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F. Bosi,1 D. Misseroni,1 F. Dal Corso,1 S. Neukirch,2 and D. Bigoni1,*

1DICAM-University of Trento, via Mesiano 77, I-38123 Trento, Italy
2Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

(Received 1 September 2016; published 27 December 2016)

A challenge in soft robotics and soft actuation is the determination of an elastic system that spontaneously
recovers its trivial path during postcritical deformation after a bifurcation. The interest in this behavior is that
a displacement component spontaneously cycles around a null value, thus producing a cyclic soft mechanism.
An example of such a system is theoretically proven through the solution of the elastica and a stability analysis
based on dynamic perturbations. It is shown that the asymptotic self-restabilization is driven by the development
of a configurational force, of similar nature to the Peach-Koehler interaction between dislocations in crystals,
which is derived from the principle of least action. A proof-of-concept prototype of the discovered elastic system
is designed, realized, and tested, showing that this innovative behavior can be obtained in a real mechanical
apparatus.
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I. INTRODUCTION

The straight configuration of an axially compressed elastic
rod becomes unstable at buckling, so that a bent configuration
emerges and the rod usually does not recover its straight config-
uration during the post-bifurcation deformation [1,2]. In the
traditional mechanical design, the post-bifurcation behavior,
characterized by large deformations, is typically avoided to
preserve mechanical integrity, but nowadays bioinspired struc-
tures are often designed to work in a large displacement regime
[3–8]. Therefore, an interesting challenge for applications to
soft-robotics and compliant mechanisms is to find a “self-
restabilizing structure”, in which the straight configuration
is spontaneously recovered during loading after buckling.
Examples of these elastic systems have been provided, for
which the instability region of the trivial path is bounded,
becoming a sort of “island.” However, these restabilizations
usually do not occur “spontaneously”, so that the systems have
to be “externally” moved back to the straight configuration (see
the examples presented by Feodosyev [9] and by Bigoni et al.
[10], the former referred to a discrete system, the latter to a
continuous elastic structure). For a two-degrees of freedom
discrete system, spontaneous restabilization has been theoreti-
cally proven, but only in the presence of nonlinear springs [11].

The aim of the present article is to design, realize, and test
a continuous elastic system that displays an “asymptotic self-
restabilization” in the following sense: although bifurcation
does not occur, because the system is imperfect, the deflection
initially grows and subsequently decays up to vanish during a
monotonically increasing loading.

The continuous elastic system is a planar, slender, and
inextensible rod, modeled as the elastica [12–15]. In particular,
the developed system is an imperfect version of that analyzed
in Ref. [10], where an elastic rod (with bending stiffness B)
penetrates into a frictionless sliding sleeve and is restrained
with a linear spring (of stiffness k). The imperfection is the tilt
angle α, which is null in the perfect case; see Fig. 1. A dead
load P is applied at the upper end of the elastic rod. The rod
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has a total length l̄ + l̂, of which the length l̂ + lin lies inside
the sliding sleeve, with lin = 0 when P = 0.

The imperfect system displays two different behaviors.
In the first one, self-restabilization does not occur (Fig. 2,
lower part, on the right), so that the elastic rod is bent and,
at increasing load, is progressively ejected from the sliding
sleeve. In the second behavior, asymptotic self-restabilization
occurs (Fig. 2, upper part, on the right), so that the rod
deflection initially increases and then progressively decreases
until the rod is totally inserted into the sliding sleeve. As
Fig. 2 shows, each of the two behaviors is connected to what
is observed in the perfect system. In particular, the asymptotic
restabilization of the imperfect system occurs when the perfect
system does not buckle (Fig. 2, upper part, on the left) while,
oppositely, it does not occur when the perfect system does
buckle at increasing load (Fig. 2, lower part, on the left).

Since the effect of the imperfection is found to be crucial
in the restabilization process, the mechanical behavior of
the system is investigated through both a theoretical and an
experimental approach, when the inclination angle α is varied.
In particular, the experiment reported in Fig. 3 and performed
with an inclination α = 12◦ shows (see the snapshots taken
at P = {0,24,44,64,84}N) the asymptotic self-restabilization
during the application of an increasing load P at the rod’s
free edge. Indeed, at increasing loads, the lateral deflection
of the rod initially increases (from snapshot A to C), but later
decreases (from snapshot C to E) and eventually vanishes when
the rod is completely inserted into the sliding sleeve, which
occurs when P → kl̄ cos α.

