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Drop-on-coilable-fibre systems exhibit negative
stiffness events and transitions in coiling
morphology†

Hervé Elettro, *ab Fritz Vollrath,c Arnaud Antkowiak ad and Sébastien Neukircha

We investigate the mechanics of elastic fibres carrying liquid droplets. In such systems, buckling may

localize inside the drop cavity if the fibre is thin enough. This so-called drop-on-coilable-fibre system

exhibits a surprising liquid-like response under compression and a solid-like response under tension.

Here we analyze this unconventional behavior in further detail and find theoretical, numerical and

experimental evidence of negative stiffness events. We find that the first and main negative stiffness

regime owes its existence to the transfer of capillary-stored energy into mechanical curvature energy.

The following negative stiffness events are associated with changes in the coiling morphology of

the fibre. Eventually coiling becomes tightly locked into an ordered phase where liquid and solid

deformations coexist.

1 Introduction

In systems where energy has been stored1 or is continuously
supplied,2 force and deformation may operate in opposite
directions, resulting in a so-called negative stiffness. Active
biological materials3 or systems under fluid loading4 have been
shown to exhibit such a behavior. Locally negative stiffness
appears as soon as the force–displacement curve of a system in
non-monotonic. For example, it is encountered during the
buckling of structures in specific geometries such as cylindrical
shells,5,6 beams on elastic foundations,7 elastic ribbons,8 or
metamaterials.9

Here we show that drop-on-coilable-fibre systems also experi-
ence regimes of negative stiffness, mainly where capillary-stored
energy is transferred into mechanical energy. Drop-on-fibre
systems have a long history, from the textile industry10 to the
coating of glass fibres.11,12 Other examples include the wetting of
fibre networks13 or the influence of capillary forces on elastic
deformation of fibres.14,15 Elastocapillarity,16 the investigation

of the deformation of elastic materials and structures by
surface tension, lies at the interface between Physics17 and
Engineering18 and is used as a way to functionalize and design
new systems and materials.19,20 Recently, taking inspiration
from spider-silk fibres, we demonstrated that sufficiently thin
fibres can locally buckle and coil within liquid drops (see Fig. 1
and Elettro et al.21). We further took advantage of the phenomena
to design a highly extensible drop-on-coilable-fibre system. In the
following we show that in such a system, the active contribution of
wetting energy gives rise to a subcritical buckling transition during
which the stiffness of the system is negative. We further investigate
the consequences of subcriticality and show that it generates
hysteresis in the mechanical response of the system (Section 2).
Additionally we show that the plateau tension contains coherent

Fig. 1 Thin fibres may buckle and coil inside a liquid drop. A soft thermo-
plastic polyurethane fibre (Young’s modulus E = 17 MPa) with radius
r = 2.75 mm is spooled within a silicone oil drop of diameter D = 191 mm.21
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oscillations that consist of alternating regimes of positive and
negative stiffness. These regimes are correlated with the drop
deformation and the coiling morphology. Packing morphology of
a filament in a cavity22 has been studied as a model for DNA viral
capsids.23,24 Morphogenesis of filaments in flexible cavities is also
relevant in several biological systems.25 Stoop et al.26 studied
experimentally and numerically the packing of thin wires in
spherical cavities, followed by Vetter et al.,25 who have recently
shown that an ordered-to-disordered transition may occur for a
filament in an elastic cavity by changing the confinement
flexibility.25,27 Schulman et al.28 investigated the bending of micro-
fibres around liquid droplets, while Roman and Bico16 studied the
deformation of the liquid drop as the rod is wrapping around it
with one end free, thus restricting to ordered coiling through the
release of twist.26 Here we show that the packing morphology of the
drop-on-coilable-fibre systems changes as the in-drop fibre length
is increased and alternates between disordered and ordered.

2 A subcritical buckling transition

Subcritical transitions are discontinuous transitions, as opposed
to supercritical transitions where the order parameter grows
smoothly from zero. Subcritical transitions are present in a
number of fields (e.g. Turing bifurcation in reaction–diffusion
systems,29 transition to turbulence30). They imply dependence
on the loading history, i.e. hysteresis. Buckling transitions may
be either supercritical or subcritical depending on geometry:
buckling of cylindrical shells5 or ribbons8 is subcritical (dis-
continuous), while thin plates and slender beams buckle
supercritically.31 Metabeams may also buckle subcritically due
to strong nonlinearities in their mechanical response.9 In this
section we show that drop-on-coilable-fibre systems experience
subcritical buckling as part of their unique conformation:
in-drop buckling involves both the transfer of wetting energy
into mechanical energy and the presence of a non-constant
system length, which is reminiscent of beam buckling in
sliding sleeves.32

