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Abstract A shell can have multiple stable equilibria

either if its initial curvature is sufficiently high or if a

suitably strong pre-stress is applied. Under the

hypotheses of a thin and shallow shell, we derive

closed form results for the critical values of curvatures

and pre-stresses leading to bistability and tristability.

These analytical expressions allow to easily provide

guidelines to build shells with different stability

properties.

Keywords Shallow shells � Shape morphing �
Bistability � Tristability

1 Introduction

The highly non-linear behaviour of shell structures

along with anisotropic material properties and pre-

stresses can induce interesting phenomena, such as

multistability, i.e. the existence of multiple distinct

configurations of stable equilibria. Similar complex

non-linear behaviours recently raise a growing scien-

tific interest; they are the object of a large number of

research works ranging from the analysis of biological

systems, such as the study of multistable natural

structures [5, 10] or the problem of the growth of

elastic membranes, see for instance [3, 9, 12], to the

analysis and design of morphing structures, i.e.

structures that can largely change their shape in order

to adapt to different functioning regimes [4, 15, 18–20,

23], and more generally to the study of slender

structures undergoing large displacements, see for

instance [14, 21].

The study of the non-linear response of shell

structures is generally perceived as a complex problem

of structural mechanics [1] not prone to a simple

analytical treatment. However, as pointed out in [17],

it is extremely difficult to extrapolate informations on

the global non-linear behaviour of shells only from the

results of direct finite-element simulations. In fact, the

numerical analysis of fully non-linear shells is a

difficult task and only parametric studies can be

conducted for limited combinations of geometry,

material properties and loading conditions, see for

instance [6].
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The use of simplified analytical models is of

paramount importance, because it can provide a global

picture of the qualitative behaviour of non-linear

shells. This may be obtained through reduced order

models assuming restrictive hypotheses on the admis-

sible deformation modes and on the order of the

geometrical non-linearities. The application of the

Föppl-von Karman (FvK) kinematics has represented

an important contribution to the study of shallow

shells [3, 7, 9], and specifically a deeper insight of the

stability of anisotropic shells was possible thanks to

the use, within FvK models, of the syimplifying

assumption of Uniform Curvature (UC) [4, 8, 19, 20,

23]. Despite its simplicity, such assumption allowed

to foresee and experimentally demonstrate the exis-

tence of three stable equilibria for orthotropic shells

[2, 23].

Although the accepted domain of validity of the

FvK model is limited to plates and shallow shells,

many of the works cited above seem to indicate that, at

least for shells loaded only by inelastic deformations,

the FvK can furnish results in good agreement with

experiments for an impressive large range of magni-

tude of curvatures (both initial geometric curvatures,

as well as elastic or inelastic curvatures induced by

external loads), even when the model is further

simplified by the assumption of uniform curvatures

[4, 19, 23]. In a recent interesting work, [11]

rigorously show by asymptotic expansion and

Gamma-convergence that FvK is indeed the pertinent

model to include the dominant geometrically non-

linear effects in plates or shallow shells with inelastic

deformations. However a better numerical validation

and theoretical investigation of the range of validity of

the results obtained by uniform curvature FvK model

seem to be necessary. First steps in this direction were

presented in [4, 17]. In [4] the simplified UC FvK

model was applied to the study of the non-linear

behaviour of orthotropic plates undergoing large

inelastic curvatures, from thermo-elastic or piezo-

elastic origin, and the validity of the analytical results

was confirmed by means of fully non-linear finite-

element simulations. In [17] the results obtained with

polynomial approximations of FvK and higher order

shell models were compared to non-linear finite

element simulations.

