
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Neukirch S, Audoly B. 2021 A
convenient formulation of Sadowsky’s model
for elastic ribbons. Proc. R. Soc. A 477:
20210548.
https://doi.org/10.1098/rspa.2021.0548

Received: 6 July 2021
Accepted: 20 October 2021

Subject Areas:
mechanical engineering, structural
engineering, applied mathematics

Keywords:
boundary value problems, elastic plates,
twisted rods

Author for correspondence:
Sébastien Neukirch
e-mail: sebastien.neukirch@sorbonne-
universite.fr

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
c.5705318.

A convenient formulation of
Sadowsky’s model for elastic
ribbons
Sébastien Neukirch1 and Basile Audoly2

1D’Alembert Institute for Mechanics, CNRS and Sorbonne Université,
Paris UMR 7190, France
2Laboratoire de Mécanique des Solides, CNRS, Institut
Polytechnique de Paris, Palaiseau 91120, France

Elastic ribbons are elastic structures whose length-to-
width and width-to-thickness aspect ratios are both
large. Sadowsky proposed a one-dimensional model
for ribbons featuring a nonlinear constitutive relation
for bending and twisting: it brings in both rich
behaviours and numerical difficulties. By discarding
non-physical solutions to this constitutive relation,
we show that it can be inverted; this simplifies
the system of differential equations governing the
equilibrium of ribbons. Based on the inverted form,
we propose a natural regularization of the constitutive
law that eases the treatment of singularities often
encountered in ribbons. We illustrate the approach
with the classical problem of the equilibrium of a
Möbius ribbon, and compare our findings with the
predictions of the Wunderlich model. Overall, our
approach provides a simple method for simulating the
statics and the dynamics of elastic ribbons.

1. Introduction
Analysing the equilibrium of elastic ribbons is somewhat
simpler than that of elastic plates, but ribbons inherit
some of the difficulties present in elastic plates theory.
One of these difficulties is the stress concentration caused
by the near-inextensibility of the plate mid-surface, as
found for instance in the Möbius configuration of an
elastic ribbon.

In 1858, A. F. Möbius introduced its celebrated one-
sided surface: a ribbon twisted and closed in such
a way that its edge is a single curve. Although the
Möbius strip was originally introduced as a topological
curiosity, it has given rise to a challenge in elasticity
theory: What is the equilibrium shape of a Möbius
band made out of an elastic material? The energy

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. A ribbon with width w, thickness h is seen as a one-dimensional elastic structure with centre-line r(s) and Cosserat
local frame {d1(s),d2(s),d3(s)}, parametrized with the arc-length s. (Online version in colour.)

functional governing the equilibrium of such an elastic ribbon, in the narrow limit, has been
introduced in [1], but it is only relatively recently that tractable equations for the minimization
of the energy have been derived, and solved numerically, in [2]. This work initiated a surge of
interest from the applied mathematics community, see for example the book edited in [3].

Two main difficulties arise when solving the equilibrium equations for ribbons numerically:
(i) they are differential algebraic equations (DAEs) and (ii) singularities are often present in their
solution. In general, DAE systems are more difficult to solve than ordinary differential equations
(ODEs) and numerical integrators are less commonly found, and typically less optimized.
Singularities in the solutions are encountered in the Möbius problem as well as in other
geometries: they typically require the integration interval to be arranged (and sometimes broken
down) manually in such a way that the singularities lie at their endpoints, as done in past analyses
of the Möbius problem [4,5].

In this paper, we address both these problems and propose a variant of the Sadowsky model
for thin elastic ribbons that takes the form of an ODE and is regularized by a small parameter.

2. Equilibrium of elastic ribbons (Sadowsky’s model)
We consider an elastic structure having length L, width w and thickness h with L � w � h; see
figure 1. It is made of a linearly elastic, isotropic material with Young’s modulus E and Poisson’s
ratio ν. Its deformations are computed with a one-dimensional model based on the plate bending
rigidity D = E h3/(12(1 − ν2)). We work in the special set of units where D w = 1 and L = 1. The
extension to a generic set of units involves restoring the appropriate factors D w and L in our
formulas, as found by a standard scaling analysis.

