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a b s t r a c t

The beam on elastic foundation is a general model used in physical, biological, and
technological problems to study delamination, wrinkling, or pattern formation. Recent
focus has been given to the buckling of beams deposited on liquid baths, and in the regime
where the beam is soft compared to hydrostatic forces the wrinkling pattern observed at
buckling has been shown to lead to localization of the deformation when the confinement
is increased. Here we perform a global study of the general case where the intensity of the
liquid foundation and the confinement are both varied. We compute equilibrium and
stability of the solutions and unravel secondary bifurcations that play a major role in the
route to localization. Moreover we classify the post-buckling solutions and shed light on
the mechanism leading to localization. Finally, using an asymptotic technique imported
from fluid mechanics, we derive an approximated analytical solution to the problem.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

If submitted to a large enough axial load a slender elastic beam experiences a buckling instability, as first described by
Euler more than two centuries ago. The length L of the beam determines both the buckling threshold (the critical force
scales as L!2) and the shape of the buckling mode (the lateral deflection scales with L). Whenever the beam rests on a
compliant substrate, buckling involves a competition between the bending energy within the beam and the elastic energy of
the foundation. Minimizing the former would lead to a large wavelength for the buckling mode, as in Euler problem, while
minimizing the latter would select a smaller wavelength. The balance of these two energies leads to the definition of the
characteristic length-scale in the problem, λ" ðB=KÞ1=4, with B the bending stiffness of the beam and K the rigidity of
the foundation (Hetenyi, 1946; Cerda and Mahadevan, 2003). If Lbλ this length-scale determines both the threshold for the
instability, which now scales as λ!2, and the shape of the buckling mode. In the post-buckling regime the shape of the
buckled beam is first sinusoidal, as predicted by the linear stability analysis, but then a rich scenario opens as nonlinearities
come into play.

The paradigm of the beam resting on an elastic foundation has been used to model and investigate many phenomena
(Genzer and Groenewold, 2006). Previous studies include for example the appearance of wrinkles in the human skin
(Cerda and Mahadevan, 2003; Efimenko et al., 2005), large folds or creases in membranes (Pocivavsek et al., 2008; Cai et
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al., 2012), or delamination of thin films (Vella et al., 2009; Wagner and Vella, 2011). Problems arising in very different
physical contexts and with length scales going from microscopic (Langmuir monolayers, Milner et al., 1989; lipid
membranes, Baoukina et al., 2008; bacterial pellicles, Trejo et al., 2013; hydrogels, Chan et al., 2008) to macroscopic
(foams, Reis et al., 2009; metallic thin films, Bowden et al., 1998; particle rafts on a liquid Vella et al., 2004) seem to be
amenable to models involving beams on elastic foundations. Consequently understanding and predicting the post-
buckling behavior of such beams and membranes could have a wide impact on physics and biology, together with
technological applications. For example fabrication of micro-lens and stretchable electronics based on wrinkling and
creasing have recently been proposed (Chan and Crosby, 2006; Rogers et al., 2010). The variety of post-buckling
responses depends on the mechanical properties of both the beam and the foundation (Cerda and Mahadevan, 2003;
Champneys et al., 1997). Many references exist on this classical problem of structural mechanics, see e.g. the works by
Potier-Ferry (1983) or Hunt et al. (1993) in which the dynamical phase space analogy has proven to be most useful
(Hunt et al., 1989). Recent studies on thin strips buckling either above elastomer (Brau et al., 2011) or liquid (Pocivavsek
et al., 2008) foundations clearly show that, depending on the substrate, different evolutions take place. In the first case
the sinusoidal buckling pattern has been shown to exhibit secondary, period doubling, bifurcations eventually leading
to spatial chaos, while in the case of a liquid substrate the sinusoidal buckling pattern has been shown to localize into a
well-defined fold, see Brau et al. (2013) for a review. This manifestation of a localized buckling pattern has been
explained in the case of an infinitely long beam (L-1) (Audoly, 2011) where the shape of the beam is associated to an
homoclinic orbit in the corresponding phase space (Champneys, 1998). In this homoclinic case, closed-form solutions
have been found (Diamant, 2011; Rivetti, 2013; Diamant and Witten, 2013).

In this paper we focus on the finite-length case of a beam on a liquid foundation and we show that, as for other elastic
beams problems (Neukirch et al., 2002), the response of the finite-length elastic structure is different and more complex
than that with infinite lengths. We describe both the buckling instability and the post-buckling regime, and show the
existence of secondary bifurcations. These secondary bifurcations induce shape changes in the system as it deforms to a fold,
giving it a mode branching route to localization.

The paper is organized as follows. In Section 2 we present the problem and derive equilibrium equations. In Section 3 we
perform a linear stability analysis of the straight beam and predict the buckling threshold and modes. In Section 4 we
describe the non-linear response of the system in terms of equilibrium solutions and their stability, and we show that the
system exhibits mode branching. In Section 5 we perform an asymptotic expansion analysis and give an analytical
approximated solution.

