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Fragmentation of Rods by Cascading Cracks: Why Spaghetti Does Not Break in Half
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When thin brittle rods such as dry spaghetti pasta are bent beyond their limit curvature, they often break
into more than two pieces, typically three or four. With the aim of understanding these multiple breakings,
we study the dynamics of a bent rod that is suddenly released at one end. We find that the sudden
relaxation of the curvature at this end leads to a burst of flexural waves, whose dynamics are described by
a self-similar solution with no adjustable parameters. These flexural waves locally increase the curvature
in the rod, and we argue that this counterintuitive mechanism is responsible for the fragmentation of brittle
rods under bending. A simple experiment supporting the claim is presented.
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FIG. 1. The dynamics of a rod fragment following the initial
breaking event in a brittle rod is modeled by releasing at time
t � 0 a rod with fixed length L, initial curvature �0, and no
initial velocity.
The physical process of fragmentation is relevant to
several areas of science and technology. Because different
physical phenomena are at work during the fragmentation
of a solid body, it has mainly been studied from a statistical
viewpoint [1–5]. Nevertheless, a growing amount of works
have included physical considerations: surface energy con-
tributions [6], nucleation and growth properties of the
fracture process [7], elastic buckling [8,9], and stress
wave propagation [10]. Usually, in dynamic fragmentation,
the abrupt application of fracturing forces (e.g., by an
impact) triggers numerous elementary breaking processes,
making a statistical study of the fragment sizes possible.
This is in contrast to quasistatic fragmentation where a
solid is crushed or broken at small applied velocities [11].

Here we consider such a quasistatic experiment whereby
a stick of dry spaghetti is bent beyond its limit curvature.
Most of the time, the pasta does not break in half but
typically into three to ten pieces. This simple and intrigu-
ing experiment, which puzzled Feynman himself [12],
remains unexplained to date. In this Letter, we explain
this multiple failure process and point out a general mecha-
nism of cascading failure in rods: a breaking event induces
strong flexural waves that trigger other breakings, leading
to an avalanchelike process.

Let us consider a rod that is held at both ends and bent
quasistatically with an increasing, uniform curvature. It
breaks at time t � 0 when its curvature �0 reaches its limit
value ��: a dynamic crack crosses the weakest section and
breaks the rod into two halves. As the rod was initially bent
with uniform curvature, the location of this first failure
point is that of the strongest defect. We do not further
discuss this initial breaking event, but instead focus on
the subsequent dynamics of either half of the rod, for t >
0, and show that this dynamics generically leads to new
breaking events at later times.

Since we are not interested in the statistics of the initial
breaking event, we introduce and analyze throughout this
Letter a model problem in which the release of a rod
mimics the initial breaking event. Both problems indeed
obey the same equations, but the advantage of the model
problem is that the length L of the fragment is known in
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advance. In the model problem, the rod is initially uni-
formly bent and at rest. This is achieved by clamping one
end and applying a moment M0 at the other end: M0 plays
the role of the internal moment transmitted across the
section that is about to fail; see Fig. 1. At time t � 0,
this end is suddenly released as the applied moment M0

is removed instantaneously. The rod no longer is in equi-
librium, and we study its subsequent dynamics.

The dynamics of thin rods are described by the cele-
brated Kirchhoff equations [13], which in the limit of
small, planar deflections take the form

L4�;s4�s; t� � T2�;t2�s; t� � 0; (1)

where s is the arc length and a comma in the indices
denotes a partial derivative. Here, we have introduced a
typical time T built from the rod mechanical properties:
T � L2=
 where 
 �

������������������
EI=�
A�

p
, with E the Young’s

modulus, 
 the mass density, A the area, and I the principal
moment of inertia of the cross section. For a rod with cir-
cular cross section of radius r, I � �r4=4 and 
 � cr=2,
where c �

���������
E=


p
is the sound velocity in the material.

Note that T is directly proportional to the period of the
fundamental mode of free oscillations of the rod [14],
Tfree � 1:79T.