The Sadowsky model for thin, inextensible ribbons is a one-dimensional theory that is
formulated as follows [1,2,6]. We denote as s the arc-length in reference configuration; it is
used as a Lagrangian coordinate that follows material cross sections. In actual configuration, the
main unknowns are the centre-line r(s) of the structure and a set of three orthonormal vectors
{d1(s), d2(s), d3(s)} that capture how the cross section twists about the centre-line. The combination
of a centre-line and a set of directors defines a so-called Cosserat rod model. Effectively, the
one-dimensional model is such that the centre-line is inextensible and unshearable, implying the
following kinematic constraint

r′(s) = d3(s). (2.1)
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The evolution of the Cosserat orthonormal frame as s is varied and is given by the Darboux
equation

d′
i(s) = u(s) × di(s) with 1 ≤ i ≤ 3, (2.2)

with u(s) as the Darboux vector and f ′(s) = df/ds as the derivative of a generic function f (s) along
the centre-line. Here, the existence and unicity of u(s) follows from the orthonormal character
of the frame of directors di(s) for any s. We work with the components {u1(s), u2(s), u3(s)} of the
Darboux vector in the directors frame,

ui(s) = u(s) · di(s).

These ui(s) are the strain measures of the rod model, for bending (i = 1, 2) and twisting (i = 3).
Let us now turn to the analysis of stress in the ribbon. We denote as n(s) the force arising

from the internal stress transmitted across an imaginary cut made along the cross section with
coordinate s and m(s) the resultant moment: n(s) and m(s) are the internal force and moment,
respectively. We limit attention to ribbons made of a uniform elastic material, with uniform cross-
section geometry in the longitudinal direction. The constitutive relations connecting the bending
and twisting strains ui(s) with the components mi(s) = m(s) · di(s) of the internal moment in the
directors basis write

u1(s) = 0 (2.3)

m2(s) = u2

(
1 − u4

3

u4
2

)
(2.4)

and m3(s) = 2 u3

(
1 + u2

3

u2
2

)
. (2.5)

Note that these constitutive relations are nonlinear, and that the stress m1 is absent from the
first one: equation (2.3) is a constitutive constraint expressing the fact that the elastic modulus
associated with bending the ribbon in its own plane is much larger than for the other bending
mode.

The set of equations governing the equilibrium of the ribbon is complemented with the
Kirchhoff equations for the balance of force and moment,

n′(s) = 0 (2.6)

and

m′(s) + r′(s) × n(s) = 0. (2.7)

We do not consider any distributed force or moment, such as gravity or contact forces.
The equilibrium of the ribbon can be found by solving equations (2.1)–(2.7) with the

appropriate conditions on the boundaries s = 0 and s = 1.
The equilibrium problems (2.1)–(2.7) can be derived variationally from the constitutive

constraint u1(s) = 0 in (2.3) and from the strain energy functional

WS(u2, u3) = 1
2

(
u2

2 + 2 u2
3 + u4

3

u2
2

)
, (2.8)

which is such that the constitutive relations (2.4) and (2.5) can be rewritten as mi(s) =
(∂WS/∂ui)(u2(s), u3(s)) for i = 2, 3. This variational derivation first appeared in [2]; a presentation
fully in line with the theory of nonlinear elastic rods was later proposed in [6].

The classical Kirchhoff rod model is recovered by changing the constitutive relations (2.3)–
(2.5) to mi(s) = Bi ui(s), for 1 ≤ i ≤ 3. Contrary to the case of ribbons, these constitutive relations are
linear. The elastic constants Bi are the bending (1 ≤ i ≤ 2) and twisting rigidities (i = 3) of the rod.
A rod with Young’s modulus E, shear modulus G = E/(2(1 + ν)) and a rectangular cross section
(width w, thickness h) has B1 = E h w3/12, B2 = E h3 w/12 and B3 = G h3 w/3, in the limit w � h.
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Figure 2. Inverting Sadowsky’s constitutive relations. The surfaces are generated as parametric plots using the bending and
twisting strain (u2, u3) as parameters. The bending and twisting moments (m2,m3) on the horizontal axes are calculated from
the constitutive relation (2.4) and (2.5). The bending and twisting strains (u2, u3) are used on either one of the vertical axes. The
surface is coloured in green if |η| < 1 and in orange if |η| > 1, withη = u3/u2. The presence of two sheets stacked vertically
shows that it is impossible to invert the constitutive law as u2 = g−1

2 (m2,m3) and u3 = g−1
3 (m2,m3) in general. However, this

inversion becomes possible if the condition |η| < 1 is enforced, as shown by the layout of the green sections of the sheets.
(Online version in colour.)