In the present work, we intend to investigate the

applicability of the uniform curvature assumption in

order to model and to design multistable shells with

high initial and inelastic curvatures. In Sect. 2 we

describe the two basic bifurcations which lead to the

multistable behaviour of shells. For the sake of

synthesis, we illustrate these concepts in the case of

spherical initial and inelastic curvatures. Section 3

illustrates the uniform curvature model and summa-

rizes the useful results for design purposes. Based on

the design rules given in Sects. 4, 5 we present

experimental prototypes for each of the three basic

relevant cases of multistability. The analytical results

and the simplified models are checked against fully

non-linear numerical simulations based on a commer-

cial FE package (Abaqus). Section 6 draws the

conclusions. In particular we discuss agreements and

failures of the analytical models with respect to the

numerical simulations, thus assessing the range of

validity of the Uniform Curvature Föppl-von Karman

model for the description of the highly non-linear

behaviour of shell structures.

2 Basic phenomena

We study how the stable equilibrium shapes of free-

standing shells depend on two distinct classes of

control parameters: (1) the curvatures of the shell in its

initial stress-free configuration and, (2) the inelastic

curvatures induced by thermal, plastic or hygroscopic

loads. We consider here the simple case in which the

natural and inelastic curvatures are uniform in space

and spherical (i.e. equal in all directions). Under these

hypotheses, they are completely characterised by two

independent scalar parameters: the magnitudes c0 and

ci of the initial and inelastic curvatures, respectively.

To simplify the analytical treatment, we will further

assume that also the current equilibrium configuration

has uniform (but generally not spherical) curvatures.

Here and henceforth, we will denote by Kx, Ky, Kxy the

three independent components of the symmetric

tensor characterising the current curvature in this

simplified Uniform Curvature (UC) model. Despite its

simplicity, this setting allows us to faithfully describe

the rich non-linear behaviour of the shells under the

effect of the control parameters (c0, ci) and to design

structures with multiple (up to three) stable equilib-

rium shapes or a continuous set of configurations at the

same energy level (neutrally stable shells). The results

of the simple UC model are checked against more
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refined models, as a model with Quadratic Curvature

(QC, see Sect. 3) and fully non-linear shell finite-

element models with a large number of degrees of

freedom.

Figures 1, 2 and 3 show bifurcation diagrams

describing the effect of the natural and inelastic

curvatures. Details on the procedure that allows to

draw these graphics are given in Sect. 3. As three,

qualitatively different, stability regions arise, in

Sect. 4 we sketch a procedure to design shells within

each one of them. Section 5 describes the actual

production of three prototypes corresponding to points

B, C and T in Fig. 3. In the rest of this Section, we

comment on the key qualitative phenomena high-

lighted in Figs. 1, 2, 3.

2.1 Shells with initial curvature c0 and vanishing

inelastic curvature (ci ¼ 0)

Shells with a (spherical) initial curvature c0 and

vanishing inelastic curvature are characterised by a

natural stress-free configuration with

Kx ¼ Ky ¼ c0; Kxy ¼ 0: ð1Þ

For c0 6¼ 0 the natural shape of the shell is a spherical

sector of radius 1=c0. For c0 ¼ 0 the shell degenerates

to a flat plate. Because of geometrical non-linearities,

stable equilibrium configurations different from the

natural configuration above may exist. Figure 1 shows

the emergence of alternative stable equilibria when the

absolute value of the natural curvature c0 exceeds a

critical threshold. Shells which are sufficiently curved

in their initial configuration possess an additional (not

stress-free) stable everted configuration.

2.2 Shells with inelastic curvature ci
and vanishing initial curvature (c0 ¼ 0)

The inelastic curvature affects the constitutive relation

between the bending moments and the (geometric)

curvatures of the shell. In a linear constitutive model,

the bending energy is quadratic with respect to the

misfit between the current curvature K and the

spherical inelastic curvature ci. The elastic energy

density due to bending vanishes only when K is

spherical and equal to ci. The plate would like to

Fig. 1 Average curvatures at the equilibrium when varying the

initial curvature c0 with vanishing inelastic curvature ci ¼ 0:

black points refer to Abaqus FE results, solid black and brown

respectively to the UC and QCmodels, whilst light gray refers to

unstable equilibria

Fig. 2 Average curvatures at the equilibrium when varying the

inelastic curvature ci with vanishing initial curvature (c0 ¼ 0):