The restabilization phenomenon is related to the action
of a configurational force Fc in the system, developed at
the frictionless sliding sleeve (s = lin), whenever the rod
curvature does not vanish there. Configurational forces have
been introduced by Eshelby [16,17] to describe the motion
of inhomogeneities within solids and have been recently
interpreted as the resultant of Newtonian contact forces on
a moving inhomogeneity [18]. Essentially, a configurational
force is generated whenever an elastic system can change
its configuration through a release of potential energy. For
example, when a dislocation is present within a stressed
crystal, it tends to move within it and this tendency can be
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FIG. 1. An elastic rod of constant bending stiffness B is loaded
at its free end with a dead load P , while the other end can slide into
a frictionless sleeve, against an axial linear spring of stiffness k. The
curvilinear coordinate s measures the position along the rod, with
s = −l̂ corresponding to the rod’s edge attached to the spring. The
total length of the rod is l̄ + l̂, while the length of the rod inside the
sliding sleeve is l̂ + lin. The rotation of the rod’s axis with respect
to the straight configuration is measured by θ (s). A configurational
force Fc is developed at the sliding sleeve exit, s = lin, whenever
at this point the rod’s curvature does not vanish. The considered
system is sketched in its undeformed configuration (a), in its deformed
configuration (b), and in both configurations in a perspective view,
with the undeformed configuration shown dashed (c). Due to the
presence of the tilt angle α, the system is an imperfect version of the
structure analyzed in Ref. [10].

quantified with a decrease of potential energy. For a dislocation
loop represented by a closed curve of unit tangent τi(s) (at the
point singled-out by the arc-length s), Burgers vector bj , and
stressed by σkj (s), the configurational force Fh driving the
dislocation motion is given by the Peach-Koehler relation

Fh = ehkiσkj (s)bj τi,

where ehki is the alternating Levi-Civita tensor. Recently,
configurational (or “Eshelby-like”) forces acting on elastic
structures have been theoretically and experimentally proven
[19,20], exploited for the realization of self-encapsulation [21]
and for the design of innovative devices, such as the “elastica
arm scale” [22] and the “torsional gun” [23].

The present analysis showing self-restabilization is based
on a variational approach, which provides the equations
governing the dynamics of the system and gives full evidence
to the configurational force. Asymptotic self-restabilization
is demonstrated through the determination of the equilibrium
paths of the structure under quasistatic conditions. Finally,
the stability of the equilibrium paths is verified through the
investigation of the response of the structure to dynamic
perturbations. The theoretical predictions are fully validated by
experimental tests performed on a proof-of-concept structure.

II. THE DYNAMICS OF THE SYSTEM FROM THE
PRINCIPLE OF LEAST ACTION

The equations governing the dynamics of the elastic system
sketched in Fig. 1 are derived below by means of the principle

deg deg

FIG. 2. Trajectories (red dashed curves) traced by the loaded end
of the rod during a monotonic loading, for stiffness ratios q = 0.3
(upper part) and q = 1.2 (lower part), with q = 16kl̄3/(27π 2B).
Intermediate deformed configurations (blue curves) are displayed
for specific normalized loads p = P/(kl̄). The behavior of the
imperfect (α = 26.78◦, right) system shows that “asymptotic self-
restabilization” can occur only when the perfect system (α = 0, left)
does not suffer buckling.

of the least action. An inextensible elastic rod of length l̄ + l̂,
straight in the undeformed configuration, and with a linear
elastic behavior relating the bending moment and the curvature
through a constant bending stiffness B, is constrained by
a frictionless sliding sleeve ending with a linear spring of
stiffness k. The sliding sleeve is tilted by an angle α from
the vertical. Denoting by s the curvilinear coordinate along
the rod, s ∈ [−l̂,l̄], the exit point of the sliding sleeve lies at
s = lin(t) for all time t . Therefore, the rod is partially inserted
into the sleeve with the region from s = −l̂ to s = lin lying
inside the sleeve, so that the region from s = lin to s = l̄

remains outside the sleeve. The origin of the fixed (ex,ey)
frame is placed at the exit point of the sliding sleeve (s = lin).
A vertical dead load P is hanged at the rod’s edge s = l̄, so that
P = P (− cos α ex + sin α ey). In the unloaded state (P = 0),
the rod is straight and lies along the ex axis, lin = 0, so that the
region from s = 0 to s = l̄ is freestanding.

Introducing the positions x(s,t) and y(s,t) of the rod in
the reference frame (ex,ey), and the rotation θ (s,t) between
the tangent to the rod and the ex axis, the following boundary
conditions hold:

x(lin(t),t) = 0, y(lin(t),t) = 0, θ (lin(t),t) = 0. (1)
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FIG. 3. Theoretical path (line) for the dimensionless load parameter p = P/kl̄ as a function of the dimensionless deflection u2(l̄)/l̄ for
a tilt angle α = 12◦ and stiffness ratio q = 0.52, with q = 16kl̄3/(27π 2B). The five snapshots A–E reveal an initial increase followed by a
successive decrease in the deflection, when the applied vertical dead load P is increased. Each loading state A–E is marked with a red spot in
the p-u2(l̄)/l̄ plane, so that an excellent agreement with the theoretically predicted equilibrium path is found.

