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Elasticity and Electrostatics of Plectonemic DNA
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ABSTRACT We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our
model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for
DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the mole-
cule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on
configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other
one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in
the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the exper-
imental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are
found in good agreement with experimental data.
INTRODUCTION

Mechanics of the DNA molecule plays a key role in several

biological processes at the cellular level. In several cases, the

action of enzymes and proteins on DNA has been found to

depend on the mechanical stress present in the molecule. For

instance, the torsional moment in DNA controls the action of

topoisomerases or RNA-polymerases (1,2). In this context,

experiments where forces and torques are applied to a single

DNA molecule provide a remarkable opportunity to gain

insights into the mechanics of DNA. We are here interested

in extension-rotation experiments using either optical or

magnetic tweezers (3–8). These experimental setups are equiv-

alent from a mechanical perspective: a dsDNA molecule is

fixed at one end on a glass pane while the other end is attached

to a bead that pulls and twists it. In these experiments, traction

and rotation are controlled differently: for the rotation mode,

the twist angle is prescribed and the twist moment varies

accordingly; for the stretching mode, the extension can vary

although the pulling force is prescribed. DNA is under- or over-

wound and various molecule conformations are observed (6).

In this study, we focus on the overwinding of a dsDNA mole-

cule under large imposed rotations: the molecule coils around

itself in a helical way and forms plectonemes, as sketched in

Fig. 1. An important feature of the experimental loading curves

is the linear decrease of the vertical extension of the molecule

as a function of the imposed rotation. We have shown in

previous studies (9,10) that this behavior can be captured by

a purely elastic rod model based on Kirchhoff-Love elastic

rod theory. In this article, we extend this model and investigate

the combined effects of elasticity and electrostatics.

The response of plectonemic DNA under stress involves

various physical phenomena such as elastic deformations,
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thermal fluctuations, electrostatic interactions, and self-avoid-

ance. Although some of these effects have been considered in

the literature, a model addressing them together is still lack-

ing. Mechanical models of twisted rods in contact have

been introduced, from an analytical (11) or numerical (12)

perspective, but thermal fluctuations are not treated. A simpli-

fied analytical model, including some account for fluctuations

but omitting contact forces in the plectonemic region, is

proposed in Purohit (13). Statistical mechanics of plectone-

mic DNA has been approached, either analytically (14,15)

or numerically (16) using a Monte Carlo method. The validity

of some of these results was questioned in the literature

(17,18); in addition, long-range potentials raise convergence

issues that have not yet been overcome in Monte Carlo simu-

lations. A composite model, gathering results from torsionally

constrained polymer (19) and Monte Carlo simulations, has

recently been introduced (20). To date, this is the only model

that confronts its predictions against experimental data.

However it relies on an assumption of the supercoiling free

energy that is not always valid (21,22) and uses parameters

extracted from Monte Carlo simulations.

In this article, we present a self-contained analytical model

for the mechanical response of plectonemic DNA in exten-

sion-rotation experiments, which builds up on previous work

(9)—in this previous work, we extracted information from

experimental data; our new model is predictive. We focus on

the plectonemic regime at large imposed rotations. This corre-

sponds to the linear region in the experimental extension-rota-

tion curves. Our elastic model accounts for DNA-DNA inter-

actions in the plectonemic region and for thermal fluctuations

in the tail regions, where they are dominant. It captures the

main features of the experimental curves and allows quantita-

tive comparison to experiments with no adjustable parameter.

The article is organized as follows. In the next section, we

present our model and derive the equilibrium equations for

a DNA molecule comprising plectonemes, for a generic
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interaction potential. In DNA-DNA Interactions, we describe

two representative DNA-DNA interactions potentials avail-

able in the literature, which we then plug into our model.

The results are then compared with experimental data.

MODEL

Our description of the DNA molecule is based on a coarse-

grained representation (23). We introduce a continuum rod

model whose mechanical behavior is similar to that of the

molecule, and makes use of effective elastic and electrostatic

properties obtained by smoothing out the details at a scale of

several basepairs. We deal with an inextensible elastic rod

with circular cross section, bending rigidity K0, and twisting

rigidity K3. The loading geometry is that of Fig. 1, and

applies to the experiments where the lower end of the mole-

cule is clamped on a glass pane and the other end is subjected

to a tensile force Fext and rotated by n turns (i.e., an angle

2pn). The imposed rotation is achieved through a torsional

moment Mext. Note that the torsional moment has become

accessible to experimental measurements (7) only recently.