black points refer to Abaqus FE results, solid gray and brown

lines (superposed) are obtained with the UC and QC models

Fig. 3 Stability diagram in the half-plane c0, ci [ 0. The gray

level refers to the number of stable equilibria: 1 (white), 2 (light

gray) or 3 (darker gray). Black points report the Abaqus FE

results, dashed and solid curves report respectively the stability

boundaries found with the UC and QC reduced models
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conform in a spherical shape to minimize the bending

energy. However, because of the geometrical com-

patibility, an initially flat plate can require a significant

amount of extensional energy to deform as a sphere. It

would prefer to deform in cylindrical shapes. This

latter effect, related to geometrical non-linearities,

becomes predominant in the large curvature regime.

Indeed, when the absolute value of the inelastic

curvature ci exceeds a critical threshold, the spherical

deformation mode bifurcates toward an almost cylin-

drical one, as shown in Fig. 2. In perfectly isotropic

circular discs, the structure has not a preferred bending

axis. All the configurations obtained by rotating the

axis of the cylinder would be neutrally a stable equi-

librium, producing a neutrally stable shell [20].

However, small imperfections in the shape of the

disc, in the constitutive properties, or in the inelastic

curvature would modify this idealized behaviour. In

practical situations, the disc is bistable in this regime,

with two stable equilibria, where the shell is bended in

two orthogonal directions (see Fig. 2). In conclusion,

inelastic curvatures can lead to shells with multiple

equilibrium configurations.

2.3 Combined effects of initial and inelastic

curvatures

The stability diagram is sensibly enriched when

combining the effects of initial and inelastic curva-

tures. Figure 3 shows the regions of monostability

(white), bistability (light gray) and tristability (darker

gray) in the plane ðc0; ciÞ, obtained by combining

curves from Figs. 1 and 2. Only one half of the plane,

namely ci [ 0, is shown as for ci\0 the effect of

ðc0;�ciÞ is equivalent to that of ð�c0; ciÞ. As to be

expected, the two phenomena shown in Figs. 1 and 2

superpose to produce a richer scenario. For instance

choosing the parameters c0 and ci within the darker

gray region produces a shell having both the

everted and the bifurcated shapes as stable equilibria.

However note that the tristability region shown

here is different from the case discussed in [2, 23].

In those references the tristable behaviour of an

orthotropic shell was induced using only a natural

curvature field with Kx suitably larger than Ky. Here

the tristable nature of some shells is due to the

contemporary occurrence of natural and inelastic

curvatures.

3 Discrete reduced models and analytical results

In this Section we briefly recall the procedure to

deduce, from the Föppl-von Kármán shallow shell

equations, reduced models with few degrees of

freedom and the main analytical results arising from

similar models. For further details the reader is

addressed mainly to [22]. In particular we focus on

the results arising from the Uniform Curvature (UC)

reduced model that proves to be the most useful one

for design purposes.

3.1 Föppl-von Kármán assumptions

The Föppl-von Kármán (FvK) assumptions are often

used to simplify the fully non-linear Koiter shell

model to the case of thin shallow shells. The non-

linear coupling between membrane deformations and

transverse displacements is still accounted for and,

actually, it represents the key to describe many

interesting phenomena as the multistable behaviour

of such structures.

Two displacements fields are taken as primary

unknowns: with reference to an initially flat configu-

ration S � R2 these are the in-plane, say u ¼ ðux; uyÞ,
and the transverse or normal, say w, displacement

fields.1 The stable equilibria of the FvK model are

found as the local minimizers of the total energy:

Uðu;wÞ ¼
Z
S

�A e� fð Þ � e� fð Þ
2

þ D k � hð Þ � k � hð Þ
2

� �
d�S;

ð2Þ

where e and k are respectively the in-plane distortion

and the curvature given e.g. by [13]:

e :¼ ex; ey; 2exy
� �

¼ oux

ox
þ 1

2

ow

ox

� �2

;
ouy

oy
þ 1

2

ow

oy

� �2

;
oux

oy
þ ouy

ox
þ ow

ox

ow

oy

( )
;

