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Sébastien Neukirch

CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
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We study the mixture of extended and supercoiled DNA that occurs in a twisted DNA molecule under

tension. Closed-form asymptotic solutions for the supercoiling radius, extension, and torque of the

molecule are obtained in the high-force limit where electrostatic and elastic effects dominate. We

demonstrate that experimental data obey the extension and torque scaling laws apparent in our formulas,

in the regime where thermal fluctuation effects are quenched by applied force.
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Experiments on stretched, supercoiled DNA primarily
measure the extension of the molecule as a function of its
twisting or, more precisely, as a function of change in double
helix linking number Lk [1]. Past the threshold for buckling
of themolecule, one enters amixed-phase regimewhere part
of the molecule is extended and part of the molecule is
plectonemically supercoiled; in this regime the extension
depends linearly on the linking number precisely because
one is in a regime of two-phase coexistence [2,3].

Although the origin of the linear dependence is under-
stood [2,4], the slopes of the extension versus linking
number curves are not understood analytically. It is of
broad interest to understand the slopes since, in addition
to being practically useful to predict the amount of length
absorbed into plectonemic supercoiling, they contain in-
formation about the interplay of external force applied to
the molecule with interactions between the tightly juxta-
posed DNA double helices in the plectonemic region
(primarily electrostatic in the regime of interest here) [5].
Below, we analyze the parts of the ‘‘standard model’’ of
DNA supercoiling relevant to the high-force limit. We
obtain asymptotic formulas describing that limit, for the
dependence of the extension versus linking number slopes
and DNA torque on force and salt concentration, and we
show that experimental data obey the scaling behavior
implicit in our results in the high-force limit. Analytical
formulas for the plectonemic supercoil radius and angle are
predicted for future experiments.

We write the free energy of a DNA molecule subject to
applied torque and force in the regime where extended and
plectonemically supercoiled DNA are in mechanical coex-
istence [3,4,6,7]. The total molecule length L is partitioned
between the two ‘‘phases’’: (i) a plectonemic phase of
length ‘, where the filament has bending rigidity A and
torsional rigidity C and adopts a superhelical shape of

radius r and angle �, and (ii) an extended wormlike-chain
phase of length L� ‘; see Fig. 1. The free energy of
the extended phase is described in terms of the free
energy per length of the untwisted molecule gðfÞ ¼
f� kBTðf=AÞ1=2 þ � � � [8], plus a twist energy using a
twist modulus that includes effects of writhing fluctua-

tions: CsðfÞ ¼ C½1� ðC=4AÞkBT=ðAfÞ1=2� [6]. The free
energy of the plectonemic phase is that of two superhelices
wrapped around each other with electrostatic interactions.
The interaction energy UðrÞ is that of two straight charged
cylinders with a center axis separated by a distance of 2r,
in the Debye-Huckle approximation of the Poisson-
Boltzmann equation. For the double helix where two nega-
tive charges appear for each base pair, this suggests the
use of a linear charge density (in electron charge units) of
� ¼ 1=b, where b ¼ 0:17 nm is half of the 0.34 nm spac-
ing of successive base pairs along DNA. However, an

FIG. 1 (color online). Supercoiled DNA under force and torque.
Molecule length is partitioned between two phases: an extended
phase and a plectonemic phasewhere strong self-interaction occurs.
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effective charge is introduced to cope with two effects:
(i) the fact that this charge is distributed on the surface of
the cylindrical double helix of radius a ¼ 1 nm rather than
on its center axis and (ii) the asymptotics of the linear and
nonlinear solutions of the Poisson-Boltzmann equation
have to match for large separation distances. The effective
charge is

� ¼ 1

b

1

�ðLB; b; �DaÞ
1

�DaK1ð�DaÞ ; (1)

where LB is the Bjerrum length in water, ��1
D the Debye

length, and KnðxÞ the nth modified Bessel function of
the second kind [9,10]. From Table III of Ref. [9], the para-
meter � is computed to be � ¼ ð1:64; 1:44; 1:27; 1:14Þ at
salt concentrations ð50; 100; 200; 500Þ mM and for T ¼
296:5 K and LB ¼ 0:7 nm. The interaction potential in
the plectoneme is [3,11]