2. The floating elastica problem

We consider an elastic beam resting on a liquid surface and we study its equilibrium configurations under the action of a
compressive load. As indicated in Fig. 1, we consider planar deformations of the beam, x and y denoting the horizontal and
vertical directions respectively. The density of the liquid is noted as ρ and the acceleration of gravity g. The beam has length
L, width w, thickness e, and density ρs. We work under the slender (Lbw" e) Euler–Bernoulli hypotheses where the beam is
considered as inextensible and unshearable. Configurations are thus fully described by the position and the orientation of
the centerline. We use the arc length SAð0; LÞ and note θðSÞ the angle between the tangent of the beam and the horizontal.
Force and torque balance for the internal force NðSÞ ¼NxðSÞexþNyðSÞ ey and the internal moment MðSÞ ¼MðSÞ ez yield

N0
xðSÞ ¼ þ f ðSÞ sin θðSÞ ð1aÞ

N0
yðSÞ ¼ ! f ðSÞ cos θðSÞ ð1bÞ

M0ðSÞ ¼NxðSÞ sin θðSÞ!NyðSÞ cos θðSÞ ð1cÞ

These equations are written per unit width. Here, ð Þ0 ¼ dð Þ=dS denotes the derivative with respect to the arc-length
S and f(S) is the distributed force along the beam. As we neglect the weight of the floating beam, f(S) is simply given by the
hydrostatic pressure in the liquid:

f ðSÞ ¼ !ρgYðSÞ: ð2Þ

Fig. 1. An elastic beam buckling on a liquid foundation under the action of an external force P. The beam is clamped at both ends. The deformation of the
beam is described by the angle θðSÞ between the tangent to the beam and the x-axis, where SA ½0; L( is the arc-length along the beam.
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Kinematics and bending constitutive relation yield three supplementary equations between the position ðXðSÞ;YðSÞÞ of the
beam, its orientation θðSÞ, and the bending moment M(S):

X0ðSÞ ¼ cos θðSÞ ð3aÞ

Y 0ðSÞ ¼ sin θðSÞ ð3bÞ

Bθ0ðSÞ ¼MðSÞ; ð3cÞ

where B¼ Ee3w=12 is the bending stiffness and E being the Young modulus. Buckling can be either the consequence of the action
of the horizontal compressive load P ¼NxðLÞ ¼ !Nxð0Þ or of the end displacement Δ¼ L!½XðLÞ!Xð0Þ(. Since any nonzero
displacement would lead to buckling, the linear stability analysis carried out in the next session focuses on the compressive load to
determine the instability threshold. Nevertheless, we monitor post-buckling configurations (Section 4) using the end displacement
Δ, that is we assume the system to be under controlled end-shortening rather than load. Introducing dimensionless quantities

s¼
S
L
; x¼

X
L
; y¼

Y
L
; δ¼

Δ
L
; n¼

NL2

B
; p¼

PL2

B
; m¼

ML
B

ð4Þ

we rewrite the full set of equilibrium equations (1)–(3) as

n0
xðsÞ ¼ !η4 yðsÞ sin θðsÞ; n0

yðsÞ ¼ þη4 yðsÞ cos θðsÞ ð5aÞ

m0ðsÞ ¼ nxðsÞ sin θðsÞ!nyðsÞ cos θðsÞ; θ0ðsÞ ¼mðsÞ ð5bÞ

x0ðsÞ ¼ cos θðsÞ; y0ðsÞ ¼ sin θðsÞ ð5cÞ

where we have introduced the dimensionless parameter η¼ L=Leh. The elasto-hydrostatic length Leh ¼ ðB=ρgwÞ1=4 compares the
bending stiffness of the beam to the weight of the liquid (Pocivavsek et al., 2008; Rivetti and Antkowiak, 2013). Here η is a measure
of the intensity of the liquid foundation onwhich the beam rests. The case η¼ 0 corresponds to classical Euler buckling (Love, 1944)
while the case η-1 corresponds to either an infinitely long beam or a infinitely heavy liquid, and has been studied in Audoly
(2011), Diamant (2011), Rivetti (2013), and Diamant and Witten (2013). In this case, the solution is called homoclinic since in the
phase space of Eq. (7) its trajectory describes an homoclinic connection to the origin.

We consider rigid boundary conditions, where an external vertical force and a moment act at the extremities (in addition
to the horizontal load p) to prescribe the position and the orientation of the beam:

xð0Þ ¼ 0; yð0Þ ¼ 0; θð0Þ ¼ 0
xð1Þ ¼ 1!δ; yð1Þ ¼ 0; θð1Þ ¼ 0: ð6Þ

Apart from the linear stability analysis, we will compute equilibrium and stability of the system for increasing values of the
imposed horizontal displacement δ in the non-linear regime. We remark that it is possible to recast the system of Eqs. (5)
into one equation for the variable θðsÞ (Diamant, 2011):

θ⁗ sð Þþ3
2 θ″ sð Þ θ

0ðsÞ2!H θ″ sð Þþη4 sin θ sð Þ ¼ 0 ð7Þ

where H¼ 1
2m

2 sð Þþnx sð Þ cos θ sð Þþny sð Þ sin θ sð Þ is the Hamiltonian, a conserved quantity along the beam: dH=ds) 0. Its
value is then evaluated at, for example, s¼0: H¼ 1

2θ
02 0ð Þ!p.

3. Buckling threshold and modes

3.1. Linear analysis and buckling threshold

For small deflections, linearization of Eqs. (5) together with boundary conditions (6) leads to

y⁗þpy″þη4y¼ 0: ð8Þ

Note that linearization kills any difference between a liquid and a soft elastic foundation. Hence, the linear stability analysis
in this paragraph will recover some classical results the reader can find e.g. in Hetenyi (1946).