Geometry

The inextensible rod, of length ‘, is parameterized by its arc-

length s, the origin s ¼ 0 being at the lower end. The rod

centerline is described by a vector-valued function r(s) and

its unit tangent tðsÞ ¼def
dr=ds. The geometric curvature of

FIGURE 1 Sketch of the experimental setup: a dsDNA molecule is fixed

by one end to a glass pane while the other end is attached to a mechanical

system, symbolized by the shaded disk, which allows one to exert a pulling

force Fext and impose a rotation 2pn. For large numbers of turns the mole-

cule coils around itself in a helical way and forms plectonemes. The config-

uration of the molecule is made of two phases: the tails and the plectonemes.

The plectonemic phase is characterized by superhelical radius R and angle

a between the tangent t(s) and the helices axis. The dashed parts represent

the regions we neglect: the matching region between the tails and the

plectonemes and the end loop.
the rod is noted kðsÞ ¼def jdt=dsj. The twist is noted t(s): it

describes the relative rotation of neighboring cross sections

about the tangent r(s). Note that the twist is a different quan-

tity from the Frénet (geometric) torsion of space curves—the

latter is irrelevant in the context of elastic rods.

We consider the geometry of the double-stranded DNA

sketched in Fig. 1, which is relevant to the plectonemic

regime: two twisted, straight tails are separated by a plectone-

mic region composed of two identical and uniform helices.

Note that each helix is itself a piece of the double-stranded

DNA molecule. For a large number of turns n, the loop at

the end of the plectonemes and the curved region connecting

the tails to the plectonemes are much smaller than the tails and

the helical parts, and hence are neglected. Even though we

depict the plectonemic region as a single chunk for simplicity,

our model applies equally well to the case where the plecto-

nemes are distributed in several places along the molecule.

The elastic rod is then made up of two phases, one with linear

DNA and the other one with plectonemes. The plectonemic

structure in Fig. 1 represents the plectonemic phase collec-

tively. The molecule contour length spent in the tails phase

and in the plectonemes are noted ‘t and ‘p, respectively.

They sum up to the total length ‘ ¼ ‘p þ ‘t. The plectonemic

phase is characterized by its superhelical radius R and its

superhelical angle a, which are assumed to be uniform:

neither R nor a may depend on s, although they depend on

the loading. Curvature is zero in the straight tails, and takes

a constant value in the plectonemes, which can be evaluated

using simple geometry. The integrated squared curvature,

which enters into the bending energy, is then found to be (9)

Z ‘

0

k2ðsÞds ¼ sin4a

R2
‘p: (1)

Since the rod has a circular cross section, the twist t(s) is

uniform, dt/ds ¼ 0 (as shown, for instance, in (24)). The

internal torsional moment M(s) in the rod is related to the twist

t(s) by the constitutive law M(s)¼K3t(s). Therefore, its value

M(s) is constant along the rod, and equal to the torque Mext¼
K3t applied by the bead. In what follows, we study the equi-

librium of the rod and compute the parameters R, a, ‘p, and

t ¼ Mext/K3 as a function of the loading (pulling force Fext

and number of turns n) by minimizing the energy.

Variational formulation

We derive the energy of the system as a function of the

superhelical angle a and radius R, of the twist t and of the

plectonemic contour length ‘p. Equilibrium solutions and

their stability will be derived later on by minimizing this

energy. The experiments are performed under imposed end

rotation: energy minimization is performed under the

constraint that the number of turns n imposed on the bead

is equal to the link Lk of the DNA molecule. Neglecting

the writhe of the tails, the link can be written as (9,10)
Biophysical Journal 96(9) 3716–3723
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n ¼ Lk ¼ Tw þ Wr ¼ 1

2p

Z ‘

0

tds� c
sin 2a

4pR

¼ 1

2p

�
t‘� c

sin 2a

2R
‘p

�
; (2)

where c ¼ �1 stands for the chirality of the two helices of

the plectonemic phase.

The total energy of the system is the sum of three terms,

V ¼ Vel þ Vext þ Vint, where the first is the strain elastic

energy, the second is the potential energy associated with

the external load Fext, and the last term accounts for DNA-

DNA interactions between the two helices in the plectonemic

phase. Note that we introduce an internal energy and not

a free energy: no entropic terms or correcting factors coming

from statistical mechanics are considered here.