As shown by Elettro et al.,21 the drop-on-coilable-fibre system
displays a classic solid-like behavior in tension and a remarkable
liquid-like behavior in compression. In the solid-like regime (see
Fig. 2(a)), the system behaves like a spring, that is, the applied
tension T is linearly related to the elongation |D| through the
Young’s modulus E of the fibre, T = EA|D|/L, where A is the area of
the cross section of the fibre and L is the length of the fibre in its
rest state. In the liquid-like regime (Fig. 2(c)), the system behaves
like a soap film, that is, it adapts its length while staying in a state
of constant tension T E TP with21

TP ¼ Fg �
1

2
pE

r4

D2
(1)

where Fg = 2prg cosyY is the meniscus force, g the liquid–vapor
interface energy, yY the contact angle of the liquid on the solid,
r the radius of circular cross-section of the fibre, I = pr4/4 its
second moment of area (EI being the fibre resistance to bending),
and D the drop length, measured as the meniscus-to-meniscus
distance. For large drops on small fibres, the drop length D is

close to the (almost spherical) drop diameter.11 In the considered
range of drop/fibre sizes, the departure from sphericity does not
exceed 10% and justifies a spherical drop assumption at first
order. Eqn (1) results from an analysis in the moderate post-
buckling regime and can be interpreted in terms of energies: per
unit length of wetted fibre, the left-hand side is the work of the
external applied tension while the right-hand side is the difference
between the wetting and the bending energies (coiling being
favorable when this difference is positive).

2.1 Force undershoot during in-drop buckling

We then consider a spherical drop of diameter D resting on a
long fibre of length L c D. For a given capillary force Fg, a
typical in-drop buckling experiment starts with a drop resting
on a fibre held taut under large tension T (Fig. 2(a)). As we
gradually decrease T, the fibre remains straight until T reaches
Tmin and the portion of the fibre inside the drop buckles
(Fig. 2(b)). Inside the drop the fibre is subject to a compressive
force P = Fg � T, and as tension T is decreased, compression P
increases until buckling is reached. The buckling threshold
Pbuck = Fg � Tmin depends on the capillary force Fg and detailed
calculations yield33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fg � Tmin

� �D2

EI

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TminD

2

EI

s
tan

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fg � Tmin

� �D2

EI

s2
4

3
5 ¼ 0 (2)

where we see that the portion of the fibre that buckles has
length D, that is buckling tends to be localized inside the drop.
We note that for low capillary force Fg, we have Tmin = 0 as
Fg = p2EI/D2, while for large capillary forces Fg c EI/D2 we have
Tmin C Fg � 4p2EI/D2.

As buckling grows, additional fibre length enters the drop by
sliding along the menisci in such a way that the drop length D

Fig. 2 The subcritical nature of the coiling mechanism derives from the
specific mechanics of in-drop capillary buckling. (a) The fibre is under large
tension, preventing it from coiling locally. (b) The tension reaches a
minimum Tmin and buckling begins. The drop retains its size D, while
swallowing the fibre. (c) The in-drop fibre length c over which coiling
occurs increases from D (in case (a)) to D + D (in cases (b) and (c)), which
decreases the system resistance.
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(i.e. the distance between the two menisci) remains constant.
This increase in in-drop fibre length c yields a decrease in
bending resistance of the system. We compute the behaviour of
the system in this incipient buckling regime. For simplicity
reasons, we work under the assumption that the capillary force
Fg is large compared to the bending force EI/D2, in which case
the drop menisci can be viewed as sliding clamps.33 When a
clamped beam of length c is buckling under a compressive
force P, it undergoes an end-shortening D and in the incipient
buckling regime (small D/c) we have34,35

P‘2
�
EI ¼ 4p2 þ 2p2

D
‘

(3)

In the drop-on-fibre experiment (Fig. 2), the compressive force
is P = Fg � T and the length of the system under buckling is
c = D + D. Replacing c and developing eqn (3) for small end
shortening D/D { 1 yields

PD2

EI
¼ Fg � T
� �D2

EI
’ 4p2 � 6p2

D
D

(4)

