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Writhe formulas and antipodal points in plectonemic DNA configurations
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The linking and writhing numbers are key quantities when characterizing the structure of a piece of super-
coiled DNA. Defined as double integrals over the shape of the double helix, these numbers are not always
straightforward to compute, though a simplified formula was established in a theorem by Fuller [Proc. Natl.
Acad. Sci. U.S.A. 75, 3557 (1978)]. We examine the range of applicability of this widely used simplified
formula, and show that it cannot be employed for plectonemic DNA. We show that inapplicability is due to a
hypothesis of Fuller theorem that is not met. The hypothesis seems to have been overlooked in many works.
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I. INTRODUCTION

The double-helix structure of DNA is the source of many
complications in its in-vivo functioning during condensation-
decondensation, replication, or transcription. For example,
the necessary unzipping of the molecule during transcription
induces torsional strain along DNA. The development of
magnetic tweezers [1,2] or the use of quartz cylinders in
optical tweezers [3] allow researchers to investigate the in-
vitro response of DNA molecules to torsional stress. Studies
of the behavior of this twist storing polymer are not just a
game for physicists as it has been clearly established that,
e.g., the assembly of RecA could be stalled by torsional con-
straints [4], or that the rate of formation and the stability of
the complex formed by promoter DNA and RNA polymerase
depends on the torque present in the DNA molecule [5]. On
the theoretical side, matters are made difficult by the nonlo-
cality of the topological property that is associated with the
torsional constraint: The link. The two sugar-phosphate
backbones of DNA have opposite orientation and the ends of
a double-stranded DNA molecule can only be chemically
bound in such a way that each strand joins itself, thereby
yielding two interwound closed curves (no Mobius-like con-
figuration can exist). For a circularly closed DNA molecule,
the link is the number of times one of the sugar-phosphate
backbone winds around the other. Once the three-
dimensional shape of the molecule is projected onto a plane,
the link is given by one-half the number of signed crossings
between the two backbones. This quantity is best seen as the
number of turns put in an initially planar plasmid (a piece of
circularly closed double-stranded DNA) before closing it.
The link has been shown to consist of two parts: The two
sugar-phosphate backbones of a plasmid can be linked be-
cause (i) the plasmid lies in a plane but the base pairs are
twisted around their center line (the curve joining the cen-
troids of the base pairs) and/or (ii) the center line itself fol-
lows a writhed path in space. In general the two possibilities
coexist and the link Lk of a DNA molecule is the addition of
the two quantities [6-9],
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Lk=Tw + Wr. (1)

The twist Tw is a local quantity in the sense that it can be
computed as the single integral of the twist rate 7(s):
2@Tw=[57(s)ds, where s is the arclength along the center
line and L is the total contour length of the molecule. In
elastic DNA models, the twist rate 7(s) is normally coupled
to mechanical quantities (e.g., the torque) characterizing the
molecule. Contrary to the twist, Wr is a global property of
the center line of the molecule. We first define the directional
writhe of a closed curve I'. Consider a closed curve in three
dimensions (3D) and project this curve, along a certain di-
rection, on a plane. The number of signed crossings seen in
the plane is the directional writhe for that direction. One
could then reiterate the procedure with different directions of
projection and compute the directional writhe for each direc-
tion. The average value obtained for the directional writhes,
when all directions are considered, is the writhe Wr(I") of the
3D curve I" [10].

II. GLOBAL AND LOCAL WRITHE FORMULAS

The following double integral has been introduced by
Calugdareanu [6,7] and White [8],

J [t(s) X t(s")] - [r(s) = r(s")]
rJr |"(S)—"(S/)|3

1
wrV(Ir) = —

dsds’,
41

2)

where r(s) is the position of points on I' and #(s) is the unit
tangent to I'. As soon as a 3D curve does not self-intersect,
the writhe Wr(I') of the curve is given by Eq. (2): Wr(I")
=Wr(D) if r(s) #r(s’)V s,s’ with s#s’. The computa-
tion of the double integral of Eq. (2) is analytically hard and
numerically time consuming to perform. An important result
though enables one to reduce the double integral to a single

'"The double integral may be shown to converge for self-crossing
curves provided the tangents at the intersection points are not
aligned [11].
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integral, provided several hypotheses are fulfilled [12]. It is
the main purpose of this paper to show that these hypotheses
are not met in the case of plectonemic DNA.

