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Comment on “Liénard systems, limit cycles, and Melnikov theory”
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In papers by Sanjus[Phys. Rev. 57, 340 (1998] and Giacomini and NeukircfPhys Rev. E56, 3809
(1997] Liénard systems of the forn'n:y— eF(X,u), y= —x are studied. Sanjuacompares the results given
by Melnikov theory with the results given by i, polynomials in the paper by Giacomini and Neukirch and
conjectures that the roots of th®, polynomials tend toward the roots of the Melnikov polynomial wimen
—oo, for arbitrary values o&. We show here that this is true only when-0 and that this fact strengthens the
conjecture proposed by Giacomini and Neukirk®1063-651X98)13112-4

PACS numbegs): 05.45-a

For Lienard systems, with the R,, polynomials as with the Melnikov method, pro-
vided thate— 0.

We give here two examples to illustrate this.

First we consider the van der Pol equation, that corre-
@) sponds to systenil) with F(x)=x3/3—x. Here, for all
y=—X, €, the Melnikov polynomialP(r?) hasa=2 as root. If we
take e= 3, we find that for smalh the root of theR,, poly-
nomial («,) is increasing witn and is smaller than 2. But,
calculating Ry X) and Rypo(Xx), we find a19;=2.006 . ..
and  @;50=2.008... (With Ryga@00<10 1 and

x=y—eF(x,u),

the Melnikov function depends only om while the R,(x)
polynomials depend o and e. As pointed out in[1],
Melnikov theory, as well as thR,, polynomials for Liemard - .
systems, enables one to handle a global bifurcation problerﬁlZO(_al?O)<10 *). Hence itis not true that,<a for all n
by reducing it to an algebraic problem, that is, counting the2nd it is not true thaiw,—a: «a, seems to tend toward
number of roots of polynomials. IfL], the author conjec- 2-023- .., which is the real maximunx value for the van
tures that for a given Ligard system, there are associated ader Pol limit cycle with e=3 (obtained from numerical
Melnikov polynomial P(r2) and two sequences of polyno- integration.

mialsR,(x) andg; ,(x). For a fixed value oh, each positive Next we consider systerfl) with F(x)=x>—ux3+x.
root of P(r?) () is associated to a root &,(x) (a,) and  For smalle, Melnikov theory tells us that for> \/? there
toarootofg;n(x) (Bn) such thatwy,<a<p,,andwiththe are  two (circlelike) limit cycles of radii

property that as increasesy,— « and B,— a. 3 10240
Nevertheless, there is one major difference between th 5T 5VIu"—40.

Melnikov method and th&, method: the Melnikov method For example, let us take= 15 andu=\%. The Melni-

only works fore—0 while theR, method is valid for alle. kov method predicts twdcirclelike) limit cycles of radii:

In other words, the Melnikov theory is perturbative while ther;=1.039 andr,=1.216. TheR, polynomials have two

R, method is not. positive roots of odd multiplicity. We see in Table | that for
Hence, the conjecture presented at the erfd pan only  small e the roots of theR,, polynomials tend to values very

be true in thee— 0 limit: one should find the same results near those of the roots of the Melnikov function, as pointed

out in[1].
TABLE I. Values of the two roots oR,(x) for e=5 and u However, if one takese=8 and u=+/%, Melnikov
=4, theory still predicts twacirclelike) limit cycles of the same
n 2 4 6 8 10 20 30 TABLE Il. Values of the two roots oR,(x) for e=8 andu

_Ja i
Root1 0.833 0.907 0944 0966 0980 1.010 1.021 — V. Forn=14,thereis no root any longer.
Root2 1.199 1.191 1.189 1.189 1.191 1.197 1.202

n 2 4 6 8 10 12 14 16

Root1 0.83 089 094 097 1.01 1.05
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radii (the Melnikov function does not depend e, while  Numerical integration shows that thererie limit cycle for
theR,, polynomials have no real root of odd multiplicity after ¢=8 andu= \/4;1

n=12 (see Table I The fact that the two real roots disap-  Although Melnikov theory is not effective at large the
pear indicates that there is no longer a limit cycle é8t8. R, polynomials still give the right result.
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