UðrÞ ¼ kBT�
2LBK0ð2�DrÞ; (2)

where both �D and � depend on the salt concentration. We
neglect confinement entropy [3] in the interaction potential
for two reasons: (i) It is important for low forces and we
presently focus on the moderate- to high-force regime;
(ii) our focus is on an analytical solution so we consider
a simple one-term UðrÞ (similarly, no dependence of U on
superhelical angle � is considered here). The bending
energy, given by the integral of the curvature squared of
the molecule center line in the superhelical configuration,
is a function of the superhelical radius r and angle �. By
adding together electrostatic, bending, and twisting energy
terms, the total free energy is

F ð�;r;�s;�p;‘Þ¼�gðL�‘Þþ1

2
Cs�

2
sðL�‘Þ

þ
�
1

2
C�2pþ1

2
A
sin4�

r2
þUðrÞ

�
‘; (3)

where �s ¼ 2��Lks=ðL� ‘Þ is the linking angle density
in the stretched part of the DNA (�Lks is the excess linking
number of the extended region) and �p ¼ 2��Twp=‘ is

the twist angle density in the plectonemic DNA (�Twp is

the excess twist in the plectoneme region). Once force and
�Lk are specified, the remaining variables are determined
by minimization of Eq. (3) subject to the constraint

�Lk¼�TwþWr¼ 1

2�

�
�sðL�‘Þþ�p‘þsin2�

2r
‘

�
; (4)

where �Lk is the number of turns introduced into
the DNA relative to the relaxed double helix linking
number Lk0 (i.e., �Lk ¼ Lk� Lk0Þ. The constraint on
�Lk is handled by using a Lagrange multiplier M,
i.e., by minimizing G ¼ F � 2�Mð�TwþWr� �LkÞ.
Equilibrium values of the six variables �s, �p, �, ‘, r,

and M follow from solving rG ¼ 0, where r ¼
ð@=@�s; @=@�p; @=@�; @=@‘; @=@r; @=@MÞ. The equilib-

rium value of M is the torque in the DNA.

These nonlinear equations, when solved numerically,
yield multiple solutions with either ‘ ¼ 0 or ‘ � 0. We
here focus on the stable solution having ‘ > 0, which exists
as soon as �Lk is large enough [7]. The values of �, r, �s,
�p, and M in this solution do not depend on �Lk, and the

value of ‘ varies linearly with �Lk [7]. A consequence is
that the mean extension hXi ¼ �@G=@f decreases linearly
with �Lk: As linking is added, more and more contour
length passes from the extended phase to the plectonemic
phase of the molecule. Figure 2 shows that the slopes q :¼
@hXi=@�Lk from the experiment (data from Fig. 3 inset of
Ref. [1]) are described well by this theory for four different
salt concentrations (50, 100, 200, and 500 mM). Similarly,
experimental and theoretical torques are in good accord
(Fig. 3).
We now extract the leading scaling behavior for the

slope q and the torque M from the full equations, in the
high-force limit. We first approximate CsðfÞ ’ C, which
reduces the equilibrium equations rG ¼ 0 to

�A
sin4�

r3
þU0ðrÞ þM

sin2�

2r2
¼ 0; (5a)

2A
sin3� cos�

r2
�M

cos2�

r
¼ 0; (5b)

gþ 1

2
A
sin4�

r2
þUðrÞ �M

sin2�

2r
¼ 0: (5c)

Equations (5a) and (5c) are used to eliminate M, yielding

sin 4� ¼ 2

�
gr2

A
þUr2

A
þU0r3

A

�
: (6)

Then multiplying Eq. (5b) by sin2� and Eq. (5a) by cos2�
and summing, we obtain

U0r3

A
¼ � sin4�

1� 2sin2�
: (7)
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FIG. 2. Comparison of experimental and theoretical slopes as a
function of the applied force, for 50, 100, 200, and 500 mM salt
(top to bottom): (a) experimental data from Ref. [1] (circles);
(b) theoretical solution of the full equations rG ¼ 0 (continuous
lines); (c) ratio of the experimental slopes to the formula in
Eq. (16) (filled circles). Experimentally given values of
A=kT ¼ 46; 47; 44; 45 nm and C=kT ¼ 94 nm were used.
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The variable� can then be eliminated from Eqs. (6) and (7)
to yield one equation for the one variable r:

U0r3

A

�
1�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
gr2

A
þUr2

A
þU0r3

A

�s �

þ2

�
gr2

A
þUr2

A
þU0r3

A

�
¼0: (8)

We introduce the dimensionless variable x :¼ 2�Dr. In the
regime of moderate to large x and of low to moderate�, the

leading order of Eq. (8) is gr2

A þ Ur2

A þ 3
2
U0r3
A ¼ 0, orffiffiffi

x
p

e�x½1� 1=ð6xÞ� ¼ 1=K

with K :¼ ffiffiffiffiffiffiffiffiffiffiffiffi
9�=8

p
�2LBkBT=gðfÞ

(9)

or fðxÞ¼x� 1
2logx� log½1�1=ð6xÞ�� logK¼0; (10)

where we have used K0ðxÞ ’ ½�=ð2xÞ�1=2e�x for large x.
The approximate solution is x0 ¼ LogK. Taking the first-

order Newton-Raphson estimate of the root x ’ x0 � fðx0Þ
f0ðx0Þ

yields

x ¼ 2�Dr ’ LogK þ LogðLogKÞ
2� 1=LogK

: (11)

Once r is known, � is computed from Eq. (7):

� ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0r3

A
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
U0r3

A

�
2 �U0r3

A

svuut
(12)

and M from Eq. (5b):

M ¼ 2A

r

sin3� cos�

cos2�
: (13)

Equations (11) and (12) yield, at lowest order,

r ’ �r :¼ ð2�DÞ�1LogK and

� ’ �� :¼ ½2�r2gðfÞ=ð3AÞ�1=4: (14)

We note that although our approximation always leads to
a solution, this is not the case for the full equations
rG ¼ 0. For the full equations, there are two r solutions
at low forces, and no solutions beyond a force threshold
(we plot only the solution with the largest r value, which
can be shown to be stable). The force threshold for dis-
appearance of the stability of the large-r solution is salt-
dependent and can be as low as 3 pN at low salt (5 mM
Naþ); at forces beyond this threshold, the electrostatic
interaction cannot support the plectoneme, which will
collapse in radius down to r � 1 nm, with the two DNAs
in close contact. This could explain the observations of
plectoneme collapse of Ref. [12] and suggests that collapse
transitions might be observable in single-DNA experi-
ments. We note that once in the collapsed configuration,
if one were to decrease the force, hysteresis of the col-
lapsed state would be observed. We are analyzing this
collapse phenomenon in more detail at present and will
discuss it in a forthcoming paper.
Our formulas provide insight into the dependence of

the slope q on force and salt concentration observed
experimentally [1]. We compute q :¼ @hXi=@�Lk ¼
�@2G=ð@f@�LkÞ neglecting C0

sðfÞ (valid for large force)
and taking �s ’ �p:

q ’ g0ðfÞ 4�r

sin2�
’ 2�g0ðfÞ r

�

�
1þ 2

3
�2

�
: (15)

Using Eq. (14), we arrive at

q ’ 61=4�A1=4��1=2
D

g0ðfÞ
gðfÞ1=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log

h ffiffiffiffiffiffiffiffiffiffiffiffi
9�=8

p
�2LBkBT=gðfÞ

ir �
1þ 2

3
��2

�
; (16)

which gives the salt and force dependence of the slope of a
hat curve in a supercoiling experiment. Figure 2 shows
experimental slopes divided by this theoretical prediction;
the ratio is nearly 1 with only a small variation with force
and salt concentration, indicating that the experimental
data closely follow this functional form.
We now examine the DNA torque M; Taylor expansion

of (13) for small � yieldsM ’ 2A
r �3ð1þ 3

2�
2Þ. Using (14),

we obtain the following approximate formula for M:

M ’ ð32=27Þ1=4A1=4��1=2
D gðfÞ3=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log

h ffiffiffiffiffiffiffiffiffiffiffiffi
9�=8

p
�2LBkBT=gðfÞ

ir �
1þ 3

2
��2

�
: (17)