ð3Þ

k :¼ kx; ky; 2kxy
� �

¼ o2w

ox2
;
o2w

oy2
; 2

o2w

oxoy

� 	
: ð4Þ

Note that the in-plane distortion e includes the second-

order geometric contributions due to transverse

1 Sometime the membrane problem, aimed at determining u, is

translated in terms of an Airy stress function, say U.
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displacements, which is the source of the non-linear

behaviour; correspondingly the compatibility between

e and k requires:

curlcurle :¼ o2ey

ox2
þo2ex

oy2
�2

o2exy

oxoy
¼ kxky� k2xy ¼: detk;

ð5Þ

where detk means the shell Gaussian curvature and

curl is the standard curl operator in S. In Eq. (2) �A and

D are respectively the 3�3 matrices representing the

membrane stiffness and the bending stiffness. More-

over, still in Eq. (2), the fields f and h are decomposed

into two separate contributions:

f ¼ f0 þ fi; h ¼ h0 þ hi; such that

curl curl f0 ¼ det h0:
ð6Þ

The contributions fi and hi describe inelastic mem-

brane and bending deformations as those associated to

thermal, plastic, hygroscopic or piezoelectric effects,

while f0 and h0 give the shape of the initial

configuration.

3.2 Reduction under the assumption of uniform

curvature

A necessary condition to minimize (2) is to solve an

elliptic problem on the two-dimensional domain S for

the membrane displacement fields ðux; uyÞ. Noting that
this problem is linear and completely defined once

assigned the transverse displacement w, an efficient

procedure to approximate the FVK energy with few

discrete degrees of freedom was proposed in [22].

In particular, assuming the transverse displacement

in the form

wðx; yÞ ¼
�kx x

2

2
þ

�ky y
2

2
þ �kxy x y ð7Þ

leads to a particularly simple reduced model labeled as

UC. This name refers to the fact that (7) is tantamount

to assume the curvature (4) to be uniform,

k ¼ �k :¼ f�kx; �kx 2�kxyg. In [4] was proven that, under

the hypothesis (7) the minimization of (2) is reduced to

the minimization of

UðKÞ ¼ 1

2
D K � H0 � Hið Þ � K � H0 � Hið Þ

þ 1

2
detK � detH0ð Þ2; ð8Þ

in terms of the three state parameters

K ¼ fKx;Ky; 2Kxyg. Here detK ¼ KxKy � K2
xy, and

D :¼ ~D= ~D11; ~D :¼ 1

L2

Z
S
Dd�S; ð9Þ

is an averaged and normalized bending stiffness

matrix. The curvatures K :¼ R �k, H0 :¼ Rh0 and Hi :
¼ Rhi are expressed in dimensionless form using the

characteristic radius

R ¼
ffiffiffiffiffiffiffiffiffiffi
12w

p L2

t
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ~D11=�A11

q
: ð10Þ

In (9) and (10) L2 is the area of the planform of the

shell and t its equivalent thickness.

The scalar number w which determines the curva-

ture scaling is of fundamental importance as it

measures the ratio between bending and membrane

energy. It is function only of the planform shapeX and

of the normalized membrane stiffness A :¼ �A=�A11. Let

us introduce dimensionless coordinates X ¼ x=L and

Y ¼ y=L and a corresponding scaled domain X.
Choosing L so that the area of X is 1, the number w
is computed as

w :¼
Z
X
A�1R � R; R ¼ o2U

oY2
;
o2U
oX2

;� o2U
oXoY

� 	
;

ð11Þ

where the Airy stress function U satisfies the elliptic

problem

DDU ¼ 1inX; U ¼ 0; oU=on ¼ 0 on oX: ð12Þ

3.3 Estimation of the parameter w

Clearly the evaluation of the integral (11) and the

solution of problem (12) are the crucial, and possibly

more difficult, steps in the reduction procedure.

However it turns out that w can be estimated with

good accuracy by simply applying a correction

coefficient to the analytical expression (14) available

for elliptical planforms.