Eqn (3) and (4) show that while classical buckling is super-
critical (positive stiffness qP/qD in eqn (3)), in-drop buckling is
subcritical (negative stiffness qP/qD in eqn (4)). This change in
nature is due to the non-constant fibre length over which
buckling occurs. Consequently, as the fibre buckles in the drop
(Fig. 2(b)), eqn (4) shows that T is increasing with the end-
shortening D: the tension is reduced to T = Tmin to trigger
buckling and is then expected to shoot back upwards after
buckling. Eventually the tension stabilizes on the plateau value
TP given by eqn (1), with TP 4 Tmin (see Fig. 2(c) and 3). The
presence of a drop thus modifies the nature of the buckling
transition from supercritical (in classic slender beams/fibres) to
subcritical (in drop-on-coilable-fibre systems). This behavior is
deeply related to the fact that the drop-on-coilable-fibre system
is a liquid–solid hybrid: the menisci act as fixed sliding sleeves

and force additional fibre to enter the drop, exchanging wetting
energy into curvature energy.

Several factors may influence the buckling threshold, for
example the applied end rotation or the weight of the drop. End
rotation is prevented by holding the fibre at one extremity while
letting the other end free for a few seconds before attachment,
in order to relax twist. The influence of twist, that builds up
during fibre coiling, is analyzed in Section 3. The influence of
the drop weight Mg is characterized by comparing it to the

capillary force Fg: introducing Cgrav ¼ Mg

2Fg
, we have Cgrav o 2%

for drop/fibre sizes used in the present work. The effect of
gravity is analyzed in more detail by Elettro.36

In Fig. 3, we show an experimental force–displacement curve
of a drop-on-coilable-fibre system, along with a comparison
with numerical simulations. The numerical simulations model
the fibre as an elastic filament, obeying Kirchhoff equilibrium
equations.37 The filament is in interaction with a spherical drop
with two compressive point forces at the meniscus locations and
a soft-wall barrier potential forbidding exit at any other point. The
equilibrium of the system is solved using two-point boundary-
value problem techniques (shooting method in Mathematica,
and collocation method using the Fortran AUTO code). Note that
the weight of the drop and the self-contact of the filament are
not taken into account in the model. The numerical simulations
only use externally measured parameters (e.g. drop length, fibre
radius, surface tension) and no fitting parameter. Sensor drifting
and force offset during deposition of the drop imply that our
experimental force data lack an absolute reference. Consequently
we globally adjust it so that the average value of the plateau
tension corresponds to eqn (1) (see Materials and methods
section). Fig. 3 shows that the model recovers the force under-
shoot, the presence of negative and positive stiffness intervals,
and the periodicity in end-shortening seen in the experiments.

On the one hand, the combination of eqn (1) and (2) yields
theoretical values for the force undershoot DT = TP � Tmin, and
on the other hand it is measured experimentally as the differ-
ence between the minimum force and the average value of the
plateau tension. This definition of the force undershoot as a
relative quantity eludes the problem of sensor drifting exposed
above. For each drop/fibre couple, the undershoots are measured
three times to ensure reproducibility. We record force–displace-
ment curves for different drop lengths D, and we extract the force
undershoot from each curve (see Fig. 4). When the system is
subjected to a global compressive force T o 0, global buckling
occurs if the compression �T exceeds a threshold BEI/L2. As L is
large, this threshold is indeed very low (piconewtons for centi-
metric soft microfibres) and we conclude that the drop-on-fibre
system is virtually unable to sustain any global compressive force
(T o 0). Consequently in-drop buckling is not possible as soon as
parameters are such that Tmin o 0. For a given fibre, Fg is known
and positive and a critical drop length Dac can be computed by

setting Tmin = 0 in eqn (2): Dac ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI
�
Fg

q
, with drops of length

D o Dac being unable to initiate buckling of the fibre. At D = Dac,
Tmin = 0 and the force undershoot is maximum and equal to
the plateau value TP given by eqn (1) with Fg = p2EI/Dac

2, that is

Fig. 3 Drop-on-coilable-fibre systems present alternating regimes of
positive and negative stiffness. Comparison between numerical computa-
tions (black line) and experimental data (green line) on a TPU/silicone oil
system (drop length 62 � 2 mm, TPU fibre diameter 1.9 � 0.4 mm and
dimensionless capillary force fg = 41 � 20 4 fth

g = p2, see Section 2.2).
The one coil period and the initial negative stiffness regime are well
reproduced by the numerical model. Adapted from our previous work in
Elettro et al.21
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Tac
P = (p2 � 2)EI/Dac

2, or Tac
P = (1 � 2/p2)Fg. As D is increased the

force undershoot decreases as 1/D2. Fig. 4 shows the excellent
agreement between the analytical and the experimental values,
especially considering the absence of any fitting parameter.