We seek for solutions in the form ypexpðiksÞ. The characteristic equation is

k4!pk2þη4 ¼ 0 ð9Þ

and has four solutions: k¼ 7kþ and k¼ 7k! , with

kþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ2!η4

qr

; k! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=2!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ2!η4

qr

: ð10Þ

We note that kþ k! ¼ η2 and k2þ þk2! ¼ p. The buckling mode of the beam takes the form

yðsÞ ¼ A sin kþ sþB cos kþ sþC sin k! sþD cos k! s ð11Þ

where the coefficients A, B, C and D are specified via the boundary conditions. At the left end, clamped boundary conditions
yð0Þ ¼ y0ð0Þ ¼ 0 simply give D¼ !B and C ¼ !Akþ =k! , while at the right end boundary conditions yð1Þ ¼ y0ð1Þ ¼ 0 lead to an
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homogeneous system for A and B

α11 α12
α21 α22

 !
A
B

" #
¼

0
0

" #
ð12Þ

with

α11 ¼ k! sin kþ !kþ sin k! ; α12 ¼ k! cos kþ !k! cos k!

α21 ¼ kþ cos kþ !kþ cos kþ ; α22 ¼ !kþ sin kþ þk! sin k! : ð13Þ

As usual in buckling analysis, the condition for system (12) to have a non-zero solution is that the determinant
α11 α22!α12 α21 takes the zero value. This gives a relation between the critical values of kþ and k! :

2kþ k! ð cos kþ cos k! !1Þþðk2þ þk2! Þ sin kþ sin k! ¼ 0: ð14Þ

Solutions of this equation are a discrete family of curves in the ðkþ ; k! Þ plane, see Fig. 2. As we consider positive values of kþ

and k! Eq. (14) implies that sin kþ sin k! Z0, which forbid the shaded regions in Fig. 2. Taking (10) into account, (14) is
eventually an equation for the buckling threshold p as a function of η. The case η¼ 0 corresponds to the planar elastica,
where k! ¼ 0. The mode selected at buckling is then kþ ¼ 2π and p¼ 4π2. For η40, approximate expressions for this mode
can be found:

k! ¼ π f ηð Þ ! 1
$ %

þ 1=2
& '

arccos 1!
1! cos ð2πf ðηÞÞ

f 2ðηÞ

" #
ð15Þ

kþ ¼ 2πþπ f ηð Þ ! 1
$ %

! 1=2
& '

arccos 1!
1! cos ð2πf ðηÞÞ

f 2ðηÞ

" #
ð16Þ

with f ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðη=πÞ2

q
. This corresponds to the left-most curve in Fig. 2. As ηb1, the buckling threshold is approximated by

p¼ 4π2þ2η2, and as η-1, we have p-2η2. Introducing the rescaled load p ¼ p=η2 we recover the result p ¼ 2 for an infinite
long beam (Hetenyi, 1946; Audoly, 2011).

3.2. Buckling modes

Once the coefficients A, B, C and D are specified, the buckling mode writes

yðsÞ ¼ ðk! sin kþ !kþ sin k! Þð cos kþ s! cos k! sÞ!ð cos kþ ! cos k! Þðk! sin kþ s!kþ sin k! sÞ; ð17Þ

and we see that it is a quasiperiodic function with two wavelengths 2π=kþ and 2π=k! . In order to analyze which mode is
selected at buckling, we show in Fig. 2 the zeros of Eq. (14) in the ðkþ ; k! Þ plane. Red curves represent symmetric buckling
modes and blue curves represent antisymmetric buckling modes. By symmetric (respectively antisymmetric) we mean that
the function yðs¼ s!1=2Þ is even (resp. odd) with regard to s. We also show the curves corresponding to constant values of
η: these curves are the hyperboles k! ¼ η2=kþ . For any given value of η, a discrete family of buckling modes exists,
corresponding to the points at which the hyperbole intersects red and blue curves. Among all these modes, the mode

Fig. 2. Buckling wavelengths and modes for the floating elastica. Red and blue curves are solutions of Eq. (14) and correspond to symmetric and anti-
symmetric buckling modes, respectively. The mode selected at buckling belongs to the continuous thick line (partly red, partly blue). The hyperboles
k! ¼ η2=kþ are also shown for several value of η. Shaded regions correspond to forbidden value of k! and kþ . Mode shapes are given on the right, together
with the label i corresponding to the number of zeros of the function θðsÞ for 0oso1. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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selected at buckling is situated on the left-most curve in the figure, designated with a continuous thick line. All the other
curves correspond to unstable modes and are plotted with dashed lines. Note that the modes corresponding to η¼ 0 (Euler
buckling) are situated along the degenerated hyperbole k! ¼ 0 (the horizontal axis). Only in this special case the buckling
mode is a single-periodic function, with wavelength 2π=kþ ¼ 1.

We now focus our attention on the first pair of curves (plotted with thick lines in Fig. 2). It appears that these two curves
continuously cross each other, at points where k7 are multiple of π. The mode selected at buckling always belongs to one of
these two curves and may be symmetric or antisymmetric, depending on the value of η. For instance, it is symmetric for
ηo5:44 and becomes antisymmetric as η45:44.

Finally, we label the modes with the number i of zeros of the function θðsÞ for 0oso1. We observe that at every time
that there is a change in the stability of the modes, the mode which becomes unstable converts itself from a i-mode to a
ðiþ2Þ-mode. For instance, at η¼ 7 the mode selected at buckling is an i¼2 antisymmetric mode, while the second (unstable)
mode is a i¼3 symmetric mode. At η¼ 10, the mode selected at buckling is a i¼3 symmetric mode and the second mode is
an i¼4 antisymmetric mode. Note that modes belonging to the other pairs of curves in Fig. 2 always have higher i labels
than those to the first pair, and are always unstable.