For X an elliptical shape with axes ratio a / b and a

membranally orthotropic material:

A ¼
1 m 0

m b 0

0 0 c

0
@

1
A; c ¼ qð1� m2=bÞ;

ð13Þ
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the problem (12) is solved in closed form, see [19], and

w is evaluated to be:

well ¼ b� m2

24p2 3ða=bÞ2bþ b=q� 2mð Þ þ 3ðb=aÞ2
� � :

ð14Þ

For isotropic materials (b ¼ 1, 2q ¼ 1=ð1þ mÞ) and
circular shapes (a=b ¼ 1) this expression reduces to

the simple:

wic ¼ 1� m2

192 p2
’ 5:3� 10�4 ð1� m2Þ: ð15Þ

In Fig. 4, we have plotted as a solid black curve the

ratio well=wic in the isotropic case in order to elucidate

the dependence of w on the planform aspect ratio a/b:

it is evident that for nearly circular planforms, the

membrane energy has the maximal relevance with

respect to the bending energy.

For rectangular shapes we claim that multiplying

the closed form solution (14) by a correction factor is

sufficient to get a quite accurate estimation; in

particular we state that

wrect ’ 0:738� well: ð16Þ

As a matter of fact, in Fig. 4, we have also reported as

black points the values wrect=wic, computed numeri-

cally solving (12) on rectangles with different aspect

ratios and the function 0:738� well=wic as a gray

dashed curve. One can check that the error associated

to the estimation (16) is quite small and specifically is

below 5 % for a=b 2 ð0:5; 2Þ. The number 0.738 has

been numerically obtained as the ratio between the

values of w for a circle and a square of isotropic

material, but similar error bounds still hold for non

isotropic materials.

3.4 More complex ansatz

Displacement ansatzs more complicated than (7) can

be introduced to satisfy the boundary conditions for

the bending moments and improve the accuracy of the

UC solution. In particular we will refer in Sect. 6 to

some results related to the Quadratic Curvature (QC)

model arising from the ansatz

wðx; yÞ ¼
�kx x

2

2
þ

�ky y
2

2
þ �kxy x yþ c1 x

2 x2 � a2
 �

þ c2 y
2 y2 � b2
 �

:

ð17Þ

This leads to a quadratically varying curvature field

able to satisfy on average the boundary conditions for

the bending moment in a rectangular domain. Again

the interested reader is addressed to [22] for details.

The analysis of the multistable behaviour of shells

based on the QC model produces results which are

very close to the ones obtained by the reduced UC

model (see Figs. 1, 2, 3).

3.5 Validation of UC model by comparison

with finite-element (FE) simulations

In order to validate the analytical results for the UC

model, we performed fully non-linear FE simulations: all

the FE results were obtained with the Abaqus S4R

element in a general non-linear setting bymeans of a Full-

Newton scheme. FE results are plotted in Figs. 1, 2 and 3

(details on how the stability boundaries are traced can be

found in the ‘‘Appendix’’) and showvery good agreement

with the analytical predictions: all the boundaries of the

monostability region fall within a 3 % error.

The FE model is not bound to the assumptions of

shallow shells, as it is the case in the Föppl-von

Kármán model, or its UC and QC approximations. Yet

the overall stability scenario (Fig. 3), as well as the

main effects leading to multistable behaviour of shells

(Figs. 1, 2), are confirmed by FE simulations even for

large curvatures. Further comments on the differencies

between analytical and FE results can be found in

Sect. 6.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4 The ratio wi=wic for isotropic material as function of the

planform aspect ratio a/b: exact solution for ellipses (black), FE

solution (points) and the approximation (16) (dashed) for

rectangular planform
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Based on these remarks, in the following we present

design rules for multistable shells based on the UC

model. These rules are applied in order to build

examples of multistable shells (see Sect. 5).

3.6 Equilibria and stability properties

Aimed at giving simple design directives, we derive

closed form solutions regarding the existence and stability

of the UC equilibria. We focus on the case of orthotropic

(particularly square-symmetric/isotropic) shells.