All force measurements shown so far are displacement-
controlled experiments. In the following, we shall consider
force-controlled experiments. Due to the specific force signature
of drop-on-coilable-fibre systems, the two types of experiments
lead to different behaviours.

2.2 Mechanical hysteresis

Here we perform experiments where the drop length D is varied.
This is equivalent to force-controlled experiments since the
dimensionless force fg = FgD

2/EI p D2 is the control parameter
for a given fibre. We consider drop-on-fibre systems held in a very
low state of tension T { EI/D2, and report the coiling activity as a
function of the drop length D. For small D, fg is too small to induce
coiling but, as drops with increasing D are considered, in-drop
buckling is observed as soon as fg exceeds p2 (see eqn (2) with
Tmin = 0 and Fg 4 0), that is we have activation of in-drop coiling
if D 4 Dac with

Dac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2Er3

8g cos yY

s
(5)

Experiments with increasing D values are reported in Fig. 5, where
the coiling activity is plotted against the drop length D and where

we clearly see the activation threshold lying at D/Dac = 1. Coiling
activity is defined as zero when coiling is not possible and one
when it is. Indeed, when the wetting energy overcomes the
curvature energy, coiling becomes energetically favorable and will
not stop until the drop is filled, a case that has not been reached
within our experimental range, even after coiling several cm of
fibre in a 100 mm drop. Once activated, the drop-on-coilable-fibre
system is in a state of constant tension, the plateau tension TP

being given by eqn (1). For such a coiled system, if we now
decrease the drop length D while keeping other parameters fixed,
the plateau tension TP is going to decrease. As the system is
virtually unable to sustain any global compressive force (T o 0),
TP has to remain positive, and we anticipate a coiling deactivation
when TP = 0, that is D o Ddeac with

Ddeac ¼
Dacffiffiffiffiffiffiffiffiffiffi
p2=2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Er3

4g cos yY

s
(6)

The deactivation drop-length is thus smaller than the activation

length by a factor
pffiffiffi
2
p ’ 2:2, resulting in two different thresholds.

We experimentally study the deactivation of in-drop buckling
by use of evaporation. An ethanol microdrop-laden mist is sent
onto a TPU fibre in a confinement chamber. Ethanol drops large
enough to induce coiling are deposited on a TPU fibre. After
coiling is achieved, the ethanol mist flow rate is slowly decreased,
so that drops evaporate in a quasistatic manner. Quasistatic is
defined in reference to the timescale for coiling rearrangement,
which is here on the order of hundreds of milliseconds. The drop
size is recorded optically throughout evaporation.

We thus start with a coiled system in the activated zone
D 4 Dac and let evaporation take place. We observe that coiling
remains even when D o Dac (see Fig. 5), but that the drop

Fig. 4 Top: Force–displacement curves for different drop sizes on a 2 �
0.4 mm diameter fibre. Colors correspond to dimensionless capillary forces
fg, from 28 (green) to 236 (red). Bottom: Force undershoot as a function of
drop length D for the same fibre. The theoretical prediction, solid line, is in
excellent agreement with the experimental data considering the absence
of any fitting parameter. The value Tac

P is calculated from eqn (1) with Fg
such that eqn (2) is fulfilled with Tmin = 0: Fg = p2EI/D2.

Fig. 5 Coiling activity as a function of the dimensionless drop length
D

Dac
¼

ffiffiffiffi
fg
p2

q� �
. Transitions for activation and deactivation are different,

displaying a mechanical hysteresis. Empty triangles represent experiments
at increasing drop size while inverted filled triangles are for evaporating
drops, decreasing in size. The fibre is made of TPU and measures
5.8 � 0.4 mm in diameter. The scale is the same in all pictures. Inset (a)
shows a drop sitting on a straight fibre, while insets (b) and (c) show a
coiled system during evaporation: in (b) the drop size D = 165 mm in length,
whereas in (c) D = 103 mm.
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envelope strongly deforms and that coiling rearranges to an
ordered configuration (see Section 3). The smallest measured
coiling diameter is in very good quantitative agreement with the
deactivation diameter Ddeac given in eqn (6). Further evaporation,
D o Ddeac, leads to the formation of toroidal coiling held by a
liquid film, which eventually snaps and leaves the coiling only
bridged by fibre self-adhesion (see Fig. 6). Schulman et al.28

reported similar observations of ‘‘dry coils’’, prepared by winding
a polymeric (SIS) fibre on the outer surface of a droplet and then
removing the liquid. Further mechanical manipulation of the
evaporated sample eventually leads to irreversible uncoiling.