Fuller’s theorem [12] states that the writhe of the curve I
can be computed by considering the writhe of a reference
curve I'y (which should be known or easy to compute) and
the continuous deformation (a homotopy) morphing I'y to T,

? def
wr(D)=wrl(I',T )= Wr(Ty) + %TFM(F,FO), (3)

where

B L ty(o) X t(o) d
Fu(T.,Ty) =  Tei@) 1) da[t0(0)+t(a)]d0’

def
where t,(0) =[dry(o)/da]/|dry(o)/da] is the unit tangent to
I'y and where o €[0,0,] is a common parametrization for
both curves, though not necessarily the arclength along I' or
I'y. The total contour length of I" is L. The curve I’ is nor-
mally chosen to be a fairly simple curve (e.g., planar with
zero writhe) so the computation of Wr(I') boils down to es-
timating the single integral in Eq. (3). Before doing so, one
should verify whether the hypotheses of Fuller’s theorem are
fulfilled [this is the sense of the question mark in Eq. (3)].
The continuous deformation from I'; to I" introduces a fam-
ily of curves I'y with A € [0,1] and I';=T". The unit tangent
to Iy is
def
t\(0)=[dr\(o)/da]/|dr\(o)/dd].

The first hypothesis is that none of the curves I') self-
intersects. The second hypothesis is that, and this is the point
we want to emphasize, there should be no point along any of
the curves I'y, where ¢,(0)-£,(0)=—1. For each value of \,
the (unit) tangent #,(o) with oe€[0,0;] defines a curve,
called the tangent indicatrix, on the unit sphere. If for a cer-

tain A and a certain & we have £5(&)-£,(&)=—1 then, on the
unit sphere, the point corresponding to #;(7) is antipodal to
the point corresponding to #,(a). For brevity we shall also
call antipodal the point ri(a) or the curve Iy itself.

In models where self-intersection is prevented (e.g., mod-
els using hard- or soft-wall potentials of the molecule on
itself) a continuous deformation free of self-intersection (an
isotopy) may be easy to devise and the first hypothesis would
be verified. However nothing in these models ensure that the
second hypothesis (that no antipodal points exist for all A
€[0,1] and all o €[0,07;]) is met and consequently Fuller’s
formula (3) cannot be used to compute the writhe. We nev-
ertheless remark that even in the case of self-intersection or
antipodal points Fuller’s formula is always correct modulo 2:
The integer, and most important, part of Wr(I") will not be
correct, but the fractional part will. Each antipodal point
present in the continuous deformation from I’y to I" intro-
duces a shift of two units between the actual writhe Wr(I") of
the curve I" and the value Wr¥(I",T'y) [13]. Consequently, if
there are m antipodal points along the deformation A
€[0,1], the computed value Wr* could be as far as 2m from
the correct value Wr, but the fractional part will be accurate.
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FIG. 1. The shape of a DNA molecule subjected to a vertical
pulling force follows a 3D curve which is locally made random by
thermal agitation. As explained in [14], when the force is small or
moderate, points where the tangent to the molecule is oriented
downward can appear, e.g., point A. These points on the curve are
antipodal to corresponding points on the reference curve.

This discrepancy between Wr" and the actual writhe Wr
has already been pinpointed in the case where DNA is treated
as a fluctuating chain under low twist (i.e., without plec-
tonemes) [14—16]. Nevertheless we have found a certain
number of references where Fuller’s formula is used
[17-34]. In most cases the hypotheses of Fuller’s theorem
were not checked, if only mentioned. In some works the
formula is used in a scheme that provides an estimate for the
torsional stiffness of the DNA molecule [20,21] and this has
been shown to lead to incorrect results [35,15,14]. Neverthe-
less, in some papers [34,19,22,23], the formula was used to
assess the writhe of DNA configurations under high stretch-
ing force and low twist, in which cases antipodal points are
absent and the formula is correct.

III. WRITHE AND LINK OF DNA MOLECULES IN
MAGNETIC TWEEZER EXPERIMENTS

During a force-extension experiment on a single DNA
molecule thermal agitation deforms the molecule whose
shape locally adopts random directions (Fig. 1, left-hand
side). In the absence of (or under low) twist, DNA is mod-
eled as a wormlike chain [36]; the path followed by its center
line in space looks like a (directed) random walk [19]. In
such configurations, the writhe is usually evaluated using
Fuller’s formula (3) with the reference curve shown in Fig. 1,
left-hand side. Since the writhe is classically defined for a
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closed curve, the reference and actual curves are all closed
by imaginary C-shaped curves (dashed in Fig. 1) that con-
nect the top to the base of the configurations. (Other choices
of closures and interferences due to the closure in the com-
putation of the writhe are discussed in [14,11,37,38,16].)
Strictly speaking the curve I' for which we compute the
writhe consists of two parts: The closure and the part corre-
sponding to the molecule. As the closure remains unchanged
in the continuous deformation \ €[0,1] its contribution to
Fuller’s integral is zero. Consequently, we will forget about
the closure and call I' the (open) curve described by the
molecule only. The reference curve Iy is then the z axis, and
Fuller’s formula (3) becomes