We look now at the dynamics of the rod. Neglecting rotational
inertia for the rod, we consider the kinetic energy T of the rod
given by

T (x,y) = 1

2

∫ l̄

−l̂

γ [ẋ2(s,t) + ẏ2(s,t)] ds, (2)

where γ is the constant linear mass density of the rod and (̇) ≡
d()/dt . The potential energy of the system comprises the work
of the dead load P , WP = −P · {x(l̄),y(l̄)}, the extensional
strain energy of the spring Uk = (1/2) k [x(−l̂) + l̂]2, and

the bending strain energy of the rod UB = ∫ l̄

−l̂
(1/2) B θ ′2 ds,

where ()′ ≡ d()/ds. As the part of the rod that lies inside the
sleeve is straight,

θ ′(s,t) = 0 ∀s ∈ [−l̂,lin),∀t, (3)

the curvature term for this region is zero and the total potential
energy V reads

V(x,y,θ,lin) = 1

2

∫ l̄

lin

B θ ′2 ds + 1

2
k [x(−l̂) + l̂]2

+P [x(l̄) cos α − y(l̄) sin α]. (4)

The Lagrangian to be considered is provided by the difference
T − V , under the inextensibility constraints x ′(s) = cos θ (s)
and y ′(s) = sin θ (s),

L(x,y,θ,lin) = T (x,y) − V(x,y,θ,lin)

−
∫ l̄

−l̂

Nx (x ′ − cos θ )ds

−
∫ l̄

−l̂

Ny (y ′ − sin θ )ds, (5)

where we introduce the Lagrangian multipliers Nx(s,t) and
Ny(s,t), which are to be identified with the x and y components
of the internal force of the rod. The dynamics of the rod is
consequently given by first-order conditions to minimize the
action A,

A(x,y,θ,lin) =
∫ t2

t1

L(x(s,t),y(s,t),θ (s,t),lin(t)) dt. (6)

Following this minimization procedure (reported in the Ap-
pendix), the equations governing the dynamics of the region
of the rod outside the sliding sleeve, s ∈ (lin(t),l̄], are obtained
as

x ′(s,t) = cos θ , y ′(s,t) = sin θ , (7a)

B θ ′(s,t) = M , M ′(s,t) = Nx sin θ − Ny cos θ , (7b)

N ′
x(s,t) = γ ẍ , N ′

y(s,t) = γ ÿ , (7c)

complemented by the following boundary conditions:

x(lin(t),t) = 0, y(lin(t),t) = 0, θ (lin(t),t) = 0, (8a)

Nx(lin(t),t) = −Fc − klin(t) − γ (lin + l̂) ¨lin(t), (8b)

M(l̄,t) = 0, Nx(l̄,t)=−P cos α, Ny(l̄,t)=P sin α.

(8c)

The action of the configurational force Fc generated at the
sliding sleeve exit [19–22],

Fc = −M2(lin(t),t)

2B
, (9)

is disclosed from the equilibrium equation along the x axis,
Eq. (8b), recalling that M(lin) = M(l+in ).

III. ASYMPTOTIC SELF-RESTABILIZATION

Considering the quasistatic condition ẍ = ÿ = ¨lin = 0
in Eqs. (7) and (8), the equilibrium configuration weq =
(xeq(s),yeq(s),θeq(s),leq) for a fixed P is governed by the
following equations for s ∈ (leq,l̄ ]:

B θ ′′
eq(s) = Nxeq(s) sin θeq(s) − Nyeq(s) cos θeq(s),

Nx
′
eq(s) = 0, Ny

′
eq(s) = 0, (10)

subject to the following boundary conditions:

xeq(leq) = 0, yeq(leq) = 0, θeq(leq) = 0,

M2
eq(leq)

2B
= P cos α − k leq,

Nxeq(leq) = −P cos α, Nyeq(leq) = P sin α. (11)
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The governing relations in Eq. (10) and the boundary
conditions in Eq. (11) can be reduced to the rotational
equilibrium given by a differential equation for the rotation
field at equilibrium θeq,

θ ′′
eq(s) + λ2[cos α sin θeq(s) + sin α cos θeq(s)] = 0,

s ∈ (leq,l̄ ], (12)

with the moving boundary leq, defined by the axial equilibrium
at the exit of the sliding sleeve,

leq = B

k

{
λ2 cos α − 1

2
[θ ′

eq(leq)]2

}
, (13)

where the load parameter λ2 = P/B has been introduced and
the rotation field θeq(s) is subject to the boundary conditions
θeq(leq) = 0 and θ ′

eq(l̄) = 0.

A. Equilibrium paths

The solution at equilibrium can be obtained through an
analytical manipulation of Eqs. (12) and (13), based on change
of variables and integrations. Defining θl̄ as the rotation at the
free end (s = l̄) at equilibrium, θeq(l̄) = θl̄ , the dimensionless
load p and the dimensionless stiffness ratio q as

p = P

kl̄
, q = 16kl̄3

27π2B
, (14)

the equilibrium configuration (restricted to the first deforma-
tion mode) is provided at varying load p and tilt angle α as the
solution θl̄(p) and leq(p) to the following system of nonlinear
equations:

(1 − 2η2)2p3 − 2(1 − 2η2)p2 + p = 16[K(η) − K(m,η)]2

27π2q
,

leq = p(1 − 2η2)l̄. (15)

In Eq. (15), K(η) and K(m,η) are the complete and incom-
plete elliptic integral of the first kind, respectively, and the
parameters m and η depend on the angles α and θl̄ as

m = arcsin

[
sin α

2

η

]
, η = sin

θl̄ + α

2
. (16)