3. Equilibrium as a differential algebraic system
The equations for the statics of ribbons derived in §2 form a nonlinear boundary-value problem
with the arc-length s as independent variable, i.e. a set of differential equations with boundary
conditions at both endpoints s = 0 and s = 1.

Specifically, equations (2.1)–(2.7) can be written as a differential system for six unknown
vectors θ1 = (r, d1, d2, d3, n, m) plus two unknown scalars θ2 = (u2, u3) as⎛

⎜⎜⎜⎝
r
di
n
m

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

d3
(u2 d2 + u3 d3) × di

0
n × d3

⎞
⎟⎟⎟⎠⇐⇒ θ ′

1 = f (θ1, θ2) (3.1a)

and

0 =

⎛
⎜⎜⎝

∂WS

∂u2
(u2, u3) − m · d2

∂WS

∂u3
(u2, u3) − m · d3

⎞
⎟⎟⎠⇐⇒ 0 = g(θ1, θ2). (3.1b)

Due to the presence of the constraint g(θ1, θ2) = 0, this problem is known as a DAE problem;
the component form of this DAE is spelled out in appendix A.

A difficulty is that the constitutive relation g(θ1, θ2) = 0 is nonlinear and cannot be inverted
as θ2 = g−1(θ1) ⇔ u2 = g−1

2 (m2, m3) and u3 = g−1
3 (m2, m3). This prevents from rewriting (3.1) as

an ODE θ ′
1 = f (θ1, g−1(θ1)). By contrast, for classical elastic rods (Kirchhoff rod model), the

linear constitutive relation g(θ1, θ2) = 0 can be inverted as u2 = g−1
2 (m2, m3) := m2/B2 and u3 =

g−1
3 (m2, m3) := m3/B3, implying that equilibrium can be rewritten as an ODE with 3 × 6 = 18

unknowns.
For thin ribbons, the impossibility to invert the constitutive relation as u2 = g−1

2 (m2, m3) and
u3 = g−1

3 (m2, m3) is demonstrated graphically in figure 2. This is confirmed by the calculation from
appendix B, where an attempt to invert the constitutive relations leads to multi-valued ‘functions’
g−1

2 (m2, m3) and g−1
3 (m2, m3), and therefore fails.
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Figure 3. Sadowsky’s energy surfaceWS(u2, u3) from equation (2.8). The energy surface is made up of two symmetric wells.
Level sets are shown in black, and the ‘forbidden’ region corresponding to |η| = |u3/u2| > 1 is shaded in orange (see §4). (a)
Three-dimensional plot. (b) Contour plot, with a level set of the convexified functional from [10] shown in dashed blue. (Online
version in colour.)

Numerically, the standard method for dealing with the DAE system (3.1) is to augment the
differential equation θ ′

1 = f (θ1, θ2) with the differentiated form of the constraint g = 0, namely
(∂g/∂θ2) · θ ′

2 = −(∂g/∂θ1) · θ ′
1, resulting in an ODE with 3 × 6 + 2 = 20 unknowns. This is the

approach chosen by several authors, see for example [7–9]. The drawback is that the resulting
equations are complex; in the present work we explore a simpler approach based on the remark
that the constitutive law becomes invertible when non-physical values of the strain are dismissed.

4. Inverting the constitutive law
The Sadowsky energy WS in (2.8) is non-convex. As noted in [10], equations (2.1)–(2.7) are
therefore not sufficient to warrant equilibrium. It must be required in addition that the solution
lives in the region of the strain space where the solution is convex. The latter can be worked out
as [10]

|η(s)| ≤ 1 where η(s) = u3(s)
u2(s)

. (4.1)

In the figures, we use the colour code of green for |η(s)| ≤ 1 and orange for the ‘forbidden’ region
|η| > 1.

A microscopic interpretation of the condition (4.1) can be found in [11], and a related discussion
in the context of extensible ribbons is given in §7 of [12]. Note that the condition (4.1) amounts to
replacing the Sadowsky energy WS in equation (2.8) with the convexified energy WF that matches
WS for |η| ≤ 1 and is equal to WF(u2, u3) = 2 u2

3 for |η| ≥ 1 [10]; as shown in figure 3, the level sets
of WF coincide with those of WS in the allowed region |η| ≤ 1 but differ in the ‘forbidden’ region
|η| > 1 (dashed blue segments in figure 3). We note that having |η| > 1 would mean obtaining a
negative curvature u2 with a positive applied bending moment m2.