1 L e, X t(s) d

wrl'(I',T) = Wr([y) + 277]0 Tae () e 1) . dst(s)ds

diys)
ds

L
=0+ Lf [1-cos 6(s)] ds, (4)
277 0

if the tangent #(s)=(sin 6 cos #,sin @ sin ¢, cos ) is param-
etrized by Euler angles 6(s) € [0, ], and ¢(s) €[0,2). As
stated above, Eq. (4) is only valid if the curve I' can be
deformed into the reference curve I'y without passing
through configurations I'y having their tangent vector ¢, (o)
facing —e.: t\(0) # —e, for all N\, 0. We remark that in the
present case where I'j) is the z axis an antipodal point is a
point where the curve ¢, (o) passes through the south pole of
the unit sphere ()=

In the case where the actual configuration I' exhibits a
single or multiple antipodal points it has been proposed in
[21] to evaluate the writhe from Eq. (4) with Euler angles
defined on a truncated unit sphere: 6 would not be allowed to
reach 77 and hence antipodal points would be avoided (the

curve T so defined would be very near the real curve I,
hence the writhes would almost be the same). We stress that
this process is not sufficient as even for a given curve with
no antipodal points, it is not clear whether Eq. (4) is valid or
not. In order for Eq. (4) to be valid, one must exhibit a
continuous deformation from the z axis to the curve I' that is
entirely free of antipodal points. There are many cases where
the actual curve I" is free of antipodal points, but where a
deformation free of antipodal points does not exist. Conse-
quently in these cases Eq. (4) yields an incorrect result (un-
less antipodal points of opposite signs cancel out). Neverthe-
less, it has been noted that under high stretching force (e.g.,
F~5pN) and low torque the DNA molecule is almost
straight and no such antipodal points exist [23]. In such a
case Fuller’s formula is correct provided no plectonemes are
present, as we will see now.

In magnetic tweezer experiments, when a large amount of
turns are put in (by rotation of the magnetic bead around the
z axis), the DNA molecule reacts by forming plectonemes
[40]. The number of turns n imposed on the magnetic bead is
given by the link Lk of the molecule. We now show that the
presence of plectonemes in the supercoiled configuration
prevents the existence of a deformation, from I'; (i.e., the z
axis) to I', that is free of antipodal points, and consequently
forbid the use of Eq. (4).
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In terms of the Euler angles the twist of the molecule can
be computed as

1 (“(d d
Tw=— (—d) + cos H—Ip)ds, (5)
2wy \ds ds

where ¢(s) is the third Euler angle (see, e.g., [41]). Using
Egs. (4) and (5) we obtain

LkF—LfL i( )d (6)
" 2w, ds P+ )ds.

This formula usually is the starting point for computations of
the link of supercoiled configurations, see, e.g., [21] or [17].
We show here that it yields incorrect results when plec-
tonemes are present. We have performed computations to
model the elastic response of a twist storing filament subject
to tensile and torsional constraints and we quantitatively re-
produced the plectonemic regime characterized by the linear
decrease of the end-to-end distance of the filament as a func-
tion of the number n of turns put in [39]. The plectonemic
configurations were computed numerically using a continua-
tion algorithm and n=Lk was computed by continuity so that
no integer number of turns is missed [we also performed
numeric integration of the double integral of Eq. (2) for the
writhe of the configurations, with closures, and always ob-
tained consistent results]. These shapes serve as an illustra-
tion for the computation of the writhe and consequently are
used for their geometry only. The fact that they are mechani-
cal equilibria is not relevant here. The continuous dark curve
in Fig. 4 shows an output of the numerics, drawn in the
(Lk,Z) plane, where Z is the vertical extension of the mol-
ecule. The curve starts at point O which corresponds to a
straight and twisted configuration. The path is then mono-
tonically decreasing in Z. We have selected five configura-
tions A, B, C, D, and E which are drawn in Fig. 2, together
with their corresponding tangent indicatrices (see definition
in Sec. II) drawn in Fig. 3. Configurations B and D each
comprise an antipodal point located at the middle point of
the end loop of the plectonemic structure. This can be veri-
fied in Fig. 3 B and D, where the tangent indicatrices pass
through the south pole of the unit sphere.