The strain elastic energy of the rod is defined as the sum of

a bending term, proportional to the integrated squared curva-

ture, and a stretching term, proportional to the integrated

squared twist:

Vel ¼
K0

2

Z ‘

0

k2ds þ K3

2

Z ‘

0

t2ds ¼ K0

2

sin4a

R2
‘p þ

K3

2
t2‘:

(3)

This energy captures the elastic behavior of the rod in

response to applied forces and moments; it is zero in the

natural (straight, twistless) configuration of the rod. The

pulling force is described using a potential energy:

Vext ¼ �Fextðzð‘Þ � zð0ÞÞ ¼ �FextDz: (4)

Here Dz ¼defðzð‘Þ � zð0ÞÞ is the extension of the molecule

along the direction z of application of the pulling force. Since

we assume the tails to be straight and neglect the curved

region connecting the tails and the plectonemes, in the

absence of thermal fluctuations, the vertical extension of

the filament reads Dz ¼ ‘t ¼ ‘ – ‘p. We can then rewrite

Vext ¼ �Fext

�
‘� ‘p

�
: (5)

There is no need to consider any potential energy associated

with the rotation of the end attached to the bead since the

energy will be minimized for a given rotation of the bead

using the constraint on the link.

In previous work (9) we solved this elastic rod model by

assuming the superhelical radius to be prescribed and

extracted its value from experimental data. Here, we take

a more principled approach and complement the above

elastic equations with a proper model for DNA-DNA inter-

actions in the plectonemes; in particular, this makes it

possible to predict the superhelical radius. These interactions

are dominated by different physical effects depending on the

separation distance between the two DNA superhelices. In

the range of separations relevant to extension-rotation exper-

iments, of approximately several nanometers, electrostatic

effects dominate. In our model, interactions are limited to
Biophysical Journal 96(9) 3716–3723
the plectonemic phase and are described by an energy contri-

bution of the form

Vint ¼ ‘pUðR;aÞ: (6)

This energy depends on the superhelical parameters R and a,

and is proportional to the plectonemic contour length ‘p, and

assumed valid when ‘p is much larger than R.

The total energy of the system is defined as the sum of the

elastic, potential, and interaction contributions:

V
�
R;a; ‘p; t

�
¼ K0

2

sin4a

R2
‘p þ

K3

2
t2‘� Fext

�
‘� ‘p

�

þ ‘pUðR;aÞ: (7)

It will be minimized subjected to the end rotation constraint

given by Eq. 2. This constraint provides an affine relation

between n and ‘p and so can be used to eliminate the quantity

‘p in favor of n. Dropping the constant term (�Fext‘) in the

energy, we obtain

Vða;R; tÞ ¼ K3

2
t2‘ þ ð2pn� t‘Þ

�
�
�2c

sin2a

�
K0

2

sin4a

R
þ RFext þ RUðR;aÞ

��
:

(8)

Equilibrium equations

The total energy of the system, given by Eq. 8, takes into

account the fixed end rotation since Eq. 2 has been used to

eliminate ‘p. The equilibria of the rod are then directly given

by minimization of V(a, R, t) with respect to its three argu-

ments. Canceling the first variation of V (that is, writing
vV
va
¼ 0; vV

vR ¼ 0, and vV
vt
¼ 0), we obtain

2K0

cosa sin3a

R2
þ vUðR;aÞ

va
� 2

tan 2a

�
�

K0

2

sin4a

R2
þ Fext þ UðR;aÞ

�
¼ 0;

(9a)

Fext �
K0

2R2
sin4a þ R

vUðR;aÞ
vR

þ UðR;aÞ ¼ 0; (9b)

Mext þ
2c

sin 2a

�
K0

2

sin4a

R
þ RFext þ RUðR;aÞ

�
¼ 0:

(9c)

In the first term of the last equation, we have eliminated t in

favor of Mext using the constitutive relation Mext ¼ K3t, and

thereby removed the twist rigidity from the equations (its

value is not known with good accuracy).

The set of three nonlinear expressions in Eq. 9 must be

solved for the three unknown values of the parameters a, R,

and Mext at equilibrium, given the value of the external force

Fext. This requires an interaction potential U(R, a) to be
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specified, as is done in the next section. The set of expressions

in Eq. 9 extends the model of Clauvelin et al. (9), valid for

nonpenetrable tubes, to filaments in long-range interaction

(such as electrostatic interactions).