As shown in figure 2, it is possible to invert the constitutive law if one limits attention to
the green portions of the surfaces, where the condition |η| ≤ 1 holds. Closed-form expressions
for the inverse constitutive law u2 = u�

2(m2, m3) and u3 = u�
3(m2, m3) are obtained as follows. We

start by introducing λ = η2 = (u3/u2)2 and a = m2/m3. Expressing a using equations (2.4) and (2.5),
we obtain 2 aη = 1 − λ. Squaring both sides of this equation yields λ2 − 2 λ (2 a2 + 1) + 1 = 0. This
equation has two real and positive roots λ� and λ��, which are such that 0 < λ� ≤ 1 ≤ λ��. The
condition |η| ≤ 1 implies λ = η2 ≤ 1 and shows that the correct root is λ�. This yields, after some
algebra

λ�(m2, m3) = 1 + 2 a2 − 2
√

a4 + a2 with a = m2

m3
(4.2)
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Figure 4. Möbius solution predicted by Sadowsky’s model. The solution is only computed for s ∈ (0; 1/2) (plain curves), and
symmetry is used to plot the s ∈ (1/2; 1) domain (dashed curves). (a) At the discontinuity s= 1/2, the curvature strain u2(s)
changes sign, while the twisting strain u3(s) is continuous. (b) Parametric plot in the (u2, u3) plane, showing that the solution
lies entirely in the region η(s)≤ 1 (green background). (c) Three-dimensional rendering of the Möbius solution, including the
generatrices (dotted lines). (d) The parametric plot of the solution in the (m2,m3, u2) space falls on the green surface predicted
by the inverse constitutive law (4.3). (Online version in colour.)

u�
2(m2, m3) = m2

(1 − λ�) (1 + λ�)
(4.3)

and u�
3(m2, m3) = m3

2 (1 + λ�)
. (4.4)

Note the existence of a discontinuity in u�
2(m2, m3) at m2 = 0 when m3 
= 0, which corresponds to

crossing the forbidden region shown in orange in the figures. The inverse constitutive law (4.3)
and (4.4) yields the green surface shown in figure 4, which coincides with the green portions
appearing in figure 2. It covers the first and third alternatives in equation (6.8) of [13].

Using the inverse constitutive law (4.2)–(4.4), it is now possible to eliminate u2 and u3 from the
differential system (3.1), which then takes the form of an ODE,⎛

⎜⎜⎜⎝
r
di
n
m

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

d3
(u�

2 d2 + u�
3 d3) × di

0
n × d3

⎞
⎟⎟⎟⎠⇐⇒ θ ′

1 = f �(θ1). (4.5)

The order of the differential equation is 18.
By formally setting λ� = 0 in equations (4.3) and (4.4), one recovers the inverse constitutive

laws u�
2 = m2 and u�

3 = m3/2 applicable to a classical Kirchhoff rod having B3/B2 = 2. By
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introducing a homotopy coefficient ρ (0 ≤ ρ ≤ 1) and by replacing λ� with ρ λ� in equations (4.3)
and (4.4), it is therefore possible to continuously change the constitutive law, from a Kirchhoff
rod model with B1 = ∞, B2 = 1 and B3 = 2 to Sadowsky’s ribbon model, as shown in appendix C.
This makes it possible to treat both the Sadowsky and Kirchhoff models using the same computer
code.

5. Illustration: Möbius strip
We illustrate this approach by solving the equilibrium of a Möbius strip, i.e. a ribbon that is
twisted by half a turn and closed into a loop. The differential equation θ ′

1 = f �(θ1) in (4.5) is solved
on the interval 0 ≤ s ≤ 1/2, together with 18 scalar boundary conditions

r(0) = 0 n(0) · d1(0) = 0 m(0) · d1(0) = 0

d1(0) = ex d2(0) = ey d3(0) = ez

and r
(

1
2

)
· ei = 0 (i = x, y) d1

(
1
2

)
· ex = 0 d3

(
1
2

)
· ex = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.1)

The boundary conditions at s = 1/2 reflect the flip-symmetric nature of the solution, as
assumed in previous works [2,4,14,15]. A simple shooting procedure, presented in the electronic
supplementary material, yields the components of n(0) and m(0) in the Cartesian frame as
(nx(0), ny(0), nz(0)) = (0, 43.5, 42.1) and (mx(0), my(0), mz(0)) = (0, 2.01, −8.87), as well as a solution
on the interval 0 ≤ s ≤ 1/2. The solution on the other interval 1/2 ≤ s′ ≤ 1 is then generated by
symmetry, using u2(s′) = −u2(1 − s′) and u3(s′) = +u3(1 − s′).