Using the same geometric configurations, we compute
Lk™ from Eq. (6) and we plot the corresponding curve, in
gray, on the same diagram. We see that each antipodal event
introduces a shift of two units in the gray curve, which is
consequently broken. As expected this confirms that Eq. (6)
is only valid modulo 2 and hence should not be used to
estimate the link of plectonemic configurations. The writhe
and link of the five configurations are given in Table I where
they are compared with Wr' and Lk" given by Egs. (4) and
(6). For configuration E, which is separated from the refer-
ence curve by two antipodal events, we see that Wr! (respec-
tively, Lk") is four units away from the correct Wr (respec-
tively, Lk) value. This configuration E is an illustration of the
fact that Fuller’s formulas [Eq. (4) or (6)] can be wrong even
for a configuration that does not comprise any antipodal
point, which is clearly illustrated in E of Fig. 3 where we see
that the tangent indicatrix is nowhere near the south pole.
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FIG. 2. (Color online) Configurations A, B, C, D, and E (see Fig. 4) obtained by numerical continuation [39]. Configurations B and D
each have an antipodal point to the reference curve of Fig. 1. These antipodal points are located at the middle point of the end loop of the

plectonemic structure.

We first comment on the size of the gap between the two
curves. A plectonemic DNA configuration I' that shows N,
(positive) crossings on a lateral projection has Wr(I') = +N,
[42]. If we continuously deform this configuration to the ref-
erence curve I'y of Fig. 1, left-hand side, by unwinding the
plectonemic region, an antipodal point arises each time the
tangent at the apex of the terminal loop (at the end of the
plectonemic region) is facing downward. This happens N,/2
times. As proved in [13] the presence of m=N,/2 antipodal
points leads to a discrepancy in Fuller’s formula of 2m,
|Wr—Wrf|<2m. Since 2m=N,=Wr, we have that 0= Wrf'
= 2Wr, which corresponds to an error of up to 100%. This is
apparent in Fig. 4 where the broken gray curve stays near the

TABLE 1. Writhe (first line) and link (third line) of the configu-
rations of Fig. 2, computed by continuation or use of the double
integral [Eq. (2)]. The second line is computed from Eq. (4) and the
last line is computed from Eq. (6). Formulas (4) and (6) are not
applicable on configurations B and D that each have an antipodal
point, and yield incorrect results for configurations C and E.

A B C D E
Wr 0.70 0.99 1.09 2.92 3.45
wirt 0.70 -0.91 -0.55
Lk 4.46 1.84 4.15 423 475
LKF 4.46 2.15 0.75

vertical axis while the (continuous) dark curve monotoni-
cally increases in the link.

Second we note that the discrepancy between the two
curves occurs shortly after self-contact has started in the fila-
ment, for n=1, see inset of Fig. 4. Plectonemic structure
may exist for a small number of turns n, provided the pulling
force is not too large. On the other hand, a large pulling force
does not rule out the occurrence of plectonemes, provided
that n is large enough. This leaves a small parameter regime
(large pulling force, low number of turns) where plec-
tonemes are absent. When the two sources of discrepancies
are considered (random walk antipodal points [14,15], and
plectonemic antipodal points) one sees that the use of Eq. (4)
[respectively, Eq. (6)] to compute the writhe (respectively,
the link) in a model for DNA under tensile and/or torsional
stress is to be avoided unless n=0 and the tensile force is
large.

IV. DISCUSSION AND CONCLUDING REMARKS

We summarize here few properties of the quantities
wrEW(T), Wrf (I, T'y) which do not always give the writhe of
a curve I'. The quantity WrSWV(I') is a function of the curve I'
only, whereas the quantity Wr"(I',I',) also depends on the
reference curve I'y. The quantity WV yields the correct
value for the writhe Wr of a closed curve as soon as the
curve is not self-intersecting. Along a continuous deforma-
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FIG. 3. (Color online) Tangent indicatrices of configurations A,
B, C, D, and E of Fig. 2. An antipodal point arises when the curve
passes through the south pole of the sphere, i.e., for configurations
B and D.