Note that the expressions in Eq. 9 do not depend on the

number of turns n. As a result, their solution a, R, and

Mext do not depend on n either. The equations describe the

equilibrium of two phases; increasing n transfers some arc

length from the tail phase to the plectonemic phase, without

changing their properties. This invariance with respect to n
explains the presence of a linear region in the experimental

curves, as shown in the next section.

The term in parentheses in Eq. 9c is always positive. This

shows that the sign of the chirality c¼�1 is opposite to that

of n: rotating the bead in the positive direction n > 0, for

instance, requires a positive torque Mext, hence a negative

c ¼ �1 by this equation (left-handed superhelices).

Vertical extension of the filament

In extension-rotation experiments the vertical extension of the

filament is recorded while the number of turns is increased.

The formula Dz ¼ ‘t, valid for straight tails, does not holds

in the presence of thermal fluctuations. We account for these

fluctuations by introducing a rescaled quantity,

Dzth ¼ rwlcDz; (10)

where the correcting factor rwlc is given by the wormlike

chain theory (25) as the solution of

FextK0

ðkBTÞ2
¼ rwlc þ

1

4

1

ð1� rwlcÞ
2
� 1

4
: (11)

Here kB is the Boltzmann constant and T the absolute temper-

ature. Note that this correcting factor rwlc is not included in

the potential energy Vext in Eq. 5.

To write Dzth as a function of the number of turns n, we use

the equality Dz ¼ ‘t ¼ ‘ – ‘p in the right-hand side of Eq. 10,

and use for ‘p the expression obtained by solving Eq. 2:

Dzth ¼
�

1� c
2R

sin 2a
t

�
rwlc‘ þ crwlc

4pR

sin 2a
n: (12)

Recall that neither a, R, nor t ¼ Mext/K3 depend on n; as

a result, the extension Dzth depends linearly on the number

of turns n in the above equation. This linear dependence

is a well-known feature of the experimental curves.

DNA-DNA INTERACTIONS

In the variational formulation exposed in the previous section,

we have introduced an energy U(R, a) describing DNA-DNA

interactions. At moderate distances DNA-DNA interactions

in solution mainly originate from electrostatic effects between

the charged sites of the two molecules (phosphate groups) and

between these charged sites and the counter- and coions
present in the solution. The theoretical analysis of the long-

and short-range interactions between two polyions in solution

has been the subject of numerous studies (26,27), and there is

currently a regain of interest in this question due to recent

progress in single-molecule experiments (see (28) for

a review). In this model the interaction energy U(R, a) is spec-

ified independently of the mechanical behavior of the mole-

cule. As a result, we can combine the elastic description of

the previous sections with different theories for DNA-DNA

interactions. In the following, we illustrate this approach

using two representative interaction energies U(a, R) that

can be found in the literature.

We favor interaction energies U(R, a) that can be expressed

in closed analytical form and have no adjustable parameters;

this enables us to make predictions and compare them to

experiments, rather than to fit existing data. In the literature

on DNA-DNA interactions (28–30), we picked two well-

established models satisfying those requirements. The first

one, UPB(R, a), derives from the Poisson-Boltzmann equation

and was obtained by Ubbink and Odijk (31); the second one,

UCC(R, a), is based on the counterion condensation theory

(32) and was derived by Ray and Manning (33). These two

models address the electrostatics of DNA in solution but their

treatment of the interactions between DNA and the ions in

solution differ substantially.

Poisson-Boltzmann model

In their study of supercoiled DNA plasmids (31), Ubbink and

Odijk derive an analytical expression for the electrostatic

interaction energy between two interwound DNA molecules.

Their work is based on the Poisson-Boltzmann framework

(PB); in the computation of the electrostatic repulsion of the

two charged molecules, the presence of the counterions and

coions in solution is considered. It has been shown in Stigter

(34) that the nonlinear PB problem could be simplified to

a linear one by considering screened (Debye-Hückel-like)

potentials and renormalized linear charge densities n. The

value of the effective charge n is obtained by matching the

solution of the nonlinear PB equation with the solution of

the linear PB equation in the far-field region. However, there

is no consensus on the exact value of this effective charge and

the various numerical (35,36) or analytical (37,38) studies

yield scattered results.