Equation (1) calls for some remarks. First, we base our
presentation on the equations for rods in the limit of small
deflections, and we show that this linear theory captures the
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FIG. 2. (a) Numerical solution of the Kirchhoff Eq. (1) with
clamped-free boundary conditions, for a uniform initial curva-
ture �0. The curvature at the free end ��0; t� relaxes to zero
within the first few time steps (quick relaxation of the incompat-
ible curvature near free end) while it is given in the intermediate
regime (2) by the universal self-similar solution (4), shown in (b)
as a function of � � s=

�����

t

p
. At later times, for t� T, reflections

are generated from the clamped end s � L.
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essence of the phenomenon (nonlinearities are considered
only at the end of this Letter in the simulations of Fig. 4).
Second, we are interested only in planar configurations of
the rod: the rod geometry is parametrized at any time t by a
single unknown function of the arc length s, its curvature
��s; t�. Although the Kirchhoff equations are classically
studied in terms of the transverse displacement y�s; t�, we
use the curvature as it is the physical quantity connected to
the failure of the rod.

On Eq. (1), we impose clamping conditions at s � L:
�;s2�L; t� � 0, �;s3�L; t� � 0; and free boundary conditions
at s � 0: ��0; t� � 0, �;s�0; t� � 0. These four boundary
conditions in s associated with the two initial conditions
��s; 0� � �0 and �;t�s; 0� � 0 (uniform curvature �0, no
initial velocity) should warrant, in principle, a unique
solution ��s; t� to Eq. (1). However, these initial and
boundary conditions are inconsistent: the curvature
��0; t� at the free end has to be �0 � 0 at initial time t �
0, while the free end condition requires that it vanishes at
any time t > 0. This inconsistency can be understood
easily: the initial configuration with uniform curvature �0

violates the constitutive relation of the rod (the curvature is
proportional to the internal moment, even in the dynamic
theory of rods) and must therefore vanish near a free end.
This is a typical boundary layer situation. The boundary
layer, studied in a separate paper [15], restores the small
thickness r of the rod into the equations and introduces a
small time scale Ts � r=c, of order 1 �s for spaghetti,
where c is the typical speed of propagation of the trans-
verse dynamic crack. The ratio of this time scale to the
‘‘macroscopic’’ one reads T=Ts � 2�L=r�2. For spaghetti,
the aspect ratio is large, L=r� 250, and so T=Ts � 104.
The initial incompatible curvature �0 near the edge relaxes
over the short time scale Ts. This abrupt relaxation gen-
erates a burst of flexural waves that are strong enough to
break the rod, as we show later. The separation of time
scales allows one to obtain an analytic solution [16] to our
problem in the so-called intermediate asymptotic regime

Ts � t � T; (2)

which we first study here. Owing to the obvious scaling
s� L

��������
t=T

p
, we seek a solution of Eq. (1) in the form

��s; t� � �0u���, where the self-similarity variable is � �

�s=L�=
��������
t=T

p
� s=

���������
�
t�

p
. Note that we have factored out

the initial curvature �0, as we use the linear Kirchhoff
equations. The boundary conditions for u��� are derived
from those for �: u�0� � 0, u0�0� � 0, and u��1� ! 1.
Substituting this self-similar form of ��s; t� into Eq. (1)
yields the following equation for the self-similar solution
u���:

4u0000��� � �2u00��� � 3�u0��� � 0: (3)

Imposing that u��� matches the initial condition for large �
implies that u00�0��0, as shown with the help of an inte-
gral of motion. This last condition, combined with the pre-
vious ones, yields a unique self-similar solution to Eq. (3):
09550
��s; t� � 2�0S
�

1�������
2�

p
s�����

t

p

�
; (4)

where we have introduced the Fresnel sine integral, S�x� �R
x
0 sin�

�
2 y

2�dy, also arising in diffraction theory.
Equation (4) does not describe a progressive wave with
constant velocity, s� ct, but instead a self-similar solution
s�

�����

t

p
. This reflects the dispersive nature of Eq. (1).

Bent rods that are suddenly released at one end are all
described in the intermediate regime (2) by the same
universal solution (4) independently of the material prop-
erties, of the details of the initial release or breaking (as
long as they take place over a short time scale Ts �� T),
and even of the boundary conditions imposed at the other
end s � L, which have not been used to derive Eq. (4).
This universal solution is plotted in Fig. 2 along with a
numerical solution of the Kirchhoff Eq. (1). The latter
features, as expected, the self-similar regime for Ts � t �
T in which a burst of flexural waves emitted from the
released end s � 0 travels along the rod with a square
root time dependence. The self-similar solution (4) accu-
rately describes the rod dynamics until reflections on the
clamped end s � L take place, for t� T.