For square-symmetric shells the normalized stiff-

ness matrix D can always be put in the form:

D :¼
1 l 0

l 1 0

0 0 c

0
@

1
A; �1\l\1; c[ 0; ð18Þ

where l :¼ m=
ffiffiffi
b

p
and c :¼ qð1� m2=bÞ=

ffiffiffi
b

p
are the

only two constitutive parameters. Here m is the in-

plane Poisson’s ratio, b :¼ Ey=Ex the ratio between

Young moduli in the orthotropy directions and q the

shear modulus2. Isotropic shells correspond to b ¼ 1

and c ¼ ð1� lÞ=2.
Assuming (18) and a spherical initial natural curva-

tureH0 represented by the only parameter c0 such that:

H0x ¼ H0y ¼ c0 and H0xy ¼ 0 ð21Þ

the stationarity equations (oU=oK ¼ 0) give, after

some algebra, the following equilibrium equations:

Kx � Ky

 �
detK � c20 þ l� 1
 �

¼ 0;

ðdetK þ lþ 1ÞD� c20D� 2ðci þ c0Þ ðlþ 1Þ ¼ 0;

Kxy detK � c20 � 2c
 �

¼ 0;

ð22Þ

where D :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4detK þ 4K2

xy þ ðKx � KyÞ2
q

.

Stability of equilibria is related to the sign of the

Hessian o2U=oK2, and the stability margin is then

represented by the condition:

o2U

oK2
¼ 0: ð23Þ

By solving (22)1 and (22)3, we see that three different

types of equilibria are possible which are briefly

discussed in what follows. In each of the cases

discussed hereafter, the values of Kx and Ky at

equilibrium are obtained by solving (22)2.

1. Kx ¼ Ky and Kxy ¼ 0. These are ‘‘untwisted’’

configurations and they are spherical when b ¼ 1.

These equilibria can be either one or three. If we

combine the stationarity condition (22)2 with the

stability margin (23), in this case one can find the

expression fI :

fI ¼ 4c60 � 54c0ciðlþ 1Þ2 � ðlþ 1Þ2 27c2i þ 4lþ 4
 �

þ
� 12c40ðlþ 1Þ � 15c20ðlþ 1Þ2;

ð24Þ

it is easily seen that in the region fI\0 there is

only one stable equilibrium. Instead when fI [ 0

there are three equilibria only two of which

are stable, while on the set fI ¼ 0 one of them

looses stability as a turning point. Hence fI [ 0 is

the gray region in Fig. 1 where everted configu-

rations are stable and curve fI ¼ 0 represents

the boundary between monostable and bistable

regions.

2. detK ¼ c20 þ 1� l[ 0 and Kxy ¼ 0. These equi-

libria correspond to ‘‘untwisted’’ configurations

with positive assigned Gaussian curvature. If we

combine the stationarity condition (22)2 with the

stability margin (23), in this case one can find the

expression fII :

fII ¼ l ci þ c0ð Þþ ci � c0ð Þ l ci þ c0ð Þþ ci þ 3c0ð Þ
þ 4ðl� 1Þ;

ð25Þ

it is easily seen that these equilibria are

stable when fII [ 0. They originate from type I

equilibria through a pitchfork bifurcation on the

set fII ¼ 0. Hence fII [ 0 is the gray region in

Fig. 2 which allows for two bifurcated configura-

tions, and the curve fII ¼ 0 represents the bound-

ary between monostable and bistable regions.

3. Kx ¼ Ky and detK ¼ c20 þ 2 c. These equilibria

correspond to ‘‘twisted’’ configurations with

assigned Gaussian curvature. However it easily

checked that these equilibria can be stable only if

0\c\ð1� lÞ=2� 1 i.e. for non-isotropic shells

with low shear rigidity.