Ubbink and Odijk (31) compute the electrostatic interac-

tion energy per unit length as

UPBðR;aÞ ¼
1

2
kBTn2lB

ffiffiffiffiffiffiffiffi
p

kDR

r
e�ð2kDRÞ4ðaÞ; (13a)

where the angular dependence reads

4ðaÞ ¼ 1 þ 0:83 tan2a þ 0:86 tan4a: (13b)

Here, kB is the Boltzmann constant, T the temperature in

Kelvin, n the effective linear charge density (in m�1), lB the
Biophysical Journal 96(9) 3716–3723
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Bjerrum length, and kD
�1 the Debye length. For a typical

temperature T ¼ 300 K, we have lB ¼ 0.7 nm, and for

a monovalent salt concentration c¼ 10 mM, the Debye length

is kD
�1 ¼ 3.07 nm. The value of the effective charge

n depends on salt concentration. Its value for a monovalent

salt concentration c ¼ 10 mM is taken as n ¼ 1.97 nm�1,

according to Ubbink and Odijk (31).

The calculation of the interaction energy can be simplified

by taking a ¼ 0, hence 4(a) ¼ 4(0) ¼ 1, which amounts to

considering two straight and parallel molecules; this approx-

imation has been used, for instance, in Marko and Siggia (35).

In the rest of the article, UyPB will refer to the potential obtained

under this approximation, namely UyPBðRÞ ¼ UPBðR; 0Þ.

Ray and Manning model

The interaction energy derived by Ray and Manning (33) is

based on the counterions condensation theory (32). The

authors examine the interaction of two straight and parallel

DNA molecules with charged sites in solution (the depen-

dence on the superhelical angle a is neglected). The main

point of the theory is to consider that part of the DNA bare

charge is neutralized by the condensation of the counterions

around the molecule. The energy is the sum of three terms:

interactions between pairs of charged sites belonging to the

same DNA segment; interactions between pairs of charged

sides located on opposite segments; and adsorption energy

of the counterions onto the molecule. Three cases are consid-

ered, namely short, intermediate, and long interaxial distances

between the molecules. The short distance case, below the

crystallographic radius of DNA, is not relevant to our anal-

ysis. The intermediate case introduces an adjustable param-

eter, which we try to avoid. Consequently we only use the

long-range case, relevant for interdistances larger than the

Debye length; in our notations it writes

UCCðRÞ ¼
kBT

2b

�
2� 1

x

�
B0

Kð2kDRÞ; (14)

where b¼ 0.17 nm is the charge spacing parameter of the DNA

molecule, and x¼ lB/b is the dimensionless charge density of

DNA (x¼ 4.11 at T¼ 300 K). The function B0
K(x) is the modi-

fied Bessel function of the second kind and order 0.

RESULTS

We solve the expressions in Eq. 9 for the superhelical radius

R, angle a, and external torque Mext, using one of the interac-

tion energies UPB, UyPB, or UCC. These equations are nonlinear

and their roots are found numerically using a Newton-Raph-

son algorithm. We present the results for the superhelical vari-

ables R and a in Fig. 2, for the torsional moment Mext in Fig. 3.

We also plot derived quantities, to be defined later, such as the

slope q of the extension-rotation curves in Fig. 4, and the

thermal buckling threshold n+ later in Fig. 6. We compare

our results with the model of Moroz and Nelson (20) and
Biophysical Journal 96(9) 3716–3723
with experimental data. To ease comparison with our previous

work (9), we use the same set of experimental data. These data

were obtained on a 48-kbp l-phage DNA molecule in

a 10 mM phosphate buffer.

With the interaction energies used in this article, we find

that the nonlinear equations have two roots below a threshold

value of the force, and no root above. For a salt concentration

c ¼ 10 mM, this threshold value of the force is 4.7 pN using

UPB, 4.9 pN using UyPB, and 6.9 pN using UCC; all these

values are above the maximum pulling force applied in

typical experiments. We have studied the stability of the

two solutions corresponding to the two roots of our equations

when the force is below threshold, and found that that with

FIGURE 2 Computed values of the superhelical radius R and angle a

(inset) as functions of the pulling force Fext, using one of the interaction

energies UPB, UyPB, or UCC. These plots are obtained by solving the equilib-

rium expressions in Eq. 9 for each value of the pulling force Fext. The func-

tion a(Fext) decreases for all interaction energies at large enough forces—

with the energy UCC, this decrease occurs beyond the domain of forces

shown in the figure.

