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We report on the capillarity-induced snapping of elastic beams. We show that a millimeter-sized water
drop gently deposited on a thin buckled polymer strip may trigger an elastocapillary snap-through
instability. We investigate experimentally and theoretically the statics and dynamics of this phenomenon
and we further demonstrate that snapping can act against gravity, or be induced by soap bubbles on
centimeter-sized thin metal strips. We argue that this phenomenon is suitable to miniaturization and design
a condensation-induced spin-off version of the experiment involving a hydrophilic strip placed in a steam
flow.
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Elastic arches and spherical shells can sustain large loads
but they all eventually fail through an elastic instability,
called snapping or snap-through buckling; see Refs. [1,2] for
early studies on the subject. This phenomenon is central to
the failure of arches and vaults but has also been exploited to
actuate bistable switches or valves [3] with point force [4],
electrostatic [5], piezoelectric [6], or vibrational [7] loading.
Snapping is also a useful mechanism in the design of
responsive surfaces with applications to on-demand drug
delivery, optical surface properties modification, or on-com-
mand frictional changes [8]. Nature provides examples of
practical applications of snapping in prey capturing by
carnivorous plants [9], fast ejection of spores [10], or under-
water plant suction traps [11]. Similarly, polymersomes [12]
or malaria infected blood cells [13] also exhibit snapping
events (or fast shell eversion) that promote fast ejection of
drug components or parasites. These examples differ in their
triggering mechanisms, but they all involve a snapping
instability including fast movements and curvature reversals
that are a consequence of the sudden release of stored elastic
energy and its transfer into kinetic energy.
Here we show how capillary forces may be used to

trigger snap-through instabilities: a drop deposited on a
thin buckled elastic strip induces snapping, possibly even

against gravity, as illustrated in Fig. 1 and the Supplemental
Material [14]. Our experiments consist in loading buckled
elastic strips with either transverse point forces or water
droplets. Initially flat elastic strips of length L and width w
are carefully cut out of a thin polymer film made of
polydimethylsiloxane (PDMS, Sylgard 184 Elastomer base
blended with its curing agent in proportion 10∶1), spin-
coated and cured at 60 °C for two hours. The resulting
thickness h of the samples is quantified with an optical
profilometer. The Young’s modulus of our samples, mea-
sured using a Shimadzu testing machine, is found to be
E ¼ 1.50� 0.05 MPa, enabling us to evaluate their bend-
ing rigidity EI ¼ Eh3w=12. Experiments are carried out
with two different strips whose geometrical and mechanical
properties are reported in Table I. These PDMS strips are
clamped at both ends in microscope slides with cut edges.
In point-force induced snapping, force-displacement data
are gathered with a microforce sensor using capacitive
deflection measurement [15] (Femtotools FT-S270) and a
nanopositioner (SmarAct SLC-1730). Capillary snapping is
investigated by depositing water drops (surface tension γ)
with Hamilton syringes or a syringe pump (Harvard
Apparatus) with polytetrafluoroethylene (PTFE) coated
needles. The elastocapillary length Lec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh3=12γ

p
of

FIG. 1 (color online). Snapping against gravity. Using a PTFE coated needle, a drop is gently deposited under a downward buckled
PDMS strip (case S2 in Table I). Within a few milliseconds, capillary forces induce a snap-through elastic instability of the strip which
jumps to the upward buckled state. Note that in this setup surface tension overcomes both elastic forces and gravity. The liquid is tap
water dyed with blue ink for visualization purposes. The time interval between each snapshot is 5 ms.
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the samples is reported in Table I. Video acquisition is
carried out with an ultrafast Photron SA-5 camera.
In order to reveal the role of capillarity in snap-through

instability, we start with considering a “dry” setup. When
confined axially, an initially straight beam buckles and
adopts an arched shape; the stronger the confinement the
higher the arch. If one now fixes the confinement and
applies a downward vertical force F at the middle point of
the beam, the height Y of the arch decreases; see Fig. 2. As
this vertical force reaches a threshold F ¼ F⋆ the arch
snaps to a downward configuration [1,2,16]. This threshold
value for snap-through is known to depend on the position
x of the applied force and reaches a local maximum when
x=Δ ¼ 1=2 [17]. In Fig. 2, a comparison is made between
experiments and theory. Theoretical bifurcation curves are
computed using Kirchhoff equations [18] and experiments
are carried on the strip S1 (see Table I) in a setup where the
arch height Y is reduced. As we controlled Y instead of the
force F, configurations in the asymmetric branch are stable
and snap-through really only occurs as F reaches zero.
We nevertheless keep on referring to the point F ¼ F⋆ as
the snapping threshold. It should be noted that the fixed