Once the nonlinear system of Eq. (15) is solved, the kinemat-
ical fields can be evaluated through

θeq(s) = 2 arcsin[η sn(λ(s − leq) + K(m,η),η)] − α,

u1(s) = −2η

λ
sin α{cn(λ(s − leq) + K(m,η),η)

− cn(K(m,η),η)} − leq + cos α

{
−s

+ 2

λ

[
E[am(λ(s − leq) + K(m,η),η)]

−E[am(K(m,η),η)]
]}

,

u2(s) = 2η

λ
cos α

{
cn(λ(s − leq) + K(m,η),η)

− cn(K(m,η),η)
} + sin α

{
−s

+ 2

λ

[
E[am(λ(s − leq) + K(m,η),η)]

−E[am(K(m,η),η)]
]}

, (17)

where u1(s), u2(s) are the axial and transverse displacement
fields, the functions am, cn, and sn denote the Jacobi amplitude,
Jacobi cosine amplitude, and Jacobi sine amplitude functions,
respectively, while E(x,η) is the incomplete elliptic integral
of the second kind of modulus η. Equations (17)2 and (17)3,
evaluated at the rod’s loaded end, provide the following
expressions for the axial and transversal displacements of the
free edge of the rod:

u1(l̄) = 1

λ

{
2η sin α cos m + cos α[2E(η) − 2E(m,η)

+K(m,η) − K(η)] + K(m,η) − K(η)
} − leq,

u2(l̄) = 1

λ

{
2η cos α cos m + sin α[2E(m,η) − 2E(η)

+K(η) − K(m,η)]
}
. (18)

The solution of the cubic equation (15)1 provides three
values of p associated to the same triad given by the free end
rotation θl̄ , the stiffness ratio q, and the angle α, namely

pA = pA(θl̄,q,α), pB = pB(θl̄,q,α), pC = pC(θl̄,q,α),

(19)

with pC being always real, while pA and pB taking real or
complex values depending on the positive or negative sign of
the discriminant 
,


(θl̄,q,α) = 64

27(1 − 2η2)5

[K(η) − K(m,η)]2

π2q

[
1 − (1 − 2η2)

4[K(η) − K(m,η)]2

π2q

]
. (20)

When the discriminant 
 is positive, the roots pA, pB, pC are all real and can be expressed through the following trigonometric
relation [24]:⎧⎨

⎩
pA

pB

pC

⎫⎬
⎭ =

2
(
1 + sgn[1 − 2η2] cos

{
1
3

[
2π (j − 1) + arccos

({ 8(1−2η2)[K(η)−K(m,η)]2

π2q
− 1

}
sgn

[
1 − 2η2

])]})
3(1 − 2η2)

, (21)

where j = {2,3,1}, respectively, for the root {pA, pB, pC}.
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FIG. 4. Equilibrium paths for the system with stiffness ratio q = 0.3 (upper part) and q = 0.7 (lower part) and for three different tilt angles.
In particular, the equilibrium paths are shown for angles α smaller than (blue curves), corresponding to (pink curves), and higher than (green
curves) the maximum tilt angle αmax for which asymptotic self-restabilization is observed. Therefore, in two cases (α = 40◦ and α = 11◦, green
curves) restabilization does not occur. Left: roots pA, pB , and pC as a function of the free-end angle θl̄ at equilibrium. Stable and unstable paths
(as found in Sec. III B) are depicted through continuous and dashed lines, respectively. The transition point in the equilibrium paths is marked
through a circle (for the connection of A with B) and a square (for the connection of A with C). Right: dimensionless load P/(k l̄) applied to
the rod’s end reported as a function of its axial (right part) and transverse (left part) displacements, u1(l̄) and u2(l̄), made dimensionless through
division by the initial external length l̄. Only the stable paths departing from the unloaded configuration and attained during a monotonic
increase of the loading are reported. The evolution of the deformed configuration for a self-restabilizing system (q = 0.3 and α = 26.78◦) is
sketched in Fig. 2 (upper part, right). The configuration evolution for a non self-restabilizing system is qualitatively similar to that sketched in
Fig. 2 (lower part, right) for the case q = 1.2 and α = 26.78◦.

Equilibrium paths for the system with stiffness ratio q =
0.3 and q = 0.7 are reported in Fig. 4 (upper and lower parts,
respectively) for three different tilt angles α. The roots pA, pB,
and pC , given by Eq. (21), of the cubic Eq. (15)1 are plotted in
Fig. 4 (left) as functions of the free end rotation θl̄ . Stable and
unstable paths (see next section for the details) are reported as
continuous and dashed lines, respectively. The limit values of
the ranges where the roots pA, pB, and pC prevail are marked in
the figure with circular and square spots, the former indicating
the transition from solution A to B, the latter from A to C.

Using Eq. (18), the stable equilibrium paths (departing
from the undeformed state) are reported in Fig. 4 (right) in
terms of the dimensionless load p = P/kl̄ as a function of
the dimensionless displacement components, namely, the axial
displacement u1(l̄)/l̄ and the deflection u2(l̄)/l̄.