3.3. Switching points

We call the intersections of the first pair of curves in Fig. 2 as switching points. These points are such that k! ¼ iπ and
kþ ¼ ðiþ2Þπ, with i40 being an integer. From (9) and (10) we have η¼ πði2þ2iÞ1=2 and p¼ 2π2ði2þ2iþ2Þ. For example the
first switching point, i¼1, has η¼

ffiffiffi
3

p
πC5:44 and p¼ 10π2. Values for the first six switching points are given in Fig. 2. Since

at any switching point kþ and k! are multiples of π, all the α coefficients appearing in Eq. (12) are zero. Therefore the
boundary conditions at s¼1 are automatically satisfied and there is no condition on the coefficients A and B, which can be
chosen arbitrarily. Consequently at each switching point the selected mode at buckling is not unique and there is rather a
continuous family of modes. Symmetric, antisymmetric, and non-symmetric solutions belong to this family, and it is not
possible to determine a priori which one is selected.

4. Nonlinear post-buckling analysis

4.1. Equilibrium solutions

We now analyze the post-buckling regime by numerically solving the non-linear system of equilibrium equations (5) and
(6). We use a shooting method to solve the boundary value problem and a pseudo-arc-length continuation algorithm to
follow the solution as parameters are varied, both of these routines being implemented in Mathematica. For large η values,
typically η420, numerical difficulties arise and we thankfully switch to the AUTO package (Doedel et al., 1991). We plot in
Fig. 3 the continuation branches for three values η¼ 2, 7 and 10. For η¼2 (see Fig. 3a and d), the antisymmetric mode
bifurcates at p¼81.1 (p ¼ 20:3), but the symmetric mode buckles for a lower compression p¼40.7 (p ¼ 10:2) and is therefore
selected. As the displacement δ increases, these two modes have separated evolutions until δC1. Here, a new branch
appears and connects the symmetric to the antisymmetric mode. Along this branch, the solutions are non-symmetric (see
inset in Fig. 3d), and stable. Note that this connection already exists for η¼ 0 in the planar elastica case (Domokos, 1994). For
η¼ 7 (see Fig. 3b and e) both symmetrical and anti-symmetrical modes bifurcate sub-critically. Moreover, the anti-
symmetrical mode is now the selected mode at buckling (p¼128.9, p ¼ 2:6). Two connections exist between the symmetric
and antisymmetric branches, for δ" 0:4 and the other for δ" 0:9. Although the second one (δ" 0:9) may just be seen as an
evolution of the connection already present for η¼ 2, the first one (δ" 0:4) is new. Here also the solutions along the
connections are non-symmetric (see inset in Fig. 3e), and stable. For η¼ 10, buckling modes are reversed again, the
symmetrical being selected. A third connection now exists between the principal branches (see Fig. 3c and f) made of stable,
non-symmetrical solutions. Note that in all this analysis we have pushed the continuation beyond the self-contact of the
beam, thus exploring non-physical configurations. In Fig. 3 regions corresponding to self-crossing configurations appear
shaded.

In Fig. 4 we illustrate the birth of a connection as η crosses π
ffiffiffi
3

p
, precisely when the first switching of buckling mode

occurs. In Fig. 4 left (for η≲π
ffiffiffi
3

p
) there is no secondary bifurcation along the two equilibrium paths, whereas in Fig. 4 right

(for η≳π
ffiffiffi
3

p
) a connection branch clearly appears for small values of δ. This connection branch is born at η¼ π

ffiffiffi
3

p
(Fig. 4,

middle) as the two buckling modes switch. In general, we observe that for each inversion of the buckling modes, a new
connection branch appears in the post-buckling domain. Apart from the first one, already present in the planar elastica case,
these connections are then directly related to switching points. More precisely, the number of connection branches is given
by the largest integer i such that πði2!1Þ1=2rη. Connections between branches are an example of secondary bifurcation.
This phenomenon has already been reported in the case of buckling on elastic foundations, and it has been demonstrated
that the origin of these secondary bifurcations is the switching point at the buckling itself (Stein, 1959; Supple, 1967; Everall
and Hunt, 2000). As η becomes larger more connections appear and each of them spans over a small δ interval. Eventually, as
η-1, an infinite number of connections exist, each for a precise δ value. In this limit, the symmetric and anti-symmetric
paths are continuously connected, as reported in Rivetti (2013) and Diamant and Witten (2013).
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4.2. Stability of the solutions

Due to the presence of secondary bifurcations in the post-buckling domain, a careful analysis of the stability of the
solutions is needed in order to determine which path(s) is (are) followed as the displacement δ is increased. The stability
analysis consists in computing the small amplitude vibrations of the system around its equilibrium solution, as put forward
by Ziegler (1977). We first recall non-dimensional dynamic Kirchhoff equations:

x0ðs; tÞ ¼ cos θðs; tÞ ð18aÞ

y0ðs; tÞ ¼ sin θðs; tÞ ð18bÞ

θ0ðs; tÞ ¼mðs; tÞ ð18cÞ

m0ðs; tÞ ¼ nxðs; tÞ sin θðs; tÞ!nyðs; tÞ cos θðs; tÞþβ €θðs; tÞ ð18dÞ

n0
xðs; tÞ ¼ !η4yðs; tÞ sin θðs; tÞþ €xðs; tÞ ð18eÞ

n0
yðs; tÞ ¼ η4yðs; tÞ cos θðs; tÞþ €yðs; tÞ ð18fÞ

where ð Þ0 ¼ d=ds is the derivative with respect to the arc-length s and _ðÞ ¼ d=dt is the derivative with respect to time t. The

physical time T has been rescaled as t ¼ T=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρseL

4=B
q

, where ρs is the density of the beam.