2 As shown in [4], a differential scaling of the curvature

components can always be introduced

Kx ! Kx

ffiffiffi
b

p
; Ky ! Ky; Kxy ! Kxy

ffiffiffi
b4

p
; ð19Þ

Hx ! Hx

ffiffiffi
b

p
; Hy ! Hy; Hxy ! Hxy

ffiffiffi
b4

p
; ð20Þ

which reduces the generic orthotropic material to the analysis of a
square-symmetric material with b ¼ 1.
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If c ¼ ð1� lÞ=2, as, for instance, in isotropic shells,

then

detK ¼ c20 þ 1� l � c20 þ 2 c; ð26Þ

and two equilibrium equations are contemporarily

solved by this value of the Gaussian curvature.

Therefore when c ¼ ð1� lÞ=2 the twisting curvature

Kxy and the difference ðKx � KyÞ can be chosen

arbitrarily provided:

4K2
xy þ ðKx � KyÞ2 ¼ ci þ c0ð Þ2ðlþ 1Þ2

� 4 ðc20 þ 1� lÞ:
ð27Þ

We then have a whole one-dimensional set of config-

urations, (27), sharing the same level of energy. The

corresponding stability margin is vanishing and sim-

ilar shells actually behave as zero-stiffness structures

[8, 20]. We notice that these equilibria can be seen as a

degeneration of the case II described above and that a

similar result was recently found for cylindrical shells

in [8].

3.7 Useful analytical results for design purposes

Materials verifying the condition c\ð1� lÞ=2 are

rare. We focus here on the case of the two basic classes

described in Sect. 2 without considering twisting

instability. In the important limit case of isotropic

shells, twist becomes a degenerate zero-stiffness

deformation mode.

Having found the analytical boundaries, fI ¼ 0 and

fII ¼ 0, of the monostability, bistability and tristability

regions, one can derive precise closed form indications

for the design of multistable shells. We focus in

particular on the set c0 [ 0 and ci [ 0 which is shown

in Fig. 5. With reference to this figure we first define

the two critical values

c�0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
; c�i ¼

2
ffiffiffiffiffiffiffiffiffiffiffi
1� l

p

1þ l
; ð28Þ

which are obtained intersecting fI ¼ 0 with ci ¼ 0 and

fII ¼ 0 with c0 ¼ 0 respectively. The value c�0 gives the

critical stress-free curvature over which a shell is

bistable (i.e has an everted shape) in absence of inelastic

curvatures; the value c�i gives the critical inelastic

curvature over which a shell is bistable (i.e bifurcates

its equilibrium) in absence of natural curvatures.

The two sets fI ¼ 0 and fII ¼ 0 intersect at the apex

of the tristability region, namely in the point

c0 ¼ c��0 :¼
ffiffiffiffiffiffiffiffiffiffiffi
7þ l

p
;

ci ¼ c��i :¼ 4
ffiffiffi
2

p

1þ l
�

ffiffiffiffiffiffiffiffiffiffiffi
7þ l

p
:

ð29Þ

In the same point we compute the tangents to the two

stability boundaries (gray vectors in Fig. 5) in order to

be able to move inside the tristability region. In

particular we find that any point in the form

fc��0 ; c��i g þ k fcos/; sin/g; k[ 0; ð30Þ

with

/ ¼ arctan
3
ffiffiffiffiffiffiffiffiffiffiffi
7þ l

p
þ p

ffiffiffiffiffiffiffiffiffiffiffi
7þ l

p
�

ffiffiffi
2

p
ð1þ lÞ

 �
ffiffiffi
2

p
p ð1þ lÞ

 !

ð31Þ

and 0\p\1, lies inside the tristability region. For

p 	 1 the point (30) stays close to the lower stability

boundary, while for p ’ 1 is closer to the upper

boundary. The point T, for instance, corresponds to

p ’ 0:24 and k ’ 3:4.

Finally in Fig. 6 we examine the dependance of the

introduced critical values for c0 and ci as functions of

the material parameter l. Whilst for c�0 and c��0 we

observe a moderate dependence, both c�i and c
��
i tends

to zero when l ! 1. This fact is of great practical

importance as even small inelastic loads can bifurcate

the equilibrium in materials having the parameter l
close to 1. Recalling the definition of l, the condition
l ! 1 is obtained when

m2 ! Ey=Ex; ð32Þ

Fig. 5 Zoom for c0 [ 0, ci [ 0 of the stability diagram in

Fig. 3. Definitions of the limits c�0, c
�
i , c

��
0 and c��i
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a remarkable material property already found and

discussed in [23] or [7].