It is clear from Fig. 4 that the equilibrium paths are strongly
affected by the tilt angle α and, depending on this parameter,
the asymptotic self-restabilization may or may not occur.

In particular, during a monotonic loading, whenever the tilt
angle is smaller than or equal to the maximum tilt angle
for restabilization, α � αmax(q), the rod initially leaves the
undeformed straight configuration and then “spontaneously”
and smoothly returns back to this configuration, until the
limit is approached of complete penetration of the rod into
the sliding sleeve. Therefore, the rod deflection u2(l̄) initially
increases, but later decreases until it vanishes, in the limit p →
1/ cos α, so that asymptotic self-restabilization occurs. When
this does not occur, α > αmax(q), the complete penetration of
the rod into the sliding sleeve does never realize. Therefore, in
the cases considered in Fig. 4, asymptotic self-restabilization
occurs for α � αmax(q = 0.3) ≈ 26.78◦ (Fig. 4, upper part)
and for α � αmax(q = 0.7) ≈ 5.49◦ (Fig. 4, lower part).

The restabilization phenomenon is displayed whenever the
discriminant 
, Eq. (20), takes nonpositive values for a set of
the end rotations θl̄ . Through this criterion, the values of the
stiffness ratio q and the tilt angle α for which the asymptotic
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deg

FIG. 5. The region enclosed by red continuous line and the two
axes contains all the pairs of the stiffness ratio q and the tilt angle
α for which asymptotic self-restabilization occurs. The blue dashed
line is the approximation Eq. (22) for the maximum tilt angle αmax

for which asymptotic self-restabilization is observed, reported as red
continuous line. Inset: maximum deflection (made dimensionless
through division by the initial external length l̄) occurring during
asymptotic self-restabilization at varying the stiffness ratio q, evalu-
ated considering αmax(q). It is observed that the maximum value of the
deflection is attained for q = 0.45, corresponding to αmax = 16.29◦,
for which max{u2(l̄)/l̄}|αmax = 0.21.

self-restabilization occurs have been numerically obtained and
reported in Fig. 5. It is observed that the maximum tilt angle
αmax(q) (reported as red continuous line in Fig. 5) can be
approximately described through the following equation:

αmax(q) 	 π

2
[1 − 1.97

√
1 − (1 − q)1.97], (22)

which is represented as the blue dashed line in Fig. 5.
We finally note that asymptotic self-restabilization may

occur only for q < 1, which is the condition for which the
bifurcation does not occur in the case when the tilt angle is
null (α = 0) [10]. Therefore, asymptotic self-restabilization
is strictly related to the fact that the perfect system does
not display buckling, but only a pure penetration of the
straight rod into the sliding sleeve at increasing load. As
further evidence of this concept, trajectories of the loaded end,
together with intermediate deformed configurations, obtained
during a monotonic loading are shown in Fig. 2 for q = 0.3
(upper part) and for q = 1.2 (lower part) in the perfect (α = 0,
left) and imperfect case (α = 26.78◦, right).

Finally, as a quantitative measure of the self-restabilization
effect, the maximum deflection u2(l̄) attained during loading
has been evaluated for a tilt angle corresponding to the
maximum tilt angle, α = αmax. This quantity is reported as
a function of the stiffness ratio q in the inset of Fig. 5. It
is observed that the largest deflection that may occur in the
system during the asymptotic self-restabilization is about 21%
of the initial external length l̄ and is attained for q ≈ 0.45,
which corresponds to αmax ≈ 16.29◦ as maximum tilt angle.

B. Stability from vibrations

Once the equilibrium configurations are found by solving
Eqs. (10) and (11), we test the stability by computing the linear
vibrations of the system about each equilibrium configuration,

Weq(s,t) = (
xeq(s,t),yeq(s,t),θeq(s,t),leq(t),

Meq(s,t),Nxeq(s,t),Nyeq(s,t)
)
, (23)

so that we consider the dynamics Eqs. (7) and (8) and look for
the linear modes δW(s) defining the perturbed configuration
as follows:

W(s,t) = Weq(s,t) + ε δW(s) cos ωt, (24)

where ω is the frequency and |ε| 
 1. Inserting the represen-
tation Eq. (24) into the dynamics equations, using Eqs. (10)
and retaining only the linear terms in ε, yields the following
nonautonomous linear system of differential equations for the
modes

δx ′(s) = −δθ sin θeq, δy ′(s) = δθ cos θeq, B δθ ′ = δM,

δN ′
x(s) = −ω2γ δx, δN ′

y(s) = −ω2γ δy,

δM ′(s) = δNx sin θeq − δNy cos θeq

+ δθ
(
Nxeq cos θeq + Nyeq sin θeq

)
. (25)

The boundary conditions for the modes are found by inserting
Eq. (24) into Eqs. (1) and (8), and using Eq. (11) to obtain

δx(leq) = −δlin, δy(leq) = 0,

δθ (leq) = −δlin
Meq(leq)

B
, (26a)

δNx(leq) = −M(leq) δM(leq)

B
+ λ2 sin α M(leq) δlin − kδlin

+ γ ω2 (leq + l̂) δlin, (26b)