The subcritical nature of the in-drop buckling bifurcation
thus leads to two different thresholds for coiling activation and
deactivation, and to the manifestation of hysteresis: a system
with Ddeac o D o Dac may be either coiled or not, depending on
the loading history.

3 Coiling morphologies and drop
deformation

In addition to the essentially flat shape of the plateau, Fig. 3
shows existence of oscillations in the moderate post-buckling
regime D/(pD) = O(1). These oscillations have smaller amplitude
than the initial undershoot peak, and decrease as the capillary
force Fg is increased, to become essentially flat (below sensor
resolution) if Fg 4 300EI/D2. Moreover they are structured with
a period pD for the end-shortening D, each cycle corresponding
to the addition of one coil inside the drop. Numerical
computations38 show that these cycles come from in-drop
rearrangement of the coiling and that 3D and planar config-
urations alternate, depending on the value of the in-drop fibre
length (see also ESI,† video 1). We indeed observe that the
typical coiling morphology of a drop-on-coilable-fibre system
oscillates between a fully ordered state and a fully disordered
state, and both extremes are shown in Fig. 7.

So far the liquid drop has been considered as a rigid sphere.
However observations reveal that the drop envelope may
undergo strong deformation when interacting with the internal
coiling. Hence in the following we consider the packing of a
fibre within a deformable liquid drop and study the influence
of deformability on the coiling morphology.

Axisymmetry breaking

When the fibre is straight (as in Fig. 1–8) and the fluid is
wetting, the drop adopts a well known unduloidal shape

matching the Young’s contact angle in the vicinity of the
fibre11 and is symmetric with respect to the (horizontal) fibre
axis for intermediate contact angles. In the presence of coiling,
the fibre pushes outwards on the liquid interface with a force F

of magnitude F / @

@R

1

2

EI

R2

� 	
¼ EI

R3
per unit length of fibre. This

pressure field is not isotropic and may lead to asymmetric
deformation of the liquid interface. Indeed Fig. 8 reveals the
change of symmetry axis of the system as more fibre is added
in the drop: the initial horizontal axis of symmetry (1) is kept
as long as the coiling remains disordered (2). Eventually
internal pressure from the fibre is too strong and leads to a
deformed drop (3) with an axis of symmetry perpendicular to
the horizontal: a localized stretch of the drop envelope repre-
sents an opportunity for the in-drop fibre to lower curvature
energy. Coiling is then locked in an ordered state as more fibre
is added (4).

Quantification of the drop deformation

We consider a drop of initial length 2R0 and start increasing
the in-drop fibre length c, using the apparent coil number

Fig. 6 The evaporation of a droplet containing a coiled fibre leaves highly
regular dry coils (left). Residual end rotation may lead to twist instabilities,
forming a lemniscate-shaped coil (right).

Fig. 7 Polarized light reveals the different coiling morphologies a TPU
fibre/silicone oil drop system may adopt: disordered (phase I, left) or
ordered (phase II, right). The coiling morphology depends on the precise
in-drop fibre length.

Fig. 8 As the in-drop fibre length increases (from (1) to (4)), the initial
axisymmetry of the drop may be broken, resulting in an ellipsoidal shape.
Panels (3) and (4) are rotated views of the same drop, illustrating loss
of symmetry with respect to the fibre axis. We coin the axisymmetric
system (1 and 2) phase I, and the ellipsoidal system (3 and 4) phase II. Here
fg = 24.7 � 5, R0 = 61 � 2 mm and r = 2.5 � 0.4 mm, and the transition from
phase I to phase II occurs near 24 coils. Experimental measures of the drop
deformation are reported in Fig. 10.
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n ¼ ‘

2pR0
as the bifurcation parameter. We quantify the ordering

of the coiling with an orientational order parameter S commonly
used in the field of liquid crystals39

S ¼ P2ðcoscÞh i ¼ 3 cos2 c� hci½ � � 1

2


 �
(7)

with S = 0 (S = 1) corresponding to the fully disordered (ordered)
case, and where c is the measured angle between the fibre axis at
each coil and the initial fibre axis and h�i denotes the spatial
average. In Fig. 10 we plot S(n) and dR(n) where dR(n) = (R(n)� R0)/
R0 and 2R(n) is the measured maximum drop length, together with
the theoretically computed dRth(n).