tion Iy with X € [0,1] (with I'; =T"), the quantity WrV(T',)
jumps by two units when the curve I, intersects itself (say at
N=1/2). Since the writhe Wr also jumps by two units, the
quantity WrV is equal to Wr before and after the self-
crossing event, i.e., WrV(I',)=Wr(I'y), V A # 1/2. Now the
quantity Wr" has no such discontinuity: Along a continuous
deformation where the curve self-intersects, the writhe Wr
will jump by two units, but the quantity W will stay con-
tinuous. This means that the quantity Wr' no longer yields
the correct value for the writhe after the self-crossing event,
Wit (Ty,Lo)=Wr(T,), ¥V A<1/2 but W7 ([, ,Ty) = Wr(T},),
¥V AN>1/2. The same is true for antipodal points. Along a
continuous deformation I'y with N €[0,1], the quantity
wrf(T,,T) jumps by two units when the curve I') has an
antipodal point (say at A=1/2) with regard to the reference
curve I'y. On the other hand, the writhe Wr stays continuous.
This means that the quantity Wr' no longer yields the correct
value for the writhe as soon as an antipodal event happens,
WrF(F)\,FO)=Wr(F)\), VY N<1/2 but WrF(F)\,Fo) * Wr(F)\),
¥ N>1/2. This is an important point and many authors seem
to believe that the quantity Wrf(I'y,T) only has problems
for configurations actually comprising an antipodal point
(A=1/2 in the above example). Therefore, the quantity
Wrf(I',T'y) may not be equal to the writhe Wr(I') even for
curves that do not comprise any antipodal point. This makes
use of Wrf(I',T)) uneasy, as one must first verify the ab-
sence of antipodal events in the entire continuous deforma-
tion [,—TI. On the contrary the use of Wr*V(I') is much
easier in the sense that one must only check that the actual
curve I' does not self-intersect. In this sense the quantities
WrEW(T) and Wrf(I',T)) do not suffer from the same pa-
thologies in the computation of the writhe, contrarily to what
is claimed in [43]. Another consequence is that, when sam-
pling DNA configurations to construct a statistical ensemble
and compute writhe averages and fluctuations, it is not
enough to introduce, as was done in [21], a small forbidden
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FIG. 4. The dark continuous curve is obtained from numerical
continuation [39] and the broken gray curve is obtained from Eq.
(6). Five configurations A, B, C, D, and E are selected and plotted
in Fig. 2 together with their tangent indicatrices in Fig. 3. The inset
shows a zoom around point B, the first antipodal point, where the
gray curve jumps by an amount of —2 units. From O to B the two
curves coincide.

region around the south pole of the unit sphere to ensure that
Wrf(I',T) yields a correct value. In fact many of these
sampled configurations, even free of antipodal points, are
configurations that suffer the same problems as the configu-
rations with A > 1/2 above: Wr¥(I",T'y) # Wr(T'), as numeri-
cally verified in [14,15].

Finally we want to point out the following property. We
saw that if a continuous deformation I", with X € [0,1] con-
tains an antipodal event, then Wrf'(I",T')) does not yield the
correct result after the antipodal event. Now one can argue
that yet another continuous deformation, free of antipodal
events and self-crossings, may exist (with the same initial
and final curves) and that in this case Wr'(I',T';) would yield
the correct result. This is not the case since, as we show in
Appendix B, as soon as a corrupted deformation exists in
between two curves I'y and T, then all continuous deforma-
tions are corrupted and Wr*(I",T'y) definitely yields an incor-
rect result. This means that the reference curve I'y cannot be
used. One is bound to find another reference curve or to use
the double integral WrV. It appears that an easy way to
verify the applicability of Fuller formula (3) between an ac-
tual curve and a reference curve is to consider any conve-
nient deformation that avoids antipodal events. This can al-
ways be done if one allows for self-crossings. Then formula
(3) is applicable if and only if the net sum of self-crossings is
Zero.

In the case of numerical computations, either dealing with
continuation of mechanical equilibria or statistical ensembles
of configurations, the writhe can be assessed in an accurate
way by using both the double integral (2) and Fuller integral
(4) in a cooperative way. The double integral being time
consuming to evaluate, one can in a first step discretize it
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FIG. 5. (Color online) Circularly closed supercoiled plasmid
corresponding to curve I'=sI', UT'UTl'cUT'p with 64=7/6 and
LA =51

[44] with a reduced number of elements so that it produces
an approximate result that only must be accurate up to *1
(one still must estimate how many elements are needed to
obtain such an accuracy [45]). Then in a second step, Fuller
integral is used to refine the result. Even if Fuller integral
may be off by several integers, its fractional part is correct.
In this scheme, the double integral yields the integer part of
the writhe and Fuller integral yields the fractional part of the
writhe. Moreover, in cases where one knows the correct
value of the writhe of a nearby configuration (e.g., a prede-
cessor configuration, one move away in a Monte Carlo
scheme) this value can be used as the approximate result of
the first step and one only must compute Fuller integral to
obtain a correct and accurate value of the writhe. (The usual
assumption that there is no self-crossing between the prede-
cessor and the actual configuration still holds.)