δM(l̄) = 0, δNx(l̄) = 0, δNy(l̄) = 0. (26c)

The stability of the equilibrium solution Weq(s,t) is therefore
related to the sign of ω2, with ω2 > 0 corresponding to a
stable configuration, and ω2 < 0 to an unstable configuration.
We solve the linear boundary value problem Eqs. (25) and
(26) using a shooting method approach: at s = leq only
three quantities are unknown X = (δlin,δM(leq),δNy(leq)),
the other being given by Eqs. (26a) and (26b). Once the
integration of the linear system Eq. (25) is performed, the
boundary conditions Eq. (26c) depends linearly on X , so that
writing Y = (δM(l̄),δNx(l̄),δNy(l̄)) this linear problem can be
expressed as

Y = H(ω2) X = 0. (27)

Requiring X to be nonzero imposes the matrix H to be
singular. Defining h(ω2) = det[H(ω2)], the mode frequencies
ωi can be obtained as the roots of h, namely, solving the
equation h(ω2

i ) = 0. As Eqs. (25) and (26) can be recast as
a Sturm-Liouville problem [10], we know that the lowest
eigenvalue ω2

1 is finite [25,26]. For each equilibrium solution,
we plot sgn(h) ln(1 + |h|) as a function of ω2 and record the
smallest eigenvalue ω2

1. The equilibrium is then stable if the
lowest eigenvalue is strictly positive and unstable if it is strictly
negative. Such analysis allowed the definition of stability for
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FIG. 6. The stability of each equilibrium configuration of the
mechanical system showing restabilization is detected by finding
the roots ω2

i of the determinant h(ω2
i ) and revealed by plotting the

quantity sgn(h) ln(1 + |h|). Here two equilibrium configurations are
considered, both characterized by the same values q = 0.7, α =
5.49◦, and P/kl̄ 	 0.29, but different free end rotations θl̄ = 0.1π

and θl̄ = π/3, represented, respectively, as a red triangle and a blue
dot in the inset. In the former case (solid red curve), the lowest three
roots are given by ω2

1 	 0.24 �2, ω2
2 	 1.36 �2, and ω2

3 	 123.56 �2,
with � = (2π/l̄2)

√
B/γ , while in the latter case (dashed blue curve),

they are ω2
1 	 −0.11 �2, ω2

2 	 1.36 �2, and ω2
3 	 49.1 �2. As a

result, the configuration with θl̄ = 0.1π is stable (with a positive
ω2

1) while the configuration with θl̄ = π/3 is unstable (with a
negative ω2

1).

the equilibrium paths reported in Fig. 4. As an example, the
typical behavior of the function sgn(h) ln(1 + |h|) for a stable
and an unstable equilibrium configuration is reported in Fig. 6,
showing respectively a positive and a negative value for the
lowest root ω2

1 of the determinant h(ω2). The two considered
equilibrium configurations are both characterized by the same
values of q = 0.7, α = 5.49◦, and P/kl̄ 	 0.29, while they
correspond to the two different free end rotations, namely,
θl̄ = 0.099π (stable configuration) and θl̄ = π/3 (unstable
configuration).

C. Experiments

Experiments have been performed at the “Instabilities Lab”
of the University of Trento on the prototype reported in
Fig. 7; see also the Supplemental Material [27] for a video
describing the experiments. The linear elastic axial spring
in Fig. 1 has been realized by hanging a highly-stiff bar
(to which the elastic rod is clamped and orthogonal) to two
carbon steel (EN 10270-1 SH) springs (D19100, 1.25-mm
wire diameter and 8-mm mean coil diameter, k = 225 N/m,
purchased from D.I.M.). The stiff bar can only rigidly translate
as constrained by two linear bushings (LHFRD12, Misumi
Europe) parallel to the rod in its undeformed state. The tilt
angle α has been provided by simply inclining the prototype,
through a lifting the right support (with the movable crosshead
of a MIDI 10 load frame, from Messphysik). The penetration
length leq of the rod has been obtained by measuring the
displacement of the lower edge of the rod through a magnetic
noncontact displacement transducer GC-MK5 (from Gemac).
The data have been acquired with a NI CompactDAQ system,

α α

FIG. 7. The design scheme (left) employed to realize the structure
shown in Fig. 1 and its practical realization (right) used in the
experimental validation of the asymptotic self-restabilization.

interfaced with Labview 8.5.1 (National Instruments). All the
photos were taken with a Sony NEX 5N digital camera,
equipped with 3.5–5.6/18–55 lens (optical steady shot from
Sony Corporation).

A first experiment showing the asymptotic self-
restabilization is reported in Fig. 3, where five snapshots of
the system for a tilt angle α = 12◦ are reported at increasing
applied loading, P = {0,24,44,64,84} N, on a C62 Carbon-
steel rod (25 mm × 2 mm cross section, bending stiffness B =
2.70 Nm2) of external length in the unloaded configuration
l̄ = 0.47 m. It can be noted that after an initial increase in
the deflection (from snapshot A to C), a further increase of
load realizes a decrease in the deflection (from snapshot C
to E). The experimental values of the deflection (normalized
through division of the initial external length), measured from
image post-processing, are also reported dotted, as a function
of the dimensionless load and compared with the theoretical
equilibrium path.