In figure 4a, the solutions u2(s) and u3(s) are plotted. The point s = 1/2 is a discontinuity where
u2 flips sign while u3 remains continuous. At the discontinuity, |u2((1/2)±)| = |u3(1/2)|, implying
that η(s) jumps from +1 at s = (1/2)− to −1 at s = (1/2)+. In the space (u2, u3) shown in figure 4b,
the discontinuity causes a jump across the forbidden region, as shown by the grey arrow. In
the space (m2, m3, u2) it causes a jump from one green sheet to the other; see figure 4d. The
equilibrium imposes that the components m2(s) and m3(s) of the internal moment are continuous
at the discontinuity.

Let us now turn to the periodicity condition at the s = 1 endpoint. As the Möbius strip is not
orientable, the directors d1 and d2 are opposite to each other there, di(1) = −di(0) for i = 1, 2. Even
although the Darboux vector u is continuous, u(1) = u(0), the non-orientability creates an apparent
jump in the bending and twisting strains ui(1) = −ui(0) for i = 1, 2, materialized by the second
arrow in figure 4b,d.

We have recovered the solution of the Möbius problem predicted by the Sadowsky model that
appeared in previous works, using a simple, constraint-free formulation (4.5). The singularity
s = 1/2 has been placed at an endpoint of the mathematical domain s ∈ (0, 1/2) on which we
solved the boundary-value problem (5.1). In this happy but somewhat peculiar situation, there
is no discontinuity inside the simulation domain (0, 1/2). In general, however, the solutions of
Sadowsky’s model may feature interior discontinuities, and they must be taken care of by means
of special jump conditions; see [10] as well as §7 in [12]. Interior discontinuities may appear
under various loading conditions, and have been reported in [16–18]. As the position of an
interior discontinuity is not known a priori in the absence of symmetry, dealing with them requires
additional work.

6. Smoothing discontinuities
In this section, we present a method that avoids dealing with interior discontinuities. We observe
that the inverse constitutive law u2 = u�

2(m2, m3) in equation (4.3) can be regularized as follows:

u�
2(m2, m3, ε) = m2

(1 − λ� + ε) (1 + λ�)
. (6.1)
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Figure 5. Solution of the regularized Sadowsky model from §6 for ε = 0.01 (solid blue curves) for a Möbius band, and
comparison with the Wunderlich model (dashed black curves). The points W± are where the solution of the regularized
Sadowsky model enters or exits the forbidden zone |η| > 1. (a) Bending and twisting strain, ui(s). (b) Parametric plot in the
(u2, u3) plane. (c) Parametric plot in the (m2,m3, u2) space, and comparisonwith the regularized constitutive law (6.1) (surface).
(d) Convergence of the value u2(0) predicted by the regularized Sadowsky model (blue curve) to that predicted by the original
Sadowsky model (red). The data for the Wunderlich solution are taken from [5]; see the green curve of their figure 7, with
w/L= 0.2/π . (Online version in colour.)

We have introduced a small regularizing parameter ε > 0 in the denominator, such that the
Sadowsky model is recovered in the limit ε → 0. This regularization corresponds to going from
the discontinuous surface shown in figure 4c to the smooth one shown in figure 5c for ε = 0.01.
Note that this regularized constitutive law suppresses interior discontinuities, but puts an end to
the variational nature of the model.