confinement Δ ¼ 0.95L is small enough for the precise
way with which the vertical loading is applied to be
disregarded [16], but large enough for extension effects
to be negligible [19].
We now replace the point load with a water drop. Drops

of increasing volume are deposited or hung on the same
strip (case S1 in Table I). The height of the arch Y is
recorded as a function of the total weight F of the drop; see
Fig. 3. As the volume of the drop is increased, the height of
the arch decreases until a limit is reached where snap-
through occurs. We remark that much heavier drops are
required to trigger the snap-through instability in the
hanging-drop setup as compared to the sitting-drop setup,
the dry setup being intermediate. We conclude that only
considering the weight of the drop is not enough; i.e.,
capillary forces have a strong influence on snap-through.
As known in shell indentation, the response of elastic
structures to external loads strongly depends on whether the

TABLE I. Length L, width w, thickness h, confinement
parameter Δ, elastocapillary length Lec and typical bending
dynamics time T for the two experimental setups.

Setups L (mm) w (mm) h (μm) Δ=L Lec=L T (ms)

S1 5.0 1.07 68.3 0.95 6.7 34
S2 3.5 0.98 33.7 0.90 13.6 33

000000000000000000

FIG. 2 (color online). Snap-through instability with point force.
An elastic strip S1 is clamped at both ends with fixed Δ ¼ 0.95L
and vertical indentation at x=Δ ¼ 1=2 is performed. The bifur-
cation diagram (theory: blue curve, experiments: filled circles)
comprises a symmetric and an asymmetric branch connecting at
F ¼ F⋆ (experimentally measured F⋆ ¼ 55 μN). Inset: Evolu-
tion of the snapping threshold F⋆ as a function of the indentation
position x, evidencing two preferential positions where the
threshold is minimal: x=Δ≃ 0.37 and 0.63.

FIG. 3 (color online). Influence of capillarity on the bifurcation
diagram of Fig. 2. Drops of increasing volume are hung below
(orange triangles) or deposited above (purple squares) the elastic
strip S1, buckled upward with Δ ¼ 0.95L. As the nondimen-
sional drop weight FL2=EI increases, the deflection Y=L of the
strip midpoint decreases, up to a point where snapping occurs
(indicated by the dashed lines on the diagram). For comparison
we plot the data of Fig. 2, filled circles, performed on the same S1
strip. For both square and triangle sets, the volume increase
between each measure is 0.5 μl, corresponding to a nondimen-
sional force increase of 2.73. The left (orange) panel shows
hanging configurations with, from bottom to top, V ¼
F=ρg ¼ 0.5 μl, 3 μl, 5.5 μl, 9 μl, with ρ ¼ 1000 kg=m3.
The right (purple) panel shows sitting configurations with, from
bottom to top, V ¼ 0.5 μl, 1 μl, 1.5 μl, 2 μl. Note that
the present dead loading (squares and triangles) makes the
asymmetric branch unstable, as opposed to the rigid loading
setup of Fig. 2.
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loading is performed through point forces or distributed
pressure loads [20]. In our case the water drop applies
distributed hydrostatic and Laplace pressures as well as
localized meniscus forces; see Fig. 3. The combined action
of Laplace and meniscus forces can be seen as two opposite
effective bending moments, promoting the eversion of the
strip [21] when the drop is located above, and hindering it
when located below.
To further investigate relative strengths of capillarity,

weight, and elastic forces, we study the following setup:
an elastic strip (case S2 in Table I) is buckled downward
and a drop is hung at a given location under the strip; see
Fig. 4(c). Parameters are the total weight F of the drop and
the abscissa xM of the middle point of the wet region of the
beam. Experiments show that snapping only occurs for
specific values of F and xM; see Fig. 4(b). For small drops
(i.e., small F), capillary forces exceed self-weight (a drop
deposited under a rigid surface is stable if small enough)
but are not powerful enough to overcome elastic forces,
mainly because the lever arm of the effective bending
moments discussed earlier is not large enough: the wet
length is indeed a key factor in determining the behavior of
elastocapillary systems [22]. Consequently the system