A key property of the self-similar solution (4) is that the
curvature ��s; t� is locally significantly larger than the
initial curvature �0. Indeed, for � � 2

����
�

p
, the self-similar

solution reaches its maximum where the curvature is
1.428 times its initial value �0. This coefficient is univer-
sal, being twice the maximum of the Fresnel sine integral.
It characterizes the maximum of curvature in the inter-
mediate regime (4) (the long time behavior of the curvature
5-2
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is discussed at the end of this Letter). This increase of
curvature is, indeed, observed in the experiment presented
in Fig. 3. A Barilla no. 1 dry spaghetti pasta of length L �
24:1 cm was clamped and bent into an arc of circle, by an
angle �0L � 195�. Digital photographs were acquired at
1000 frames per second using a fast camera while one end
was released. A flexural wave traveling from top (released
end) to bottom (clamped end) is clearly visible on the
intermediate frames in the form of a local increase of
curvature. The predictions of the self-similar solution,
namely, the point of maximum curvature, �s=L�=

��������
t=T

p
�

2
����
�

p
, and the smallest osculating circle with radius

1=�1:428�0�, are superimposed without any adjustable pa-
rameter. The rod profile given by a numerical integration of
Eq. (1) is shown as well [17].

The increase of ��s; t� is rather unexpected. Indeed, one
could imagine the motion of the rod to be essentially given
by its fundamental mode of oscillation around the straight
configuration, ��s; t� / �0 cos�2�t=Tfree�. This simple pic-
ture misleadingly suggests that the rod curvature remains
bounded by its initial value �0 at all times. In fact, the
quick initial relaxation of the nonzero curvature ��0; t� at
the free end sends a burst of flexural waves, something that
is not captured by the fundamental mode only. When a
brittle rod breaks, such a burst is generated. It increases the
curvature locally and triggers secondary breaking events,
which ultimately accounts for the multiple failure of brittle
rods.

The increase of curvature has thus been described ana-
lytically and was confirmed by a direct observation. We
now focus on the long time behavior of released rods; see
Fig. 3(d). Their delayed breaking is explained using the
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FIG. 3. A dry spaghetti is bent into an arc of circle and
suddenly set free, while its lower end remains clamped. Its
subsequent dynamics exhibits a local increase of curvature.
Selected frames shot with a fast camera at 1000 Hz:
(a) release ta � 0, (b) intermediate frame tb � 0:0159T,
(c) frame just before rupture tc � 0:0509T, and (d) frame after
rupture td � 0:0596T. Predictions of the self-similar and nu-
merical simulations based on Eq. (1) are superimposed, without
any adjustable parameters: rod profile (dotted line) and osculat-
ing circle (dashed lines) at the point of largest curvature (arrow).
Note that the rod breaks at the point of maximal curvature.
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self-similar flexural wave (4), together with its reflections
on the clamped end.

In Fig. 3(d), the rod ruptured at a distance s � 0:76L
from the free end, at a time t � 6:7 ms after the release.
From the period of free oscillations, we measured T �
114 ms directly, hence a dimensionless fracture delay
t=T � 58:5� 10�3. By repeating the experiment [18],
we found that the failure delay and its location along the
rod vary. Failure appears to be extremely sensitive to the
initial curvature �0 (rods that are closer to their limit
curvature tend to break sooner after release, hence closer
to the released end) and probably also to the presence of
defects. Twenty-five experiments were carried out with
various pasta diameters (Barilla no. 1 with r1 � 0:57 mm
and 
1 � 0:521 m2=s; Barilla no. 5 with r5 � 0:84 mm
and 
5 � 0:735 m2=s; Barilla no. 7 with r7 � 0:95 mm
and 
7 � 0:82 m2=s) and initial curvatures (in the range
9:7–15:3 m�1), with L around 24 cm. All the breaking
events collapse onto well-defined regions in a rescaled
space-time diagram (s=L, t=T); see Fig. 4.