For the Möbius problem, it is now possible to solve the differential system (4.5) on the entire
interval s ∈ (0, 1). Using the smoothed constitutive law (6.1) for u2 and the original constitutive
law (4.4) for u3, together with the clamped boundary conditions

r(0) = 0 d1(0) = ex d2(0) = ey d3(0) = ez

and r(1) = 0 d1(1) · d2(0) = 0 d2(1) · d3(0) = 0 d3(1) · d1(0) = 0,

}
(6.2)

we did obtain the solution of the regularized problem over the entire interval s ∈ (0, 1)
directly, by a shooting method. The initial values for ε = 0.01 were obtained numerically
as (nx(0), ny(0), nz(0)) = (0, 43.1, 43.0) and (mx(0), my(0), mz(0)) = (0, 2.15, −8.65). This solution is
shown by the solid blue curves in figure 5. Details of the numerical solution are provided in
the electronic supplementary material.
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Note that the equilibrium equations (2.7), together with the periodic conditions for r(s) in
(6.2), suffice to warrant that both n(s) and m(s) are periodic. Replacing the condition x(1) = 0 with
n1(0) = 0 helps the numerical resolution of the BVP by removing its s invariance.

The convergence of the solution of the regularized problem towards the solution of the original
Sadowsky problem for ε → 0 is checked in figure 5d, where the value of u2(0) is plotted as
a function of ε. The limiting value u0

2,S = 3.3866 predicted by the original Sadowsky model is
recovered asymptotically for ε → 0.

From figure 5c, it appears that the solution still switches from the upper green layer to the
lower green layer across the mid-point s = 1/2, but this transition now takes place smoothly. As
shown in figure 5b, the regularized solution does enter the region |η| > 1 that was forbidden in
the original Sadowsky model, near the smoothed discontinuity s = 1/2.

In figure 5, this solution is also compared with the solution of the more accurate—but also
numerically more challenging—Wunderlich model, governed by the functional

WW(u2, u3) = WS(u2, u3)
1

η′ w
log

(
2 + η′ w
2 − η′ w

)
, (6.3)

where η(s) = u3(s)/u2(s) and with w/L = 0.2/π ; see [19]. The Wunderlich energy WW includes
a gradient term η′(s) that regularizes the discontinuities found in Sadowsky’s model: the
Wunderlich solutions feature an inner layer near s = 1/2. The detailed features of the inner layer of
the Wunderlich solution are different from those of the regularized Sadowsky model, as shown by
a comparison of the dashed black and solid blue curves near s = 1/2 (see, in particular, figure 5b).
This could be expected from the fact that the Wunderlich model is designed to resolve the
boundary layer accurately, the original Sadowsky model ignores it, and the regularized Sadowsky
model provides a convenient but non-principled regularization. Still, the main point is that
away from the smoothed discontinuity at s = 1/2, the solutions to the Sadowsky and Wunderlich
models are similar [5,9]: this can be seen here by comparing figures 4 and 5.

7. Conserved quantities
We return to the original (non-regularized) Sadowsky model. Invariants have been extensively
studied in Kirchhoff rods. In both Kirchhoff rods and ribbons that are free of any external load, the
quantities n(s) and n(s) · m(s) are constant: this follows directly from the equations of equilibrium
(2.6) and (2.7). There exists yet another conserved quantity, introduced as a Hamiltonian in [20]
and derived in [5] for ribbons. It is defined through a Legendre transformation WLeg of the strain
energy WS

W�(m2, m3, u2, u3) = m2 u2 + m3 u3 − WS (u2, u3)

WLeg(m2, m3) = sup
u2,u3

W�(m2, m3, u2, u3)

and H(n, m) = WLeg(m2, m3) + n3.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.1)

The Hamiltonian H is a conserved quantity: it satisfies dH/ds = 0 for any s, when evaluated on an
equilibrium solution. In the equations above, ni = n · di, and mi = m · di denote the components of
the internal force and moment in the directors basis.

In equation (7.1), we consider the case where the supremum over (u2, u3) is attained, i.e. it
is a maximum of W�: this implies that ∂W�/∂u2 = 0 and ∂ W�/∂ u3 = 0, which yields exactly the
constitutive relations (2.4) and (2.5). As discussed in §3, for every value of (m2, m3), there are two
corresponding solutions (u2, u3) by the constitutive relations; this leads to the two sheets in the
three-dimensional plots. The solution set (u2, u3) that actually achieves the maximum in (7.1) is
precisely that given by (4.3) and (4.4). We can then explicitly calculate WLeg and find

WLeg(m2, m3) = 1
8

(√
m2

2 +
√

m2
2 + m2

3

)2
. (7.2)
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In terms of u2 and u3, this quantity evaluates to WLeg = 1
2 u2

2 (1 + (u2
3/u2

2))2 = WS, as noticed in [5].
Equation (7.2) corresponds to choosing a plus sign in [C.14] of [13].