As n is increased from n = 0, two different regimes can be
identified in the system. For low values of the coil number n
(here typically n t 20), coiling is mainly disordered (S = 0)
except during short ordered intervals (S = 1), as underlined by
the strong fluctuations of the order parameter during phase I
(red curve in Fig. 10). These bursts of ordered coiling have been
described in our recent theoretical work.38 While in phase I, the
system keeps its initial horizontal axis of symmetry and we
model the liquid interface as a sphere (see Fig. 9-left), whose
radius R(n) increases due to the addition of fibre volume. For
small dR, conservation of total volume leads to

dRIðnÞ ¼
RðnÞ � R0

R0
¼ 1

3

VðnÞ � V0

V0
¼ 1

3

pr2‘
4

3
pR0

3

¼ p
2
n

r

R0

� 	2

(8)

where r is the fibre radius, c the total in-drop fibre length,
V(n) = (4/3)pR3(n) the volume enclosed by the liquid interface,

and n ¼ ‘

2pR0
the apparent coil number.

As the coil number exceeds a threshold (this threshold is
n* = 24 � 3 for the system of Fig. 10), the system switches to
continuous fully ordered coiling, phase II (see Fig. 3–8). Here n*
is defined experimentally as the center of the transition to
constant phase II. We model the liquid interface as two
spherical caps of major (minor) axis 2R (2H) (see Fig. 9-right).
The total energy of the system is the sum of the bending energy
of the fibre 1/2(EI/R2)c and the surface energy of the liquid
interface 2pg(R2 + H2). Minimizing this energy with regard to
R and H under the constraint of fixed volume pH(R2 + H2/3),

we find that for small surface perturbation the deformation of
the drop is given by

dRIIðnÞ ¼
R� R0

R0
’ n

4
gR0

3

EI
þ 3n

(9)

We assume that for intermediate coiling morphologies, the
drop deformation is the sum of the phase I deformation plus a
ratio of the phase II deformation, this ratio being given by the
order parameter S. We thus write dRth = dRI + S�dRII. Combining
eqn (8) and (9) yields the theoretical drop deformation for any
coiling morphology

dRthðnÞ ¼
p
2
n

r

R0

� 	2

þ SðnÞ � n

4
gR0

3

EI
þ 3n

(10)

Eqn (10) is a generalization for any coil number and any order
parameter of the results of Roman et al.16

We tested experimentally eqn (10) for a large number of
drop-on-fibre systems. Drop deformation is measured optically
as a change of length along the main fibre axis. As the fibre that
lies outside the drop is taut throughout our experiments,
in-drop fibre length c is measured with the end shortening,
c = D. The order parameter is measured by following optically
the direction of each coil when crossing a reference line taken
to be the initial fibre axis. Careful repeating of each measure-
ment leads to errors of �0.1, although smaller for well defined
coiling (S = 0 and S = 1) as well as for large coiling numbers.
For statistical reasons, we restrict to systems with at least n = 5
coils. Fig. 10 shows comparison between theory and experiment
for a typical measurement. The error bars on the theoretical
prediction correspond to the measurement error on the order
parameter S, which is an input parameter. The present model

Fig. 9 Spherical cap model of the drop deformed by ordered in-drop
fibre coiling. The extreme states are fully disordered coiling in a sphere
(phase I, left) and fully ordered coiling in spherical caps (phase II, right).

Fig. 10 Comparison between the measured deformation (bottom blue
curve) and the theoretical prediction (middle black curve) from eqn (10).
The top red curve is the measured order parameter S. Here fg = 24.7,
R0 = 61 � 2 mm and r = 2.5 � 0.4 mm. For n o 22, coiling alternates
between phase I and phase II in a regular manner, well captured by our
recent numerical simulations.38 Drop deformation and coiling rearrange-
ments are strongly correlated, as shown by the corresponding peaks linked
by vertical dashed lines. A lock-in transition occurs at n = 24, leaving
continuous ordered coiling and a highly deformed drop.
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has been tested against several drop-on-coilable-fibre systems
where the radius r of the TPU fibre and the initial radius R0 of
the silicone oil drop have been varied. The average difference
between theoretical prediction and observed deformation is
15%. Although convenient, the use of a simple setup to assess
the order parameter S is quite challenging. This could be
improved by the use of X-ray computed tomography, which
allows full 3D reconstruction in fine resolution.