3.29

3.31

3.33

3.35

0 4 5

3.29

3.31

3.33

3.35

0 4 5

3.29

3.31

3.33

3.35

01 2 3 1 2 3 1 2 3 4 5
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ffiffiffi
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The parameter β¼ e2=ð12L2Þ is the slenderness ratio of the beam, and since β51 we neglect the term β €θðs; tÞ in the
following. We look at the evolution of a small perturbations around the equilibrium using the decomposition

aðs; tÞ ¼ aeðsÞþϵâðsÞ expðiωtÞ ð19Þ

for all the variables in (18), i.e. a¼x, y, …, ny. The quantity ae(s) stands for the equilibrium solution and âðsÞ is the linear
vibration mode around the (nonlinear) equilibrium. Injecting (19) in (18), making use of (5), and keeping only the first order
in ϵ yield the system of equations for the vibration modes:

x̂ 0 ¼ ! θ̂ sin θe ð20aÞ

ŷ 0 ¼ θ̂ cos θe ð20bÞ

θ̂
0
¼ m̂ ð20cÞ

m̂0 ¼ nx;e cos θ̂þ n̂x sin θeþny;e sin θ̂! n̂y cos θe ð20dÞ

n̂ 0
x ¼ !η4ðŷ sin θeþye cos θeθ̂Þ!ω2x̂ ð20eÞ

n̂ 0
y ¼ !η4ðŷ cos θe!ye sin θeθ̂Þ!ω2ŷ ð20f Þ

These equations have to be solved with the boundary conditions:

θ̂ð0Þ ¼ ŷð0Þ ¼ x̂ð0Þ ¼ θ̂ð1Þ ¼ ŷð1Þ ¼ x̂ð1Þ ¼ 0: ð21Þ

System (20) can be seen as a generalized eigenvalue problem with eigenvalues ω2. For practical reasons we find it
convenient in our shooting algorithm to solve the global boundary value problem comprising Eqs. (5), (6), (20), and (21)
together with m̂2ð0Þþ n̂2

x ð0Þþ n̂2
y ð0Þ ¼ 1, where ω is an unknown. This boundary value problem can also easily be

implemented in AUTO. Note that solving for the stability using shooting methods has been used in Patricio et al. (1998)
and Neukirch et al. (2012) for instance. Other concrete strategies to asses stability of a non-linear equilibrium can be found
in Kumar and Healey (2010) and Lazarus et al. (2013).

For each equilibrium solution, along each bifurcation path, we compute the lowest eigenvalues ω2. The equilibrium
solution is said to be stable if ω240 and unstable if ω2o0. In Fig. 3 plain (respectively dotted) curves correspond to paths of

stable (resp. unstable) solutions. In Fig. 5 we show ω⋆ ¼ signðω2Þ
ffiffiffiffiffiffiffiffiffi
ω2
(( ((

q
as a function of δ for the case η¼ 10. Stability results

announced in Section 4.1 (see Fig. 3c–f) are here clearly demonstrated: at buckling the symmetric solution (red curve) is
stable (positive ω⋆) and the anti-symmetric one (blue curve) is unstable (negative ω⋆). As δ is increased and reaches δC1:7,
the symmetric solution becomes unstable. The stable solution is now the non-symmetric one (green curve). At δC2:5
another bifurcation arises and the stable solution is now the anti-symmetric one. The next bifurcation at δC5:1 sees the
non-symmetric solution becoming stable again. This solution eventually hands over the baton to symmetric solution at
δC6:1, and so on. This scenario of alternating stability between symmetric and anti-symmetric solutions with non-
symmetric solutions in between is a general feature and exists for all η. Note that connection branches of non symmetric
solutions are always stable.

We finally remark that we do not consider the inertia of the liquid. The computed frequencies are then not accurate and
we do not detect instabilities arising from the liquid phase. Nevertheless in the regime studied here we believe that the
stability of the system is correctly predicted.

20

40

0
2 4 6 8

-20

-40

Fig. 5. Lowest frequency for each of the equilibrium paths for η¼ 10 (see Fig. 3c and f). A positive (respectively negative) ω⋆ corresponds to a stable (resp.
unstable) equilibrium solution. Red (respectively blue) curves correspond to symmetric (resp. anti-symmetric) solutions. Green curves correspond to
connection paths, where solutions have no symmetry. Shaded parts of the paths correspond to solutions where self-crossing occurs. Note that solutions on
the connection paths are always stable. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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4.3. Mode branching and localization

In the infinite length (or infinitely heavy liquid) case, it has been shown that as the axial displacement δ is increased the
deformation of the beam becomes localized into a narrow region (Pocivavsek et al., 2008; Audoly, 2011; Diamant, 2011).
In the present finite-length case, localization also happens and we discuss here the route from buckling to localized
solutions. The connection branches, which link the symmetric and antisymmetric branches, are always stable. This
phenomenon has been called the mode branching and is typically observed with stiffening elastic foundations (Everall and
Hunt, 2000). Here mode branching lies at the heart of the localization process as it is through the connecting branches
that the deformation localizes into a fold. This is true in particular for large values of η, where many secondary bifurcations
(and hence connection branches) arise. To illustrate this, we display in Fig. 6 the bifurcation paths for η¼ 22 together with
several beam shapes for increasing values of the displacement δ. Qualitatively, we observe that the smooth sinusoidal
pattern (configuration A) first localizes into a well defined symmetric fold (configuration E), then into an anti-symmetric
fold (configuration G), and eventually to self-crossing solutions (configuration I). The non-symmetric shapes (configurations
B, D, F and H) involved in the localization process are also represented.