stays in the downward configuration. For moderate drops
(with larger wet lengths) we see in Fig. 4(b) that provided
the location of the drop is carefully chosen, snapping
occurs, resulting in a final state where the strip is bent
upward: in this case capillary forces overcome both weight
and elastic forces. For large drops capillarity still defeats
elasticity but self-weight is too large and the system stays in
the downward configuration.
To understand the different regions of the (xM, F) phase

diagram we numerically compute equilibrium and stability
of the drop-strip system in the following way. We consider
a 2D setting where a liquid drop of given volume is hung
under an elastic strip of length L, thickness h, and bending
rigidity Eh3=12. The strip is clamped at both ends which
are separated by a fixed distance Δ. We use the arclength
s along the strip to parametrize its position rsðsÞ ¼
ðxsðsÞ; ysðsÞÞ. The unit tangent, tsðsÞ ¼ drs=ds, makes
an angle θsðsÞ with the horizontal: ts ¼ ðcos θs; sin θsÞ.
The drop lies between positions s ¼ sA and s ¼ sB on the
strip, and the shape of the liquid-air interface, parametrized
with its own arclength σ, is riðσÞ ¼ ðxiðσÞ; yiðσÞÞ and has
total contour length l; see Fig. 4(c). The bending energy of
the strip and gravity potential energy of the water are

EbendþEhydro ¼
Eh3

24

Z
L

0

½θ0sðsÞ�2dsþρg
Z Z

A
ydA (1)

where A ¼ R
l
0 yiðσÞx0iðσÞdσ −

R
sB
sA

ysðsÞx0sðsÞds is the area
between the strip and the liquid-air interface. The energy
per unit area of solid-liquid (respectively, solid-air and
liquid-air) interface is noted γls (respectively, γsv and γ).
The total interface energy is then

Esurf ¼ ðsB − sAÞγls þ ½L − ðsB − sAÞ�γsv þ γl: (2)

We minimize the total potential energy U ¼ Ebend þ
Ehydro þ Esurf [23] under the constraints of inextensibility
r0sðsÞ ¼ ts, constant area A, and matching conditions
rsðsAÞ ¼ rið0Þ and rsðsBÞ ¼ riðlÞ. This constrained mini-
mization problem is solved by considering the following
Lagrangian functional:

L½rsðsÞ; θsðsÞ; sA; sB; riðσÞ; θiðσÞ;l� ¼ U − μ · ψ (3)

where the vector ψ comprises all the constraints and μ is the
vector of associated Lagrange multipliers; see Ref. [24].
Classical minimization and continuation techniques are
used to track equilibrium states along branches in bifurca-
tion diagrams. Note that in this 2D model the effective
surface of the drop is not minimal because of its cylindrical
shape. To counterbalance this effect we have used a reduced
surface tension γmodel ¼ 0.67γ, analogous to the surface
correction coefficient introduced in Ref. [25]. In the
computations, sliding of the drop is prevented by con-
straining the mean position sM ¼ ðsA þ sBÞ=2 and the

(a) (b)

(c)

(e)

(d)

FIG. 4 (color online). Phase diagram for elastocapillary snap-
ping: A drop is hung under a strip and the conditions for snapping
to occur are investigated. (a) Possible final states of the system.
(b) Experimental phase diagram plotted in the (xM, F) plane.
Triangles (respectively, ⋆) correspond to experiments where the
drop is deposited on an initially downward (respectively, upward)
buckled strip. (c) Model notations. (d) Theoretical phase diagram
showing bistable A and monostable B and C regions. Note that
here FL2=EI corresponds to 12ρAgL2=Eh3. (e) Evolution of the
theoretical phase diagram as the surface tension used in the model
γmodel takes the values 0.38γ, 0.67γ, and 0.96γ (from left to right).
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mean contact angle ðαA þ αBÞ=2 ¼ 110°. Stability of the
system is assessed by computing the linearized dynamics
about the equilibrium solution. Results are shown in
Fig. 4(d) where the theoretical (xM, F) phase diagram is
plotted. The continuous curve, later referred to as the
instability curve, corresponds to loss of the stability of an
equilibrium configuration. The dashed curve corresponds
to the smooth transition from downward buckled states
(yM < 0) to upward buckled states (yM > 0). These two
curves divide the (xM, F) plane into three regions. In region
A, which lies below the instability curve, downward and
upward buckled configurations are both found to be stable.
As the crossing of the instability curve is associated with
the loss of stability of one of the configurations, in the two
regions above the instability curve there is only one stable
configuration: upward for region B, below the dashed
curve, and downward for region C, above the dashed curve.
We remark that the shape of the instability curve and hence
the topology of the phase diagram is altered by changes in
the value of γmodel, as shown in Fig. 4(e). These numerical
results shed light on experimental findings: in the bistable
region A, a drop deposited under a downward buckled strip
leads to a downward final state unless the perturbation
created during the deposition is too large and the system
jumps to an upward final state, whereas in the monostable
region B the final state is always an upward configuration.
As a cross-check we have experimentally hung drops under
upward buckled strips and found that in regions A and B
the system stays in the upward configuration, thereby
confirming the bistability of region A; see ⋆ markers in
Fig. 4(b).
We next show that snapping may be induced remotely.