We finally remark that the lock-in threshold n* on the coil
number, for which the system enters continuous phase II, could be
computed by comparing the energies of both phases. Such a
comparison would need an estimation of the twist energy of the
system in both phases. Up to now this twist energy has been
neglected but we anticipate it to be somewhat different in phases I
and II, leading to an energy barrier between the two states. Using a
rough estimation of this twist energy barrier as a fraction Z of the
bending energy (see the Appendix ‘Derivation of drop deformation
and morphology transition’), we find that the threshold from
phase I to phase II should happen at

n� ¼ kðZÞgR0
3

EI
/ R0

r

FgD
2

EI
(11)

where k(Z) B O(1) is a dimensionless number and D = 2R0.
Consequently for systems moderately above the in-drop buckling
threshold Fg = p2EI/D2, the transition to ordered coiling will happen
for a coil number of order 10 to 100. In contrast, systems far above
the buckling threshold may have their transition to ordered coiling
prevented as the system may reach the close-packing limit.
Estimating this limit40 as n p R2/r2, we see that a system where

the fibre radius r satisfies ro rc /
ffiffiffiffiffiffiffiffiffi
g
E
R0

r
will likely not experience

the transition to ordered coiling.

4 Conclusion

In conclusion, we showed that the possibility of transferring
wetting energy into mechanical energy leads to events of negative
stiffness regimes in drop-on-coilable-fibre systems. The conse-
quences include force undershoots in displacement-controlled
setups and mechanical hysteresis in force-controlled setups. In
both cases, quantitative agreement between experiments, theory
and numerics has been reached. We observed that further occur-
rences of negative stiffness regimes are linked to changes in the
coiling morphology, and showed that a lock-in transition may
eventually occur, underlining the link between the in-drop fibre
length and the drop deformation. Drop-on-coilable-fibre systems
thus open new possibilities as complex actuators in light of
their unconventional mechanical response. For instance, accurate
control may yield new routes to 3D microfabrication and reconfi-
gurable coil-to-cage devices in liquid environments.

Appendix: materials and methods

We prepare microfibres with Thermoplastic PolyUrethane (TPU)
from BASF (reference 1185A). We use melt spinning to draw
fibres: after TPU pellets are molten on a hot plate at 230 1C,

a small amount of liquid TPU is quickly stretched, followed by
quenching at room temperature. The obtained fibres have a
radius that lies between 1 and 10 mm, depending on the
stretching speed. The goal radius is usually achieved within a
2 mm range. The local radius variations are at most by 10% over
an extended region of several thousands radii, which corre-
sponds to the typical maximum in-drop fibre length. The fibre
and drop diameters are measured optically with a 3 megapixels
Leica DFC-295 camera mounted on a Leica macroscope
(VZ85RC, 400� zoom, 334 nm per pixel picture resolution)
and a remote-controlled micro-step motor. We used either a
Phlox 50� 50 mm backlight (60000 Lux) or an optical fibre with
LED lamp (Moritex MHF-M1002) with circular polarizer. The
use of polarized light strongly enhances the visibility of the
fibre inside of the drop due to birefringence of TPU microfibres.
We measured contact angles by superimposing optical images
of drops on fibres to corresponding calculated profiles, and found
yY = 23 � 21 for the TPU/silicone oil setup and yY = 19 � 21 for
the TPU/ethanol setup. We used g = 21.1 mN m�1 for the silicone
oil/air interface and g = 22.1 mN m�1 for the ethanol/air interface.
For evaporation-controlled experiments, we use a megasonic
transducer activated at 1.6 MHz (Beijing Ultrasonics) to produce
a cloud of micronic droplets, with sizes in the 3–5 mm range
(inferred optically) and with controllable outflow. Due to the
low intensity of the forces (typically hundreds of nN for our
microfibres), we use capacity deflection force sensors (FemtoTools
FT-FS100, 5 nN–100 mN range at 20 Hz). While highly sensitive,
these sensors have the drawback of drifting slowly with time
around 10 nN min�1. This only adds slightly to the measurement
errors in rapidly performed tests, typically less than five minutes.
In longer tests, the drift can lead to substantial offsets and affect
our ability to evaluate absolute force values. Consequently the
experimental data in Fig. 3 are offset to match the theoretical
value of the plateau tension, given by eqn (1). However, the drift is
compensated for graphical purpose only, and does not affect
measurements in Fig. 4-bottom, as force undershoots are relative
quantities. The force sensor is mounted on a linear micro-
positioner (SmarAct SLC-1730, repeatability 0.5 mm) and all the
tests are displacement-controlled and performed at a quasi-static
speed of 12 mm s�1. Young’s moduli of the fibres are measured
through tensile tests and are found to be 17 � 2 MPa and do not
depend on conditions of preparation. By brushing a fibre with a
viscous silicon oil drop (Rhodorsil 47V1000) hanging from a
syringe tip, we obtain an array of drops of different sizes. The
activation of in-drop buckling is tested by compression of the
resulting sample.