These regions can be calculated as follows. Assuming
the rod has no defect, it breaks as soon as its limit curvature
�� is reached somewhere. The first breaking event after the
release must therefore correspond to the first time that
j��s; t�j reaches the value ��. This means that breaking
occurs necessarily at a point in the plane (s=L, t=T) that is a
record of curvature since the experiment started: for all s0

and all t0 < t, j��s; t�j> j��s0; t0�j. This defines the so-
called absolute curvature records. Under the opposite as-
sumption that the rod has strong defects, �� becomes a
function of s and rupture is simply expected to take place at
a local curvature record, that is at a point �s; t� such that
j��s; t�j> j��s; t0�j for all t0 < t and the same s. Global and
local curvature records determined from the numerical
solution of the full (nonlinear) Kirchhoff equations define
a rather narrow region, shown in Fig. 4, onto which the
experimental data points, indeed, collapse with no adjust-
able parameter.

An analytical prediction for these times of breaking is
obtained by considering the interferences between the self-
similar wave and its reflection on the clamped end.
Constructive interferences lead to strong records of curva-
ture, where breaking events accumulate. The incident wave
is characterized by a series of local maxima indexed by an
integer k � 0; see Fig. 2(b), which travel according to
s2=�4�
t� � 2k� 1: note that the main maximum, k �
0, is slower than its precursors, k � 1. The reflected wave,
as constructed by the method of images, has similarly local
maxima indexed by k0 � 0 traveling in the opposite direc-
tion: �2L� s�2=�4�
t� � 2k0 � 1=2. Solving for t, the
crossing time of the main incident maximum (k � 0) and
a maximum k0 � 0 in the reflected wave leads to an ana-
lytical prediction of discrete breaking times: t=T�1=
���1�

��������������������
2k0 �1=2

p
�2�, that is, t=T � 0:109, 0.048, 0.033

for k0 � 0; 1; 2, respectively. This simple prediction based
on the linear theory compares well with both the accumu-
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FIG. 4. Space-time diagram, in rescaled coordinates, of the
breaking events obtained by repeating the experiment of Fig. 3
(data points) for different pasta radii and initial curvatures �0.
The time and location of curvature records predicted by numeri-
cal simulations of the full (geometrically nonlinear) Kirchhoff
equations for �0 L � � are shown in the background, with no
adjustable parameters: absolute records (black) and local ones
(gray). The breaking events are concentrated on islands that lie
approximately at the intersection of the paths (dashed lines)
followed by local maxima of the incident and reflected waves
(see main text). Percentages show the relative increase of curva-
ture �=�0 at selected points.
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lation of breaking events at rescaled times t=T � 0:13,
0.055, 0.030 in the experiments, and with the islands
obtained by numerical integration of the full (nonlinear)
Kirchhoff equations; see Fig. 4. Note that these rupture
delays are considerably shorter than what would be con-
jectured from a crude dimensional analysis, t=T �
Tfree=T � 1:79.

In the present analysis, we have considered only the first
breaking event after release, although multiple failures
were commonly observed in experiments [18]. Secondary
failure events are most likely described by the same theory,
with a shorter time scale T (fragments are shorter) and with
nonuniform initial curvature profiles. The present physical
mechanism for fragmentation of slender elastic bodies,
based on flexural waves, leads us to expect specific statis-
tics of fragment sizes. Recall that the maximal curvature
increases during the initial boundary layer, t� Ts, and
later reaches a plateau, �=�0 � 1:43. If the initial curva-
ture is sufficiently close to the limit one, very early sec-
ondary breaking events should occur and the length scale r
should be present in the statistics of fragment size. We
have, indeed, often observed the ejection of tiny rod frag-
ments, with typical size r. However, the fragments were
most of the time much larger (with a size comparable to L):
the curvature, initially very close to the static limit curva-
ture, was often multiplied by three before rupture was
actually initiated. This could be due to the delayed char-
acter of the rupture process itself, which remains to be
09550
understood before one can predict the statistics of fragment
sizes. The present analysis, indeed, provides an effective
characterization of the breaking times and locations with-
out making use of any specific rupture criterion.

When a bent rod reaches its limit curvature and breaks at
a first point, a burst of flexural waves described by a
universal self-similar solution is sent through the newly
formed fragments, which locally further increases the cur-
vature. The limit curvature is therefore exceeded again at a
later time, allowing a cascading failure mechanism to take
place. The multiple breaking of spaghetti reflects a peculiar
behavior of elastic rods: removing stress can increase
strain.
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