The lower side of a PDMS strip is treated with a
hydrophilic coating. The strip is then buckled downward
and placed in a steam flow. Water droplets nucleate on the
hydrophilic side of the strip, coalesce, and eventually
induce snapping; see Fig. 5. This phenomenon could be
used to build moisture sensors that would snap once
ambient humidity has reached a given threshold.
We finally investigate time scales involved in the

dynamics of the snapping instability. The shape of the
beam as it leaves the unstable equilibrium is recorded with
a high-speed camera. The vertical position ysðs ¼ L=2; tÞ
of the midpoint of the beam is extracted from the image
sequence. From the fit ysðL=2; tÞ ¼ y0 þ y1eμt we obtain
the growth rate μ. From this growth rate μ we define a
snapping time τsnap ¼ 1=μ and plot τsnap as a function of the
length L of the beam. For dry snapping and in the case of

controlled vertical displacement the instability occurs as the
force reaches zero. At this point the beam has an unstable
equilibrium shape corresponding to the second buckling
mode of the planar elastica. We numerically compute
the growth rate to be μ ¼ 24.26=T for Δ ¼ 0.95L where
T ¼ L2

ffiffiffiffiffiffiffiffiffiffi
λ=EI

p
is the typical time of bending dynamics (see

Table I) and λ is the mass per length of the beam. As the
growth rate weakly depends on the confinement Δ (e.g.,
μ ¼ 24.42=T for Δ ¼ 0.9L; see also Ref. [19]) we use an
approximate theoretical prediction τsnap ¼ T=24 for dry
snapping. Experiments performed with various materials
and confinements, e.g., dry setups involving L ¼ 0.7 m
metal beams, show that, apart from a deviation at small
lengths attributed to viscous effects in the strip, theory
agrees nicely with experiments; see Fig. 6. Additional
experiments with capillary S1 and S2 setups, but also
setups with soap bubbles actuating L ¼ 0.25 m metal foil
strips (see the Supplemental Material [26]), show that the
snapping time appears to be the same for dry and wet
snapping.
In summary we have shown that the snap-through of a

beam can be triggered by capillary forces. More precisely a
drop deposited under a downward buckled beam can
induce a snap-through instability that drives the system
to an upward configuration. As in adhesive film separation
[27] or in the pull-out of a soft object from a liquid bath
[28], the elastic energy stored in the system before the
instability is suddenly released in the form of kinetic energy
and is mainly “lost.” We nevertheless showed in our setup
that part of the energy could be used to lift the liquid drop.
We have also shown that the elastocapillary dynamics is
mainly driven by elastic forces and that fluid forces and
fluid inertia only play a minor role: capillarity is driving the
system toward instability but elasticity is ruling the sub-
sequent dynamics. The typical scaling of surface forces
makes elastocapillary snapping a good candidate for
miniaturization and its use as a microactuator might be

FIG. 5. Condensation-induced snapping. The experiment
approximately lasts three minutes.

FIG. 6 (color online). Snapping dynamics. Typical time τsnap for
snapping in different setups. The dashed line is the theoretical
prediction for dry snapping τsnap ¼ ðL2=24Þ ffiffiffiffiffiffiffiffiffiffi

λ=EI
p

.
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envisaged. In any case the present study is an example of a
constructive use of capillarity at small scales.
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