Appendix: derivation of drop deformation and morphology
transition

We consider the ordered phase II and detail the calculations for
the deformation of the drop envelope under the spherical cap
model (see Fig. 9). The total potential energy of the system is
the sum of the bending energy of the fibre Eb(R) = 1/2(EI/R2)c,
the twist energy of the fibre Et, and the surface energy of the two
spherical caps ES(R,H) = 2pg(R2 + H2). We have a constraint of
fixed liquid volume expressed as (1/3)pH(3R2 + H2) = (4/3)pR0

3,
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where R0 is the radius of the undeformed spherical drop. As the
twist energy Et is difficult to evaluate we first do not take it
into account, and introduce the lagrangian of the system as
L(R,H) = Eb(R) + ES(R,H) � l(1/3pH[3R2 + H2] � 4/3pR0

3), where
l is the Lagrange multiplier associated to volume conservation.
We identify l as the pressure inside the drop. The equilibrium
of the system is then given as a stationary point of L:

@L

@H
¼ 0 ¼ 4pgH � lp R2 þH2

� �
(12a)

@L

@R
¼ 0 ¼ �EI‘

R3
þ 4pgR� 2pRlH (12b)

We work under the assumption that the deformation of the
interface is small, that is when R and H are both near R0 and
the pressure l is near 2g/R0. We then write R = R0(1 + e) and
H = R0 + eH1 with |e| { 1. Volume conservation yields H1 = �R0,
that is H = R0(1 � e). System (4) is then solved and we obtain
l = (2g/R0)(1 � e) and

e ¼ ‘EI

8pgR0
4 þ 3‘EI

¼ nEI

4gR0
3 þ 3nEI

(13)

where we see that for e to be small, we need the capillary force
gR0 to be large compared to the bending force EI/R0

2, and the
coil number n = c/(2pR0) not to be too large.

We conclude that when the twist energy Et is neglected, we
have a unique equilibrium at e 4 0 (ordered coiling) and no
equilibrium at e = 0 (disordered coiling), but we reckon that
taking the twist energy into account might change the situation
and stabilize the e = 0 state. The twist energy is larger in the
ordered coiling configuration than in the disordered coiling
configuration for the following reason. In the experiments the
fibre is held at both extremities, therefore imposing a con-
straint of zero Link, that is zero end rotation of the ends.41,42

As a rod deforms in space the Writhe is a real number which
measures the circumvolution of the center line in 3D. The more
the windings, the higher the Writhe. An estimation of the
Writhe is obtained by (i) looking at the rod from a given point
of view and projecting the rod shape on a plane perpendicular
to the view axis, (ii) counting the number of crossings on the
projection, and (iii) starting again with every view axis and
averaging the result. The Twist is the integral along the rod of
the local twist. An important feature of twisted rod mechanics
is that, if both extremities of the rod are held fixed, as the rod
deforms in space its Writhe and its Twist change but at all
times the sum of the Twist and the Writhe stays constant, equal
to the Link.43 In the disordered coiling configuration we
estimate the Writhe to be small due to a statistical balance of
positive and negative crossings. Hence the Twist, and therefore
the twist energy, has to be small. However in the ordered
coiling configuration the Writhe is almost that of a regular
spool with n turns, Writhe E n. We then have Twist E �n, in
order for the sum to be zero. The twist energy of the ordered
coiling configuration is then larger than the twist energy of the
disordered coiling configuration. It is difficult to be more
quantitative without performing complete numerical simulations.

Here we simply estimate the difference in twist energy to be equal
to a fraction Z of the bending energy EII

t � EI
t C (1/2)Z(EI/R0

2)c,
with Z B O(0.1). This estimation follows from numerical results
from Stoop et al.26,38

We now consider the total potential energy V = Eb + Et + Es

in both disordered coiling, VI, and ordered coiling, VII.
We evaluate VI at R = H = R0 and VII at R = R0(1 + e) and
H = R0(1 � e) with e given by eqn (13). We then compute the first
order of the difference VII � VI:

V II � V I ’ 2pEIn
R0

Z
2
� nEI

4gR0
3 þ 3nEI

� 	
(14)

For small n, twist energy makes the disordered configuration
favorable (VII � VI 4 0), but as n reaches a threshold

n� ¼ 4Z
2� 3Z

gR0
3

EI
the ordered configuration becomes favorable

(VII � VI o 0).
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