of
the curvesB,(e,a)=0 do. n\€ @)=

It can be proved by perturbation methods that thethe bifurcation curve provided that we take sufficiently

asymptotic behavior of the functioB(e,«) when e—x is large N
given by B(e,a)~a—5. The curvesB,(e,a)=0 do not In summary, the curveB_n(e,a)=O represent a sequence
have this asymptotic behavior when-. On the contrary, of algebraic approximations to the bifurcation curve

the curvesB, (e,a)=0 that we have studiedh(between 2 B(e,a)=0. These approximations are very good, even for
and 20 haven a’correct asymptotic behavigee Fig. 4. In small values ofn. They are better than the approximations

) A i given by the exact lower bounds,(e,«) =0. The improve-
this way, the curve8,(e,a) =0 have the right global shape
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FIG. 2. Plots ofR,(a,e)=0 for n=2 to n=16 for system(5).

The dashed line is the&,.(€) calculated numerically. Note that, FIG. 4. Plots oﬂ%n(a,e)zo forn=2, 6 and 10 for systen®8).
here, the horizontal axis s=2. The dashed line i8(«,€) =0 calculated numerically.
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ment obtained from the polynomiaﬁ(a,e,a) is very sur- Ifzn(a,e,a)] represent an interesting open problem.

prising because it seems that it is a general fact, valid for Inthe meantime, the method presented in this paper gives
arbitrary odd polynomial$(x). The mathematical justifica- a very effective way of obtaining information about the num-
tion of this method more specifically the passage from the ber of limit cycles, their amplitudes, and their bifurcations

polynomialsR,(X,€,a) to the averaged polynomials for the Lienard systems.
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