In a second experiment, the dead load P at the free end of the
elastic rod of length l̄ = 0.45 m (25 mm × 2 mm cross section,
bending stiffness B = 2.70 Nm2) was imposed by filling two
containers with water at a constant rate of 10 g/s, in order
to obtain a slow and continuous increase in the applied load,
which was measured with two miniaturized Leane XFTC301
(R.C. 500N) load cells. The experimental results, expressed
in terms of applied dimensionless load p as a function of
both the dimensionless deflection, u2(l̄)/l̄ (left), and amount
of the rod inserted into the sliding sleeve, leq/l̄ (right), are
reported in Fig. 8 for a dimensionless stiffness parameter
q = 0.45, together with the theoretically predicted behavior.
Results reported as pink curves refer to a tilt angle α = 9◦, for
which asymptotic self-restabilization occurs, whereas results
reported as blue curves refer to a tilt angle α = 20◦, for which
asymptotic self-restabilization does not occur. Experimental
results are reported with continuous lines (from continuous
measures) and dots or squares (from measures extracted from
a video of the experiments through image post-processing,
for α = 9◦ and α = 12◦, respectively), together with the
theoretical prediction (dashed line), showing a nice agreement
between theory and experiments.

A movie showing the experiments considered in Fig. 8 is
available as electronic Supplemental Material [27].
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FIG. 8. Comparison between theoretical and experimental re-
sults. The dimensionless load p = P/(kl̄) is reported as function
of both the dimensionless deflection u2(l̄)/l̄ (left) and amount of the
rod penetrated into the sliding sleeve leq/l̄ (right). The behavior of
the deflection reveals that for α = 9◦ (shown pink) the asymptotic
self-restabilization does occur, while for α = 20◦ (shown blue) the
asymptotic self-restabilization does not. Continuous and dashed lines
denote, respectively, experimental measures and theoretical predic-
tions. Dots and squares indicate experimental measures extracted
from a video of the experiment [27] through image post-processing,
for α = 9◦ and α = 12◦, respectively.

IV. CONCLUSION

A structure that self-restabilizes, namely, capable of recov-
ering its initial trivial path after a post-bifurcation deforma-
tion, would be useful for applications in soft robotics and
deformable mechanisms. One example of such a structure
has been found in an asymptotic sense, so that a structural
system has been shown to exhibit a deflection initially
increasing from zero and later decreasing until vanishing.
The asymptotic self-restabilization is determined by the effect
of a configurational (or “Eshelby-like”) force, which has
been theoretically deduced from the principle of least action.
The mechanical behavior of the structure and the stability
of the equilibrium paths have been theoretically solved and
experimentally confirmed, so that the presented results may
open new perspectives for technological applications. The
achievement of (nonasymptotic) self-restabilization in the
presence of linear elastic constraints still remains a challenge
to be addressed.
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APPENDIX: LAGRANGIAN FIRST VARIATION

Introducing the vector w = (x,y,θ,lin), collecting the func-
tions describing the kinematics of the system, we consider the

conditions for a state w to minimize the action A(w), under
the boundary conditions Eq. (1) and fixed x(s,t), y(s,t), θ (s,t),
and lin(t), at the two instants t = t1 and t = t2. Calculus of
variations shows that a necessary condition for configuration
w to be a solution is given by

A′(w) = 0, (A1)

or equivalently

dA(w + εδw)

dε

∣∣∣∣
ε=0

= 0 , ∀ δw, (A2)

where δw = (δx,δy,δθ,δlin) is a variation of the configuration
w, such that

δw(s,t) = (δx(s,t),δy(s,t),δθ (s,t),δlin(t)) = 0,

for t = t1 and t = t2 ∀s. (A3)

In addition to the conditions in time Eq. (A3), the boundary
conditions Eq. (1) implies the following kinematical con-
straints on the variation δw:

δx(lin) = −δlin, δy(lin) = 0, δθ (lin) + δlin θ ′(lin) = 0.

(A4)

We perform integrations by parts with regard to time t for the
kinetic energy T and remark that the boundary terms vanish
due to the condition Eq. (A3). We then perform integrations
by parts with regard to the arc-length s for the total potential
energy V and finally obtain

dA(w + εδw)

dε

∣∣∣∣
ε=0

=
∫ t2

t1

a(w,δw)dt, (A5)

with

a(w,δw) =
∫ l̄

−l̂

−γ (ẍ δx + ÿ δy ) ds + 1

2
B δlin θ ′2(lin)

−P cos α δx(l) + P sin α δy(l)