In conclusion we have shown, by producing counterex-
amples and explaining the underlying causes, that formulas
(4) and (6) cannot be used to compute the writhe and the link
of supercoiled DNA configurations encountered in magnetic
tweezer experiments.
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APPENDIX A: FULLER’S FORMULA IN A DETAILED
EXAMPLE

In this appendix we compare, for a given example curve,
the value computed from the double integral WV to the
value computed from the single integral Wrf. We start by
introducing the parametrization of a circularly closed super-
coiled plasmid (see Fig. 5). The parametrization is divided in
four parts, called A, B, C, and D. Part A is a right-handed
helix of radius unity, total arclength L,, and helical angle 6,
(with 0< 0, <7/2),

sin if4(s4) sin 64 cos ¥y(sy)
r
ra=|—-cos ¢,(sy) | andt,= f =| sin 0, sin 4(s4)
Sy COS 6y A cos 6,

(A1)

with s, €[0,L,] and ,(s,)=s,4 sin ,. We note
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def
Ayy=L, sin 0.

We have |t,(s,)|=1 for all 54, and consequently s, is the
arclength in part A. The end loop B connects the two helices
A and C,

sin Ay cos sz + cos Ay, sin 6, sin sz cos sp
rp=| —cos Ay, cos s+ sin Ay sin 6, sin sg cos s
Ly, cos 0, + [sin 64 —sin O5(sp) /(1 +20,/)

(A2)

with sz € [0, 7], and 6g(sg)=60,—sg(1+26,/ ). For this part
B, |tg(sg)| # 1. Part C is a right-handed helix of radius unity,
total arclength L-=L,, and helical angle O.=—m—-0,=7
— 6, mod 2,

= sin Ye(se)
re= cos Ye(se) and
L, cos 4+ sccos O¢c
sin O cos Pe(se)
sin ¢ sin P(s¢)
cos O¢
with sce€[0,Ls] and  ¢e(sc)=A¢,—scsin 6., We have

[tc(sc)|=1 for all s¢, and consequently s is the arclength in
part C. The end loop D closes the curve

tr=—=
¢ dSC

(A3)

sin @, sin s, cos sp

drp
rp= Cos Sp and tp=—"
A)
[sin O (sp) — sin 6,1/(1 + 26,/) P
(A4)

with s, [0, 7], and Op(sp)=—m—0O4+sp(1+26,/ ). For
this part D, |t;(sp)| # 1. We call T the union of the four parts:
I'=T,uUTl';UT'-UT,. The curve has continuous derivatives,
and finite jumps in its curvature.

1. Analytical calculation

The evaluation of the double integral of Eq. (2) in the
limit L, > 1 yields [46,11,37]
Ly—> L
wrWY(T) — - ;A sin 6, cos 6. (A5)
The minus sign is due to the fact that the helices A and C are
right handed.

We then compute Wrf'(I',T'), given by Eq. (3), using the
reference curve I'y of Fig. 6, top. The continuous deforma-
tion between I'y and I is then parametrized by 6, [0, 6,].
The reference curve of Fig. 6 (top) comes to mind naturally
and makes calculations easiest, but yields antipodal events
and hence an incorrect result, as we shall see now. The
writhe of the reference curve I is zero. Consequently we
only must compute the integral Fu(I",I'y) of Eq. (3) over the
four different parts A, B, C, and D. Clearly when the plasmid
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FIG. 6. (Color online) Two reference curves used to compute
Wit for the supercoiled plasmid of Fig. 5.

is long enough, i.e., when L, is large, the contribution to
Fu(I',T'y) of the helical parts A and C becomes dominant.
Indeed their contribution scales with L, while the contribu-
tion of the end loops B and D remains bounded. Conse-
quently we focus on the contributions of the helical parts A
and C, for large values of Ly, that is we look at the limit
FM(F,].—‘()) HFMA(F R F0)+Fuc(1—‘,ro) when LA*)OO [47] For
the helical part A, the corresponding tangent of the reference
curve is tAoz(O,O, 1). Fuller integral for part A is then

FuA=f XI’DA(I —cos 04)ds, =sin 0,(1 —cos 6,)L,.
0 @Sa
(A6)

For the helical part C, the corresponding tangent of the ref-
erence curve is tco=(0,0,—1). The Fuller integral for part C
is then

Le g4
Fuc=f —d—%(l + cos Op)ds

0 Sc
=sin (1 + cos Oc)L= Fuy,. (A7)
Neglecting the end loop contributions we arrive at
1
Wrf(I',Ty) = Wr(T) + Z_FM(F,FO) (A8)
T
1
:Z_(FMA+FMB+FMC+FMD) (A9)
v