FIGURE 3 Computed values of the torsional moment in the molecule

Mext as a function of the pulling force Fext. We compare the results of this

model using the interaction potentials UPB, UyPB or UCC, to predictions in

Marko (20), namely Marko’s Eq. 17 with A ¼ 50 nm, C ¼ 95 nm, and

P ¼ 28 nm, and Strick et al. (42), and results from our previous work (9).
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lower a, R is unstable; the other one is stable. We study and

plot the latter in the following.

When the force reaches its threshold value, an instability

occurs and the stable solution disappears by merging with

the unstable one. For larger forces, no stable solution exists

and the two helical parts collapse. This may be related to the

observation of tightly supercoiled configurations in Bednar

et al. (39). The collapse arises when the electrostatic interaction

is no longer strong enough to sustain the applied force; the

description of collapsed solutions would require an account

of hard-core repulsion and other short-range forces.

Superhelical geometry

The quantities R and a are plotted in Fig. 2 as a function of the

applied force Fext. The curves R(Fext) and a(Fext) obtained for

the different interaction energies UPB, UyPB, or UCC are close

over the entire range of forces. As will be confirmed later,

the predictions based on the different interaction models are

all very similar.

As expected, the superhelical radius decreases with the

pulling force; note that it becomes less than the Debye length

for forces larger than Fext z 2.5 pN. Variation of the super-

coiling radius with the applied pulling force invalidates the

hard-core approximation of electrostatics interactions, where

a constant supercoiling radius is used. Nevertheless, this hard-

core approximation is used in some DNA chain models

(16,36). The superhelical angle a is known to be a control

parameter in the action of the topoisomerases (40). It is plotted

in the inset of Fig. 2. In contrast with models of elastic tubes in

contact (41), where a increases monotonically and reaches the

value p/4 asymptotically at large forces, we find here that it

reaches a maximum well below p/4 and then decreases, due

to long-range forces. This decrease has already been observed

FIGURE 4 Computed values of the slope of the plectonemic region q as

a function of the pulling force Fext. Experimental points (circles) are ex-

tracted from the experimental hat curves shown in Fig. 2 of Clauvelin

et al. (9). The thin purple curve is obtained from the theory in Marko

(20), using the same parameter values as in Fig. 3. The thin dashed curve

is drawn using a hard-core potential with effective radius R ¼ 7.85 nm (36).
in Clauvelin et al. (9), where the value of the superhelical

angle was extracted from experimental data.

Torsional moment

Recall that the torque Mext ¼ K3t applied by the bead to

impose a rotation 2pn does not depend on the number of

turns n, see Eq. 9. This quantity is plotted in Fig. 3 as a func-

tion of the pulling force Fext. We compare our results 1), with

Eq. 17 in Marko (20); 2), with a formula Mext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0Fext

p

obtained when approximating the plectonemes by a chain

of circles (19,42); and 3), with our previous study (9) based

on hard-wall interactions. Even though the literature

(9,20,42) does not address long-range interactions, all the

curves reveal a similar behavior: the moment increases

monotonically with the applied force, with a decreasing

slope. However, our results show that long-range interac-

tions significantly increase the value of the moment required

to achieve a given rotation.

Extension-rotation curve

Our model predicts that the derivative of the vertical extension

Dzth with respect to n is constant, i.e., that the extension-rota-

tion curve is linear in the regime of large rotations that we

consider. This linear regime is well-known experimentally

(see Fig. 5). From Eq. 12, the slope q is given by

q ¼ dDzth

dn
¼ c

4pR

sin 2a
rwlc: (15)

Its value is computed using the values of a and R obtained

earlier by solving the equilibrium equations. In Fig. 4, we

plot the slope q as a function of the force, for the three inter-

action energies. For comparison, we also plot 1), the slope

predicted by Marko’s model (20); 2), the slope obtained

with replacing the electrostatic interaction energy U(R, a)

FIGURE 5 Experimental curve showing the vertical extension Dzexp of

a l-phage DNA 48-kbp molecule as a function of the imposed number of

turns n, at constant force Fext ¼ 0.44 pN. The quantity Dzth(n) defined in

Eq. 12 is our prediction for the linear part of the experimental curve. The

number of turns at the transition n+ and the slope q are also shown.
Biophysical Journal 96(9) 3716–3723
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by a hard-core potential with effective radius R ¼ 7.85 nm

(36); and 3), the slope read off directly from experimental

extension-rotation curves (these experimental data were

kindly provided by V. Croquette and have appeared in

Fig. 2 of our previous study (9) and in other literature (10,20)).