− k [x(−l̂) + l̂ ] δx(−l̂) +
∫ l̄

lin

Bθ ′′ δθ ds

− [Bθ ′ δθ ]l̄lin +
∫ lin

−l̂

N ′
x δx ds − [Nx δx]lin−l̂

−
∫ lin

−l̂

Nx sin θ δθ ds+
∫ l̄

lin

N ′
x δx ds − [Nx δx]l̄lin

−
∫ l̄

lin

Nx sin θ δθ ds+
∫ lin

−l̂

N ′
y δy ds − [Ny δy]lin−l̂

+
∫ lin

−l̂

Ny cos θ δθ ds+
∫ l̄

lin

N ′
y δy ds − [Ny δy]l̄lin

+
∫ l̄

lin

Ny cos θ δθ ds, (A6)

where the possibility of having a jump at the sliding sleeve exit
point in the internal force Nx(lin) and Ny(lin) has been taken
into account. Note that for simplicity of presentation, the term
θ ′(lin) in Eq. (A6) and in the following, refers to the non-null
value of the function at this point, that is just outside the
sliding sleeve, s = l+in , so that we have θ ′(lin) = θ ′(l+in ). Using

063005-8



ASYMPTOTIC SELF-RESTABILIZATION . . . PHYSICAL REVIEW E 94, 063005 (2016)

conditions Eqs. (A4), a further manipulation of Eq. (A6) leads
to

a(w,δw) =
∫ l̄

lin

(Bθ ′′ − Nx sin θ + Ny cos θ ) δθ ds

+
∫ lin

−l̂

[(N ′
x − γ ẍ) δx + (N ′

y − γ ÿ) δy] ds

− [P cos α + Nx(l̄)]δx(l̄) + Ny(−l̂) δy(−l̂)

+
∫ l̄

lin

[(N ′
x − γ ẍ) δx + (N ′

y − γ ÿ) δy] ds

+{Nx(−l̂) − k[x(−l̂) + l̂]} δx(−l̂)

+
{

[[Nx(lin)]] + 1

2
B θ ′2(lin)

}
δx(lin)

+
∫ lin

−l̂

(−Nx sin θ + Ny cos θ ) δθ ds

+ [P sin α − Ny(l̄)]δy(l̄) − B θ ′(l̄) δθ (l̄),

(A7)

which annihilation, for every variation δw = (δx,δy,δθ,δlin),
yields the equations governing the dynamics of the elastic
system, Eqs. (7), and the related boundary conditions, Eqs. (8).
In Eq. (A7) the symbol [[·]] denotes the jump of the relevant
argument evaluated at a specific point, namely,

[[f (b)]] = f (b+) − f (b−). (A8)

In particular, requiring the first variation, Eq. (A5), to vanish
for every rotation field δθ (s,t), and for t ∈ (t1; t2) yields, from
Eq. (A7), the elastica

−Nx(s,t) sin θ (s,t) + Ny(s,t) cos θ (s,t) = 0,

s ∈ [−l̂,lin), (A9)

Bθ ′′(s,t) − Nx(s,t) sin θ (s,t) + Ny(s,t) cos θ (s,t) = 0,

s ∈ (lin,l̄ ], (A10)

together with the boundary condition

θ ′(l̄,t) = 0. (A11)

On the other hand, imposing Eq. (A5) to be zero for every
variation in the displacement fields δx(s,t) and δy(s,t), and

for t ∈ (t1; t2), yields the dynamic equations for the system
along the x and y directions,

N ′
x(s,t) = γ ẍ(s,t), N ′

y(s,t) = γ ÿ(s,t),

s ∈ [−l̂,lin) ∪ (lin,l̄ ], (A12)

as well as the translational equilibrium at specific points: at
the loaded end,

Nx(l̄,t) = −P cos α, Ny(l̄,t) = P sin α, (A13)

at the end attached to the spring,

Nx(−l̂,t) = k[x(−l̂,t) + l̂], (A14)

and at the sliding sleeve exit,

[[Nx(lin,t)]] = − 1
2B θ ′2(lin,t). (A15)

Equation (A15) discloses that a non-null jump is present in the
axial internal force at the exit of the sliding sleeve and that is
provided by the presence of an outward configurational force
Fc developed there,

[[Nx(lin,t)]] = −Fc. (A16)

Due to the linear elastic behavior of the rod, the bending
moment is related to curvature through M(s,t) = B θ ′(s,t),
and the configurational force Fc can be rewritten as Eq. (9),
similar to Refs. [19–22]. We note that there is also a jump in
the y component of the internal force, [[Ny(lin,t)]] 
= 0, but that
it is not prescribed and has to be evaluated once the solution is
known. The governing equation for the part of rod inserted in
the sliding sleeve is here omitted. We integrate Eq. (3), using
boundary conditions Eq. (1) and the inextensibility constraint,
to obtain

y(s,t) = θ (s,t) = 0, x(s,t) = s − lin(t), s ∈ [−l̂,lin).

(A17)

From Eq. (A9) we then have Ny(s,t) = 0 for s ∈ [−l̂,lin). Next,
we integrate Eqs. (A12) and (A14) to find

Nx(s,t) = −γ (s + l̂ ) ¨lin(t) − k lin(t), s ∈ [−l̂,lin). (A18)

Finally, using the jump condition Eq. (9) we obtain the x

component of force just after the exit of the sliding sleeve,

Nx(l+in ,t) = −Fc − k lin − γ (lin + l̂) ¨lin. (A19)
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