1 L
=5 —(Fuy+ Fuc) = A sin 6,(1 - cos 6,). (A10)
o o

We first remark that Wrf(I',Tj) >0 although WrV(I') <0
[see Eq. (AS5)]. The discrepancy Wrf'(I") # WrSV(T') is due to
the fact that in the continuous deformation b, € [0, 6,] from
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the curve Iy of Fig. 6 top to the plasmid of Fig. 5, there are
antipodal events. These events happen each time the middle
point of the end loop B is pointing towards —e, and hence
becomes antipodal to the corresponding tangent in By. As O,
is increased, such an event happens once each time

def
Alr/,A)\:LA Sin BA)\

increases by an amount of 27r. In the entire deformation
there will be A,/ (27) antipodal events. Each event intro-
duces a shift between WrSV(I') and Wrf(I',T)) of 2, the
difference Wrf'(I',T"y) = WrY(I') should then be equal to
2A 4,/ (27)=(L4/ )sin 6, which can be verified by compar-
ing Eq. (A5) and (A10). A natural way to try to avoid the
presence of these antipodal points is to rotate the reference
curve, e.g., choose I'( of Fig. 6 bottom as reference curve. In
this case Fuy=—cos 6, sin 6, /5% sin ¢/ (1+sin 6, sin Y)dip
and Fuc=cos 6, sin GAfé‘/’A sin ¢/ (1—=sin 6, sin )di# Fuy.
Here again the sum Fuy+Fue dominates Fu(I',I')). Integra-
tion shows that Fuy+ Fuc=2L, sin 8,(1—cos 6,)+ (L, 6,),
with |9(L,, 8,)|<1-cos 6, which is not the correct result.
Antipodal events are in fact still present with this rotated
reference curve I'j and trying another rotation will not help,
as explained in Appendix B.

2. Numerical verification

In Fig. 5, a right-handed circularly closed plasmid is
drawn with 6,=m/6, L,=5m. The viewpoint selected to
draw the curve in Fig. 5 is such that three (negative) cross-
ings appear. For some other viewpoints, only two crossings
appear. The writhe being the average number of signed
crossings one sees from all possible viewpoints, it is rela-
tively easy to convince oneself that its value for the curve of
Fig. 5 lies in between —2 and —3. A numeric discretization
scheme [44] of the double integral of Eq. (2) with
600 points yields WreW(I)=-2.2049. A numerical
integration of  Fu(I',I'))=Fuy+Fug+Fuc+Fup, yields
Wrf (T, To)[=Wrf(I',T'j)]=-0.2050. The difference between
WrCW(T) and Wrf(I',T') is =2, which indicates that the net
number of signed antipodal events is —1, as shown in Appen-
dix B.

APPENDIX B: CLOSED CIRCUIT THEOREM

1. Antipodal points and self-crossings

In Fig. 7 we show a family of curves along a continuous
deformation. The deformation starts and ends with the same
curve: We have a closed circuit. The “stadium” shaped curve
I'\-o is continuously deformed through curves I'y, as N\ in-
creases from A=0 to A=1, to the supercoiled plasmid I';.
The plasmid is then deformed back to the “stadium” shaped
curve, through another path, as N\ increases from A=1 to A
=2. The values N\=0 and A=2 refer to the same curve, the
reference curve, which plays a special role. This reference
curve is chosen to be fairly simple, in particular Wr(I'y)=0.
All the curves in the continuous deformation share a param-
etrization with parameter s (not necessarily the arclength)
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Wr=0
Wrf=0

antipodal

point )

Wr=0
WrF

crossing

Wr = -2
Wrf=0

Wr not defined
Wrf=0

FIG. 7. A closed circuit with one antipodal point and one
self-crossing.

taking values from s=0 to s=L. We recall that an antipodal
point is a point on a curve I'y such that the tangent #,(s*) to
I’y at s=s" is aligned and in opposite direction with the tan-
gent £y(s*) to the reference curve I'y, i.e., an antipodal point
is such that #,(s*)-#,(s*)=—1. An antipodal point is always
defined with regard to a certain reference curve. Along a
continuous deformation there may be N values where the
curves I'y have antipodal points to I'j, and there may be \
values where the curves I, self-intersect. The closed circuit
theorem claims that in any closed circuit the (signed) number
of self-intersections is equal to the (signed) number of an-
tipodal points. For example, in the closed circuit of Fig. 7
there is one antipodal point and one self-crossing. This theo-
rem was proposed and proven in [43] for a particular case of
reference curve, a straight line. Here we give an outline of a
proof which is valid for more general reference curves: For-
mula (2) has a =2 discontinuity at each self-crossing event
encountered in the closed circuit, but no discontinuity during
antipodal events. On the contrary formula (3) has no discon-
tinuity during self-crossing events but a =2 discontinuity at
each antipodal event [13]. Formula (2) and (3) by definition
agree when applied to the reference curve, and furthermore
they may only differ by an even integer: WrY=Wrf mod 2.
If we now follow the closed circuit, each formula will have
its own discontinuities but both must eventually agree again
at the end of the circuit. It follows that the number of dis-
continuities (respectively, events) of one kind must be equal
to the number of discontinuities (respectively, events) of the
other kind.