For the Möbius solution from §5, for instance, we find the value of the invariant to be
H = 57.5.

8. Conclusion
We have shown that the two main issues associated with Sadowsky’s model for elastic ribbons,
namely, the differential algebraic nature of the equilibrium equations and the singularity arising at
inflection points (u2(s) = 0) can both be overcome by using a regularized and inverted constitutive
relation. We have illustrated our approach on the Möbius configuration, and have shown that the
regularized model converges towards Sadowsky’s model when the regularization parameter goes
to zero. We note that other ways to regularize Sadowsky’s equations have been used [21] but they
only postpone the occurrence of the singularity that eventually arises for large enough strain.
We have compared the equilibrium solution found with our model with the solution found with
Wunderlich’s model and we have shown that they only differ in the region where the singularity
occurs: in Wunderlich’s model the twist strain (u3) is forced to vanish at the singular point (where
u2 → 0) in order to leave the ratio η(s) = u3(s)/u2(s) finite, while this is not the case in our approach.
Besides, equilibrium equations in Wunderlich’s model comprise a differential equation for the
ratio η(s) that can prove delicate to handle numerically: see for example [4] where a special fix
has been introduced to lessen the numerical stiffness and be able to cross the singular event. By
contrast, our approach has no such difficulties and crossing singular points is easy. In future work,
it will be interesting to analyse equilibria featuring multiple singularities [16,17] and singularities
for ribbons possessing natural curvature [18] using our model.
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Appendix A. Statics in components form
The differential equations (3.1a) governing the equilibrium can be spelled out in components as

x′ = d3x n′
1 = n2 u3 − n3 u2

y′ = d3y n′
2 = n3 u1 − n1 u3

z′ = d3z n′
3 = n1 u2 − n2 u1

d′
3x = u2 d1x − u1 d2x m′

1 = m2 u3 − m3 u2 + n2

d′
3y = u2 d1y − u1 d2y m′

2 = m3 u1 − m1 u3 − n1

d′
3z = u2 d1z − u1 d2z m′

3 = m1 u2 − m2 u1

d′
1x = u3 d2x − u2 d3x d′

2 x = u1 d3x − u3 d1x

d′
1y = u3 d2y − u2 d3y d′

2 y = u1 d3y − u3 d1y

and d′
1z = u3 d2z − u2 d3z d′

2z = u1 d3z − u3 d1z.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

As explained in §3,

— for classical Kirchhoff rods, the inverse constitutive relations ui(s) = mi(s)/Bi can be
inserted directly, which yields an ODE of order 18;
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— for a Sadowsky ribbon, one option is to complement these equations with the three
constitutive relations (2.3)–(2.5), which yields a DAE with 21 unknowns.

Appendix B. Multi-valued inversion
After some algebra, the constitutive relations (2.4)–(2.5) can be inverted as

u2 (m2, m3) = χ

4

m4
3

√
m2

2 + m2
3(

m2
2 + m2

3 + m2 χ

√
m2

2 + m2
3

)2 (B 1a)

and

u3 (m2, m3) = 1
4

m3
3

m2
2 + m2

3 + m2 χ

√
m2

2 + m2
3

, (B 1b)

where χ = ±1 = sign(u2 (s = 0)). See also [13] for alternate, equivalent expressions.
The plot in figure 2 has been generated as a parametric plot, as explained in the legend, but it

is also possible to generate it using the formulas above: the existence of two sheets corresponds
to the choice of χ = ±1 in the formulas above.

Appendix C. Homotopy from rods to ribbons
We use the homotopy coefficient ρ ∈ (0; 1) and replace λ� with ρ λ� in (4.3) and (4.4) to
continuously pass from a rod model (having B1 = ∞, B2 = 1 and B3 = 2) to a ribbon model

u�
2(m2, m3, ε, ρ) = m2

(1 − ρ (λ� − ε)) (1 + ρ λ�)

and u�
3(m2, m3, ρ) = m3

2 (1 + ρ λ�)

⎫⎪⎪⎬
⎪⎪⎭ (C 1)

with ρ = 0 for rods, and ρ = 1 for ribbons.
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