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Experimental law for the fast initial spreading
We conducted a series of experiments with the aim to charac-
terize the spreading ∆ of an impacting drop on the same thin
and narrow polymer strip as used in our ‘2D’ experiments.
Here, both the drop radius R and the impacting velocity U
are varied. The results are reported in figure 1. The relative
spreading (∆−∆0)/2R is plotted as a function of the Weber
number We = ρU2R/γ. Here, ∆0 represents the spreading in
a quasi-static setting, when the drop is gently deposited on
the flexible strip. The value of ∆0 is extrapolated from the
dataset and not measured directly; we find ∆0 = 2.04, 2.20,
1.96, 3.68 mm for R = 1.2, 1.5, 1.6, 1.85 mm respectively. The
data for the different radii R all collapse on a single curve, in-
dicating that the Weber number We is the relevant parameter
for the spreading. A simple power law fits the data:

∆−∆0

2R
= 0.32 We1/2, [1]

as shown in the figure.
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Figure 1. Spreading of a drop on a polymer strip. Different drop radii were used

: R = 1.2 mm (N), 1.5 mm (•), 1.6 mm (�) and 1.85 mm (�). The dimension-

less spreading length (∆ − ∆0)/2R is plotted as a function of the Weber number

We = ρU2R/γ. The solid line is given by equation (1).

This experimental law is valid in our particular range of
parameters. Its practical use is to allow confrontation of the
experiments, where the velocity U is available, with the sim-
ulations, where the spreading length ∆ is prescribed.

Calculation of fluid forces in the numerical code
Equations for dynamic, 2D Elastica. Let S be the arclength,
t the time, and x(S, t) be the unknown position of centerline,
see figure 2. The inextensibility condition writes |x′(S, t)| = 1.
Let then t(S, t) and q(S, t) be the unit tangent and normal to
the centerline, respectively:

t(S, t) = x′(S, t), q(S, t) = (−ey)× t(S, t). [2a]

Note that with these sign conventions, the local basis (t,q) is
orthonormal and direct in the plane (x, z).

Figure 2. Geometry of a 2D Elastica

The signed curvature is defined by

κ(S, t) = x′′(S, t) · q(S, t). [2b]

We consider a linearly elastic, naturally straight strip with

bending modulus B̂. Its constitutive relation expresses pro-
portionality between the curvature strain κ and the bending

moment: m(S, t) = B̂ κ(S, t) (−ey). By the Kirchhoff equa-
tion for the balance of moment, m′ + t× n = 0, the internal
moment m has to be balanced by an internal force n of the
form:

n(S, t) = T (S, t) t(S, t)− B̂ κ′(S, t)q(S, t), [2c]

where the tension T is an unknown Lagrange multiplier associ-
ated with the inextensibility condition. The second Kirchhoff
equation expresses the fundamental law of dynamics:

µ̂ ẍ(S, t) = n′(S, t) + p(S, t). [2d]

Here, p(S, t) is the density of applied force, per unit length
of the rod. Inserting equations (2a–2c) into equation (2d), we
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obtain a nonlinear partial differential equation for the main
unknown x(S, t) which is fourth order in space and second
order in time. This is the classical equation for a dynamic
Elastica in 2D. This equation of motion can be obtained by
variational principles from the Lagrangian L = T − U given
in main text, see for instance Ref. [1].

Quasi-static reconstruction of the drop.At every time, we
determine the shape of the drop given the profile x(S) of the
centerline — the time variable is omitted in the present Sec-
tion. The shape of the drop is determined by the following
requirements, see figure 3:

Figure 3. Quasi-static reconstruction of the fluid domain.

(i) the fluid-air interface is anchored to two points in space
x1 = x(S1) and x2 = x(S2) that are prescribed, (ii) the length
λ of this interface has to be minimal to make the capillary en-
ergy (γ̂ λ) minimum, (iii) the area of the fluid, i. e. of the
region enclosed by the fluid-air interface and by the wet part
of the rod x(S) for S1 ≤ S ≤ S2, is constrained to a prescribed
value A. The mass of fluid is neglected. This approximation
suppresses capillary waves, and is consistent with the fact that
the simulation resolves the elastic timescale τe, which is much
larger than the capillary one, τc, see main text.

This constrained variational problem characterizes the
equilibrium shape of a wetting fluid without gravity. Its so-
lution is classical: the fluid-air interface is an arc of circle
at equilibrium. The properties of this arc are determined as
follows. First, we compute the signed area A0 of the region
enclosed between between the wet part of the rod, traced out
by x(S) for S1 ≤ S ≤ S2, and the segment joining x1 and x2,
with the sign conventions shown in figure 3. The area A1 of
the circular cap shown in green in the figure, enclosed between
the fluid-air interface and the segment [x1,x2], is A1 = A−A0.
The angle ϕ of the circular cap is then calculated by solving
the following geometric relation:

A1

|x1x2|2
=
ϕ− sinϕ

8 sin2 ϕ
2

.

The radius r and the perimeter λ of the circular cap are then
found by

r =
|x1x2|
2 sin ϕ

2

, λ = ϕ r.