As we did for the buckling modes, we label the post-buckling configurations with an integer i equal to the number of
points for which θðsÞ ¼ 0 for 0oso1. The label of the equilibrium solutions, also displayed in Fig. 6, decreases as the
displacement δ increases. More precisely the label decreases by one unit each time the solution leaves a non-symmetric
branch. The reason for this lies on the fact that the ending configuration of every connection branch has the special
characteristic that the internal moment vanishes at the extremities of the beam mð0Þ ¼mð1Þ ¼ 0. Recalling that mðsÞ ¼ θ0ðsÞ,
we see that for this ending configuration the function θðsÞ has a double root at s¼0 and s¼1. For the following configuration
(on the next symmetrical or anti-symmetrical branch) the function θðsÞ will lose one root, that is the label i will decrease by
one unit. In a parallel manner the starting configuration of every connection branch has the special characteristic that the
vertical component of the internal force vanishes at the extremities of the beam: nyð0Þ ¼ nyð1Þ ¼ 0. We refer to these starting
and ending configurations as N and M points respectively, and we infer from the equilibrium equations (5) that for M points
all the odd derivatives of θðsÞ vanish at both ends, while for N points all the even derivatives of θðsÞ vanish at both ends.

Finally we summarize the post-buckling response of the beam in a phase diagram plotted in the plane ðδ; ηÞ, see Fig. 7.
In each region of the plane, the stable configuration is given, together with its label i. The regions are separated by M and N

Fig. 6. Route to localization for η¼ 22. The post-buckling equilibrium shapes are labeled with the integer i, corresponding to the number of points along
the beam where the angle θðsÞ is zero, which decreases by one unit each time the solutions leaves a non-symmetrical branch. The shapes exhibit less and
less oscillations and the deformation localizes to a narrow region of the beam.

anti-sym.
sym.

non-sym.

Fig. 7. Phase diagram for the floating elastica. Depending on the displacement δ and the strength η of the liquid foundation the stable configuration of the
system might be symmetrical (red regions), anti-symmetrical (blue regions), or non-symmetrical (green regions). The label i, corresponding to the number
of points along the beam where the angle θðsÞ is zero, is also given. Dashed curves correspond to the moment where the beam first self-contacts, with
configurations with higher δ exhibiting self-crossing. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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curves, and on the vertical δ ¼ 0 axis the M and N curves emerge two by two from the switching points described in
Section 3. The limit where self-contact first occurs is also drawn.

5. Approximate solution for large η

5.1. Successive complementary expansion method

In the case of an infinitely long beam (or a infinitely heavy liquid), η-1, the solution can be written in closed form
(Diamant, 2011; Rivetti, 2013; Diamant and Witten, 2013):

θ0 sð Þ ¼ 4 arctan
c
k

sin kη s!
1
2
þϕ

) *" #

cosh cη s!
1
2

) *" #

2

664

3

775 ð22aÞ

y0 sð Þ ¼ !
4ck
η

k cos kη s!
1
2
þϕ

) *" #
cos cη s!

1
2

) *" #
þc sin kη s!

1
2
þϕ

) *" #
sinh cη s!

1
2

) *" #

k2 cosh2 cη s!
1
2

) *" #
þc2 sin 2 kη s!

1
2
þϕ

) *" # ð22bÞ

where c¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
2!p

p
, k¼ ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
2þp

p
, and p ¼ p=η2. The parameter ϕ allows us to treat symmetric ðϕ¼ 0Þ and anti-

symmetric (ϕ¼ π=ð2kηÞ) solutions with the same formula (Rivetti, 2013). We call this solution homoclinic since θ0ðsÞ and its
derivatives vanish as s-71. We note that even for moderate η the homoclinic solution is not far from the numerical
solution, except in two small regions near the boundaries s¼0 and s¼1, see Fig. 8. The mismatch stems from the fact that
the homoclinic solution does not satisfy the boundary conditions. As η increases we observe that the numerical solution
becomes closer to the homoclinic solution, and that the size of the mismatch region decreases as 1=η. All the ingredients for
a boundary layer approach are then present. Classical matched asymptotic expansions (MAE) would require to find
approximated solutions for the so-called outer and inner regions and to match them in a intermediate region. Then an
approximation valid in the entire domain would have to be found, this last step being non-obvious (a lucky guess sometimes
does the trick). A powerful alternative is the so-called method of successive complementary expansions (SCE) (Cousteix and
Mauss, 2007), which we employ here. The two main advantages of the SCE method are that no matching is required and
that a uniformly valid approximation is automatically obtained. For comparison purposes we solve the problem using the
MAE method in Appendix A. Here we propose a solution of the form:

θðsÞ ¼ θ0ðsÞþϵθ1ð~sÞþ⋯ ð23aÞ

yðsÞ ¼ y0ðsÞþϵ2y1ð~sÞþ⋯ ð23bÞ

where s¼ ϵ~s and ϵ¼ 1=η, and we inject it into the equilibrium equation (7). Writing _ðÞ ¼ dðÞ=d~s and noting that _θ1 ¼ ϵθ01, we
obtain

θ⁗0þ
θ1
*⋯

ϵ3
þ
3
2

θ″0þ
€θ1
ϵ

 !
θ00þ _θ1
& '2!H θ″0þ

€θ1
ϵ

 !
þη4 sin θ0þϵθ1ð Þ ¼ 0 ð24Þ

with H¼ !pþ1
2½θ

0
0ð0Þþ _θ1 ð0Þ(2. As p" η2 (see Section 3, or Diamant, 2011) and anticipating the scaling θ00ð0Þþ _θ1 ð0Þ " e!η