In Fig. 3, experimental torque values are divided by this
theoretical prediction, and we see that, when f is large
enough, the ratio is near 1, with only a small variation with
f or salt concentration. As for the slopes q, the experimen-
tal data for M closely follow this functional form, for a
sufficiently large force.
For forces in the range 0:25 pN � f � 5 pN and salt

concentrations between 50 and 500 mM, we checked the
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FIG. 3. Comparison of experimental and theoretical torques as
a function of the applied force for 50, 100, 200, and 500 mM salt:
(a) experimental data from Ref. [1] (circles); (b) theoretical
solution of the full equations rG ¼ 0 (continuous lines);
(c) ratio of the experimental torque to the formula in Eq. (17)
(filled circles). Experimentally given values of A=kT ¼
46; 47; 44; 45 nm and C=kT ¼ 94 nm were used.
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accuracy of formulas (14), (16), and (17) against the
solution of the full equations rG ¼ 0 and found that the
relative error was always below 13% (see [13]). Similarly,
predicted results for the radius of the supercoils (Fig. 4)
show only a small difference between the asymptotic result
[Eq. (11)] and the exact result of solving rG ¼ 0. Finally,
comparing Eqs. (16) and (17), one sees that

M ’ 2gðfÞ
3�g0ðfÞq: (18)

This recovers a formula first discussed in Ref. [14] and
which has been noted to describe experimental data for
DNA torque [1].

In the computations presented in Ref. [5], a scaling factor
of � ¼ 0:42 in the effective charge � [thereby using �? ¼
��ðaÞ] plus a value a ¼ 1:2 nmwere used in order to obtain
good agreement with experiments. We note that, in our
model, we have not had to resort to a nonstandard value of
the DNA effective charge. We agree with the assertion of
Refs. [5,7] that single-DNA twisting-pulling experiments
provide a means to analyze DNA-DNA interactions. The
electrostatic potentials in the literature are Debye-Huckel-
like, i.e., decaying as ðe�	Þ=	, where 	 ¼ jr� r0j is the
distance between interacting charges at r and r0, and they
involve an effective charge that in turn depends on salt
concentration. For example, Ubbink and Odijk [11]
have used an effective charge �? ¼ 
=LB with 
 given
in their Table 7 (see also [15]). In counterion condensation
theory of polyelectrolytes [16], the interaction energy
also takes the same form as in Eq. (2), but with a

salt-concentration-independent effective charge �? ¼
½1=ðbLBÞ � 1=ð2L2

BÞ�1=2 ¼ 0:46 for DNA in water solution
[7,17]. The amplitude of the DNA-DNA interaction poten-
tial is sensitive to precisely where the charges are placed

relative to the center of the double helix. This might explain
the low values of effective charge inferred in Ref. [5].
Effective charges used by different authors are compared
in Ref. [13].
Finally, we note that if the electrostatic-elastic theory

were complete, then the rescaled slopes and torques in
Figs. 2 and 3 would take on the value 1. While this limit is
approached at high forces, at lower forces, there is disagree-
ment, particularly in the case of the torques (Fig. 3). This
effect is in part due to polymer confinement entropy [3],
neglected here but which becomes important at low forces.
There are also uncertainties about the measured low-force
torque; the analysis of Ref. [1] required an estimate of
torque as a boundary condition for integration of a thermo-
dynamic ‘‘Maxwell relation’’ [18]. A more complete dis-
cussion of the model of this paper including confinement
entropy, finite-size plectonemic and small-loop domain
effects, and the collapse transition is in preparation.
The experimental data from Ref. [1] were kindly pro-

vided in electronic form by Francesco Mosconi. Work at
NU was supported by the U.S. NSF through Grants
No. DMR-0715099 and No. PHY-0852130, by the
Chicago Biomedical Consortium and the Searle Funds at
The Chicago Community Trust, and by NIH-NCI Grant
No. U54CA143869-01.
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FIG. 4 (color online). Supercoiling radius as a function of the
force function gðfÞ, computed with (a) the full nonlinear equa-
tions rG ¼ 0 (plain lines, red); (b) the formula in Eq. (11)
(dashed lines, black) for the four salt concentrations 50, 100,
200, and 500 mM (top to bottom). The separation of the curves at
high force is due to the nonlinearities of rG ¼ 0, which are
omitted in Eq. (11).
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