Our model shows good agreement with the experimental

data, which are reproduced in a more consistent manner,

especially at low forces, than in Marko (20). In this refer-

ence, hard-wall interactions are used with a supercoiling

radius independent of the pulling force; this may be the cause

of the poorer agreement with experimental data at low forces,

when long-range interactions dominate.

A typical extension-rotation curve comprises two regions:

a linear region for large n, which we have been discussing so

far, and a parabolic region at low n studied in Moroz and

Nelson (43). The central region is dominated by thermal

effects and will not be addressed here. However, we can

characterize the transition between the two regions. The

number n+ of turns at which the transition occurs is defined

using the linear extrapolations shown in Fig. 5. This n+

corresponds to the onset of the plectonemic regime. In our

model, it is computed by setting ‘p ¼ 0 in Eq. 2; this yields

n+ ¼ t‘/(2p). Recall that the value of t ¼ Mext/K3 is

computed from the equilibrium expressions in Eq. 9. In

Fig. 6, we plot the value of n+ as a function of the force

and compare to the values extracted from the experimental

curve as well as the value from the theory in Marko (20).

DISCUSSION AND CONCLUSION

In the previous section, we found that the solutions disappear

above a threshold value of the pulling force. This can be inter-

preted as the fact that the physical solution involves a very

short interdistance, although we have retained the long-

distance part of Ray and Manning’s potential only. This can

FIGURE 6 Computed values of the number of turns n+ at the transition as

a function of the pulling force Fext, using K3 ¼ 95 nm kBT. Experimental

points (circles) are extracted from the curves shown in Fig. 2 of Clauvelin

et al. (9). The thin purple curve is obtained from the theory in Marko

(20), using the same parameter values as in Fig. 3.
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be cured, in principle, by restoring a complete expression of

the potential given in Ray and Manning (33). (Except in the

long-distance part used here, Ray and Manning’s potential

involves physical quantities that are unknown.) In its complete

form, the potential is nonmonotonous and several interdistan-

ces are possible for a given value of the control parameter.

This feature indicates the possibility of a transition from a clas-

sical supercoiled state to a tight supercoiled state. A possibly

related transition has been reported in experiments (39). When

used in conjunction with the complete Ray and Manning’s

potential, our model could provide a bridge between the

analytical expression for the potential and the experiments,

and provide a quantitative account of the transition.

Some models for DNA supercoiling replace electrostatics

interactions with hard-core interactions between tubes with

effective radius; see, e.g., Vologodskii and Marko (16).

This effective radius is salt-dependent and is tabulated before

supercoiling computations. We have used such a hard-core

potential, using the value R ¼ 7.85 nm (36), and found

that the predicted slope q was in complete disagreement

with experimental data (see Fig. 4).

We have presented an analytical model for DNA supercoil-

ing in extension-rotation experiments. It is based on an elastic

description of DNA deformations, carefully accounts for

DNA-DNA interactions in the plectonemic region, and makes

use of a valid formula for the link. DNA interactions are

modeled using long-range forces computed from potentials

available from the literature. Their description is compart-

mentalized from the rest of the theory, which makes it possible

to test different interaction energies. We have used our model

in combination with two interaction energies. These energies

come from different physical contexts and are widely used in

the literature. Using either one, we find good agreement with

experimental data without adjusting any parameter. This

suggests 1), that using yet another energy for electrostatic

interactions would yield comparable results; and 2), that

DNA tertiary structures are determined to a large extent by

the elasticity of the molecule and do not depend heavily on

the details of the interaction model. The extension-rotation

experiments that are now routinely performed can then be

viewed as a way to probe the elastic properties of the mole-

cule. Given that the mechanics of DNA under combined twist

and tension can be captured by a relatively simple analytical

model, an interesting direction for future research is to extend

this model to the mechanical action of proteins, such as RecA,

for example, on supercoiled DNA.

S.N. thanks Armand Ajdari (Centre National de la Recherche Scientifique)

for starting discussions on the subject of electrostatic repulsion in DNA

supercoiling.
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