(see Eq. (30)), we write H¼ !p. Recalling that θ0ðsÞ satisfies θ⁗0þ3
2θ″0θ

02
0 þpθ″0þη4 sin θ0 ¼ 0, we find that the leading, ϵ!3,

0.1 0.2 0.3 0.4 0.5 s

0.3

0.2

0.1

0.0

0.1
y  s y  s

0.1 0.2 0.3 0.4 0.5 s

0.15

0.10

0.05

0.00

0.05

Fig. 8. The deflection y(s) for a symmetrical solution for the left half of the beam: comparison between (i) the numerical resolution (red dashed curve), (ii)
the homoclinic solution given by (22) (green curve), and (iii) the SCE approximation (23) (black curve), for δ ¼ 4 and η¼ 10 (left), η¼ 15 (right). The SCE
approximation uniformly converges to the numerical solution as η grows. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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order of (24) is

θ1
*⋯
þp €θ1 þθ1 cos θ0 ¼ 0 ð25Þ

where p ¼ ϵ2p. Note that the solution θ0ðsÞ depends on ϵ. We nevertheless want an equation for θ1 that is independent of ϵ
and we consequently set cos θ0 ¼ 1 in (25).1 We then look for a solution θ1ð~sÞ ¼ _y1ð~sÞ with

y1ð~sÞ ¼ α sinhðc~sÞ sin ðk~sÞþβ sinhðc~sÞ cos ðk~sÞþγ coshðc~sÞ sin ðk~sÞþξ coshðc~sÞ cos ðk~sÞ ð26Þ

Two of the unknown coefficients ðα; β; γ; ξÞ are found using the boundary conditions at the left end, yð0Þ ¼ θð0Þ ¼ 0:

ξ¼ !η2y0ð0Þ ð27Þ

cβþkγ ¼ !θ0ð0Þ ð28Þ

The other two coefficients are found using the symmetry conditions at s¼ 1=2. For symmetric (respectively anti-symmetric)
configurations we have θð1=2Þ ¼ θ″ð1=2Þ ¼ 0 (resp. yð1=2Þ ¼ θ0ð1=2Þ ¼ 0). As the homoclinic solution (22) automatically
satisfies these symmetry conditions we simply require θ1 ¼ θ″1 ¼ 0 (symmetric solution), or y1 ¼ θ01 ¼ 0, at ~s ¼ η=2. We use
the approximations coshðcη=2ÞCsinhðcη=2ÞCð1=2Þ ecη=2 as ηb1 and eventually arrive at

α¼ 8 cη
1þc2

k2
sin kη ϕ!1=2

$ %& '
!
c
k
cos kη ϕ!1=2

$ %& ') *
e! cη=2 ð29aÞ

β¼ 8 cη
c
k
sin kη ϕ!1=2

$ %& '
! cos kη ϕ!1=2

$ %& 'h i
e! cη=2 ð29bÞ

γ ¼ !α ð29cÞ

ξ¼ !β ð29dÞ

As soon as η≳15, the asymptotic expansion (23) with (22), (26), and (29) uniformly matches the numerical solution, as
shown in Fig. 8.

5.2. Loci of points M and N

We look for an approximation for the loci of points M and N introduced in Section 4.3. These points are defined as
θ0ð0Þ ¼ 0 and θ″ð0Þ ¼ 0. We use the asymptotic expansion to calculate

θ0 0ð ÞC
32 c2η

k
e! cη=2 sin kη ϕ!1=2

$ %& '
ð30Þ

θ″ 0ð ÞC
32 c2η2

k
e! cη=2 c sin kη ϕ!1=2

$ %& '
!k cos kη ϕ!1=2

$ %& '$ %
ð31Þ

and therefore find that

M: ηC
2iπþχπ

k
; i¼ 1;2;3;… ð32Þ

N: ηC
2ðiþ1Þπ!χπ!2 arctan k=c

& '

k
; i¼ 1;2;3;… ð33Þ

with χ ¼ 0 (respectively χ ¼ 1) for symmetric (resp. anti-symmetric) configurations. As k¼ ½1!ðδ=8Þ2(1=2 and c¼ δ=8
(Diamant, 2011), (32) and (33) define curves in the plane (δ; η). In Fig. 9 we plot these curves (dashed lines) and compare
them to those obtained numerically (continuous line) and already displayed in Fig. 7. We see that a very good agreement is
obtained as soon as η410. The asymptotic expansion allows us to extend the numerical predictions far above the limits of
the numerical algorithms. As a matter of fact, it is difficult to perform numerical continuation for η430, while the
asymptotic expansion is more and more accurate as η grows.

Note that the case of non-symmetric solutions remains to be treated. In this case a supplementary shifting parameter is
needed for the homoclinic solution θ0 (Diamant and Witten, 2013) and an expansion near s¼1 has to be added to θ1.