2. No parallel between WrCW(I") and Wrf'(I",T',)

The quantity WrSV(I') is not defined on curves that are
self-intersecting, e.g., curve C in Fig. 7. The quantity
Wrf([',T) is not defined on curves I that have an antipodal
point to T'y, e.g., curve A in Fig. 7. These two properties,
once considered with the fact that in any closed circuit the
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number of configurations with self-crossing is equal to the
number of configurations with antipodal points, could lead
one to believe that some parallel exists between WrEW(I)
and Wrf(I',T'y). In fact in [43] it is proposed that, in the
computation of the mean writhe (or link) of a statistical en-
semble of curves, avoiding self-crossings was equivalent to
avoiding antipodal points. Moreover, it was inferred that for
such statistical ensemble of curves, Fuller’s formula, Eq. (3),
could be used safely provided that curves with antipodal
point(s) were discarded when generating the statistical en-
semble. We argue that this is not the case as Fuller’s formula
does not yield the right result for the (many) curves that have
no antipodal point: For example, curve B in Fig. 7. Again,
Fuller’s formula can only be used for a curve I'y if one can
devise a continuous deformation from I'y to Iy where none

of the curves I', with 0< A<\ has antipodal points. For
curve B in Fig. 7 this is not the case since the curve A has an
antipodal point. Accordingly Fuller’s formula does not yield
the correct value for the writhe of curve B, as explicitly
computed in Appendix A. In conclusion we stress that there
is no parallel between the two formulas Wr*W(I') and
Wrf(I',Ty): On the one hand Wr°W(I') yields the correct
value of the writhe of a curve as soon as the curve does not
self-intersect and on the other hand Wr(I",T) often yields
an incorrect value for the writhe of a curve even if this curve
has no antipodal point.

All that is exposed here for the curves in Fig. 7 is directly
applicable to the configurations of Fig. 2 and shows that the
writhe (respectively, the link) of the configurations with Z
<Zp in Fig. 4 is not given by Eq. (3) [respectively, Eq. (6)].

3. Impossibility to use the “stadium” shaped curve as
reference curve

Fuller’s theorem [12] states that as soon as there is a
continuous deformation between I' and I'y which is free of
antipodal points and self-crossings (we called “good” such a
deformation), Wr(I",T) yields the correct value for the
writhe of the closed curve I'. In Fig. 7 the deformation from
A=0 to A=1 is a “bad” deformation as it contains one an-
tipodal event. We then conclude that Wrf(I';,T) yields an
incorrect value. But one might say that another deformation
between I'; and I'j, with neither self-crossing nor antipodal
event, could exist. We show here that this is not the case.
Statement: No “good” deformation between I'; and I’ of
Fig. 7 exists.

Proof: Assume a “good” deformation exists. Then we can
build a closed circuit by joining this proposed deformation
and the (reversed) actual deformation \ €[0,1] in Fig. 7.
One would then have a closed circuit with one antipodal
point and no self-crossing, in contradiction with the result
established in [43]. Hence no such “good” deformation
exists. |

This means that as soon as one “bad” deformation exists
between a reference curve 'y and a curve I' the formula
Wrf(I',Ty) does not yield the correct result and no “good”
deformation can exist. A consequence of this
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is that rotating the reference curve of Appendix A (Fig. 6,
top) to introduce a new, and “good,” reference curve (e.g.,
Fig. 6, bottom) is hopeless. To show this we first introduce a
“bad” deformation between the rotated reference curve (e.g.,
Fig. 6, bottom) and the supercoiled plasmid of Fig. 5: We

PHYSICAL REVIEW E 78, 041912 (2008)

untangle the plasmid using a self-crossing, as in C of Fig. 7,
to obtain a “stadium” shaped curve which we subsequently
rotate to the (rotated) reference curve. The existence of this
“bad” deformation means that no “good” deformation can
exist.
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