Finally, the angles θ1 and θ2 of the fluid-air interface with
respect to the local frame (t,q) are given by

θ1 =
ϕ

2
+ ∠(t1,x2 − x1), θ2 =

ϕ

2
+ ∠(x1 − x2,−t2),

where ∠(a,b) denotes the signed measure of the angle made
by the vectors a and b, and t1 = x′(S1) = t(S1) and
t2 = x′(S2) = t(S2) denote the unit tangents at the two

points of contact of the interface with the rod. Note that the
angles θ1 and θ2 are different from the equilibrium value set
by the Young-Dupré relation since the contact line is pinned.

In the simulation we do not implement any mechanism
preventing the fluid-air interface from crossing the rod. A
spurious crossing is visible in the inset labelled D′ in fig. 5b of
main text. Overlooking the collisions of the fluid-air interface
with the rod is justified a posteriori by the fact that we ob-
served such collisions in only one instance, which is precisely
the simulation labelled D − D′. Even then the crossing took
place during a short time interval, just after the anchor point
S2 was moved to the right. In addition this crossing takes
place over a region much smaller than the size of the drop. As
a result, its impact on the simulation is very limited.

Expression of forces. We consider three types of forces, with
total lineic density p(S, t):

p(S, t) = pg(S, t) + pc(S, t) + pγ(S, t), [3]

where pg denotes the weight of the Elastica, pc the reaction
of the support, and pγ the capillary forces.

The weight is given in terms of the mass per unit length
µ̂:

pg(S, t) = −µ̂ ez. [4]

In the absence of friction on the ground, the contact force
reads:

pc(S, t) = pc(S, t) ez [5]

where pc ≥ 0 is the unknown contact pressure with the
ground. This force is associated with the unilateral constraint
x(S) · ez ≥ 0. Note that pc = 0 when there is no contact, i. e.
x(S) · ez > 0. In the implementation, we avoid calculating
the contact pressure pc as collision response is treated using
an impulse-based model.

The capillary force is made up of two point-like forces,
acting at the points of contact S1 and S2 and represented by
Dirac distributions, and a distributed force arising from the
capillary pressure inside the drop:

pγ(S, t) = f1 δ(S − S1) + f2 δ(S − S2)

+ fp(S)H(S − S1)H(S2 − S), [6]

where the Heaviside function H is used here to restrict the
support of the last term to the wet region, S1 < S < S2.
The point-like forces f1 and f2 are directed along the fluid-air
interface, and represent line tension:

f1 = γ̂ (t(S1) cos θ1 + q(S1) sin θ1), [7a]

f2 = γ̂ (−t(S2) cos θ2 + q(S2) sin θ2). [7b]

The distributed force fp is the pressure force arising from cap-
illary pressure

fp(S) = − γ̂
r
q(S). [8]

These capillary forces can be derived from the capillary energy
(γ̂ λ) by variational principles.

Selection of final shape in the absence of gravity
Here we show that the final pattern can be selected by the im-
pact velocity even in the absence of gravity. Gravity was con-
sidered in the main text as it allows to set up well-controlled
experiments showing quantitative agreement with the numer-
ics.

Figure 5 shows time sequences for two numerical exper-
iments with the same parameters, except for the spreading
∆. Figure (5a) makes use of a smaller spreading length
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Figure 4. Forces applied on the elastic filament: capillary forces pγ , weight pg , and contact forces from the support pc.
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Figure 5. Time sequences illustrating selection in the absence of gravity: by increasing the spreading length without modifying the other parameters, the final state goes

from (a) unencapsulated to (b) encapsulated. Parameters common to both simulations are rescaled drop area A/`ec
2 = 1.5 and rod length L/`ec = 4.6. A small damping

is enforced using a viscous drag coefficient per unit length db/ds = 1.04 (µ̂ B̂)/`2ec. Different drop impacts are simulated using (a) ∆/`ec = 2.5 for a slower impact

and (b) ∆/`ec = 4 for a slower impact. Overall duration of the time sequences is t = 8.4 (µ̂/B̂)1/2. See also supplementary movie S4.

∆ = 2.5 `ec, corresponding to a slower impact velocity, than
in figure (5b), for which ∆ = 4 `ec. Encapsulation is observed
with the larger spreading length only, leading to the same find-
ings as in the experiments of Figure 2 in main text (dynamic
impact on a flower-shaped target without long arms).

The possibility of a transition from unencapsulated to en-
capsulated final states can be understood by looking at the
branches of equilibria for fixed rod length L, drop area A
and elasto-capillary length `ec. These branches are plotted
in figure 6 for the same parameters as used in the time se-
quences of figure 5. A bistability is observed for some values
of spreading length ∆, as in reference [2]. For sufficiently large
spreading width ∆, the kinetic energy of the impacting drop
is converted into capillary energy (captured by the numerical
parameter ∆) and back into kinetic energy, allowing the bun-

dle to jump onto the encapsulated branch from an initially
flat configuration.
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Figure 6. Equilibrium configurations in the absence of gravity, for A/`2ec = 1.5
and L/`ec = 4.6 (same parameters as in figure 5). The x axis is the rescaled length

∆ of the fluid-solid interface, and the y axis measures encapsulation. For some values

of the parameters, multiple equilibrium configurations are in competition.
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