6. Conclusion

In this paper we have studied the equilibrium shapes of a finite-length elastic beam buckling on a liquid foundation and
we have computed the bifurcation paths of equilibrium solutions in the post-buckling regime. In this problem the buckling
mode can be either symmetric or anti-symmetric, depending on the length of the beam. We have found that the switching
from symmetric to anti-symmetric (and vice versa) buckling modes triggers the appearance of secondary bifurcations in the

1 This is a simplification that is not always performed in the SCE method.
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post-buckling domain, where special branches connect symmetric and anti-symmetric equilibrium paths. The number of
connection branches increases with the length of beam. All the solutions along the connection branches are stable and non-
symmetric. Therefore as the confinement of the beam is increased we observe an alternation of symmetric and anti-
symmetric shapes, connected by non-symmetric transitions. This phenomenon is called the mode branching and is typical
of beams buckling on stiffening foundations. Moreover, as the function θðsÞ loses one zero at every passage through a
connection branch, the sinusoidal pattern observed at buckling localizes into a well-defined fold, leaving the beam flat
elsewhere. Secondary bifurcations are an essential ingredient in this route to localization. Note that localization is a typical
feature of beams buckling on softening foundations. In this sense the liquid foundation combines post-buckling features of
both stiffening and softening foundations. The number of non-symmetric stable regions clearly increases with η (Fig. 7).
Eventually, this leads to the continuous symmetry of the solution for the homoclinic (η-1) case. While no clear indication
exists on the stability of the non-symmetric profiles of the homoclinic solution, we have here demonstrated that non-
symmetric solutions are stable in the finite η case.
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Appendix A. Match asymptotic expansion for the case ηb1

We here show the resolution of the problem of Section 5 using the method of matched asymptotic expansions (MAE). For
simplicity we only treat the case of a symmetrical solution and study the solution in sAð0;1=2Þ. We identify two regions: (i)
an inner region sAð0; ϵs1Þ where θðsÞ is small, and (ii) an outer region sAðϵs2;1=2Þ where θðsÞ ¼Oð1Þ, with s1 and s2 being
Oð1Þ. The small variable ϵ is defined as ϵ¼ 1=η. In each region θðsÞ has to fulfill approximatively the differential equation (7)
but with different boundary conditions, that is the function θðsÞ will be approximated by different expansions which will
have to match in the intermediate region s" ϵs1 " ϵs2. As in Section 5 we use the approximation HC!p.

A.1. The outer region

Here we set θðsÞCθ0ðsÞ, given by (22a) with ϕ¼ 0. Symmetry conditions at s¼ 1=2, θð1=2Þ ¼ θ″ð1=2Þ ¼ 0, are automatically
fulfilled. Anticipating the matching, we develop θ0ðsÞ for s-0, using the variable ~s ¼ ηs. As θ0ðsÞ becomes small, we have
θ0ðsÞC4 ðc=kÞ sechðc~s!cη=2Þ sin ðk~s!kη=2Þ. Using sechð!XÞC2 e!X for Xb1 and developing the sinus, we arrive at

θouterC
ec~s

2
A sin k~sþB cos k~sð Þ ð34Þ

with A¼ 16ðc=kÞ cos ðkη=2Þe! cη=2 and B¼ !16ðc=kÞ sin ðkη=2Þe! cη=2.
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Fig. 9. Curves M and N separating the regions of the phase diagram of Fig. 7. Continuous curves, redrawn from Fig. 7, are obtained numerically while
dashed curves are plotted using the asymptotic results (32) and (33).
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A.2. The inner region

Here θðsÞ is small and found to be OðϵÞ. We set θðsÞCϵθ1ðsÞ and we linearize Eq. (7) to θ⁗1þpθ″1þη4θ1 ¼ 0. Using the
magnification ~s ¼ s=ϵ, as defined previously, we arrive at an equation where ϵ no longer appears:

θ1
*⋯
þp €θ1 þθ1 ¼ 0 ð35Þ

where, as before, p ¼ ϵ2p and _ðÞ ¼ dðÞ=d~s. We then look for the solution θ1ð~sÞ ¼ _y1ð~sÞ with

y1ð~sÞ ¼ α1 sinhðc~sÞ sin ðk~sÞþβ1 sinhðc~sÞ cos ðk~sÞþγ1 coshðc~sÞ sin ðk~sÞþξ1 coshðc~sÞ cos ðk~sÞ ð36Þ

and yðsÞCϵ2y1ðsÞ. Note that the coefficients ðα1; β1; γ1; ξ1Þ will be different from the coefficients ðα; β; γ; ξÞ found in Section 5.
The boundary conditions θ1ð0Þ ¼ 0 and y1ð0Þ ¼ 0 impose γ1 ¼ !cβ1=k and ξ1 ¼ 0, yielding

θ1ð~sÞ ¼ cα1 coshðc~sÞ sin ðk~sÞþkα1 sinhðc~sÞ cos ðk~sÞ!ðβ1=kÞ sinhðc~sÞ sin ðk~sÞ ð37Þ

The two remaining coefficients α1 and β1 are to be found with the matching procedure.

A.3. Matching the inner and outer solutions

We develop (37) for large ~s using coshðXÞCsinhðXÞCð1=2ÞeX when Xb1 and find

θinnerC
ec~s

2
cα1!

β1
k

) *
sin k~sþkα1 cos k~s

" #
ð38Þ

Identifying (34) and (38) we find

α1 ¼ !16 ηðc=k2Þ e! cη=2 sin ðkη=2Þ ð39Þ

β1 ¼ !16 ηðc=kÞ e! cη=2 k cos ðkη=2Þþc sin ðkη=2Þ
$ %

ð40Þ

We first remark that, as in any boundary layer approach, each solution is only valid in its own region, see Fig. 10, and that
a uniformly valid approximation has yet to be found. Nevertheless, as solution (37) is valid near s¼0, we have
approximations to θ0ð0Þ and θ″ð0Þ that can be compared to those found in Section 5.2. Using θðsÞCϵθ1ðs=ϵÞ and (37), we
calculate θ0ð0ÞC2ckα1 and θ″ð0ÞC2cηβ1, which indeed corresponds to (30) and (31).
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