4 Design criteria

Based on the results obtained above, we detail, in the

following subsections, general guidelines to actually

build multistable shells in each of the three regions

shown in Fig. 3:

(B) Bistable shells with natural and everted

configurations (fI [ 0, c0 [ 0);

(C) Bistable shells with bifurcated quasi-cylindrical

configurations (fII [ 0, ci [ 0);

(T) Tristable shells with bifurcated quasi-cilindrical

configurations and everted configuration

(fI [ 0; fII [ 0; c0 [ 0; ci [ 0).

Preliminarly, for all the cases above, there is the

choice of both the planform shape X and the material.

Concerning the shape, the best results are obtained

withX a circle because it minimizes the critical values

of curvatures for multistability. In fact, the dimen-

sional values of curvatures are inversely proportional

to the radius R (see (10)), which on its turn is propor-

tional to
ffiffiffiffi
w

p
(the number w is defined in (11)): thus,

the bigger is w, the bigger is R and the lower the

corresponding dimensional curvatures. It can be seen

from the results in Fig. 4 that the maximum value for

w are obtained for the circular shape.

Concerning the material, in the orthotropic case we

suppose given the Poisson’s ratio m, the Young

modulus Ex, the Young moduli ratio b ¼ Ey=Ex and

the shear modulus q. The best results are obtained for

materials having sufficiently high shear modulus

2q
 1þ m (in order to eliminate twisting intabilities:

see explanations in Sect. 3) and satisfying (32), in

order to maximize the stability margins.

4.1 Steps common to all cases

(I) Depending on the chosen shape X and on the

material compute w:

• using (14) if the shape is elliptical,

• using (16) if the shape is rectangular;

• either numerically solving (12) and (11)

or approximating w as in the previous

cases if the shape is neither elliptical nor

rectangular.

(II) Choose the area of the planform L2 and the

thickness t. Note that the ratio L2=t is a

scaling factor for the characteristic radius;

hence, the larger is the number L2=t, the

smaller curvature will be needed for

multistability.

(III) Compute the characteristic radius R in (10).

4.2 Bistable shells with natural and everted

configurations

(IV) Compute c�0 in (28).

(V) Build a shell having, in a stress-free configu-

ration, curvatures

�h0x ¼
ffiffiffi
b

p
h�0;

�h0y ¼ h�0;
�h0xy ¼ 0;

h�0 
 1:05 � c�0=R:
ð33Þ

As, with respect to refined FE simulations, the

UC model typically overestimates within a

3 % error the critical natural curvature, the

coefficient 1.05 in (33) guarantees the exis-

tence of a stable everted configuration. Clearly

the value in (33)3 represents the minimum

curvature, but larger values are also possible.

Note, however, that the energy needed for the

shell eversion increases rapidly with the

distance from the critical value, since it scales

as ðdet �h0 � ðh�0Þ
2Þ2.

Fig. 6 Critical values of the curvatures as functions of l: c�0
(dashed black), c��0 (solid black), c�i (dashed gray), c��i (solid

gray)
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4.3 Bistable shells with two bifurcated

configurations

(IV) Compute c�i in (28).

(V) Build a flat shell and apply to it inelastic

curvatures

�hix ¼
ffiffiffi
b

p
h�i ;

�hiy ¼ h�i ;
�hixy ¼ 0;

h�i 
 c�i =R:
ð34Þ

Since, with respect to refined FE simulation,

the UC model estimates very well the critical

inelastic curvature, condition (34) should

guarantee the existence of two bifurcated

configurations without any additional coeffi-

cient. Clearly the value (34)3 represents the

minimum inelastic curvature to induce bifur-

cation of the equilibrium. Larger values are

possible and needed to increase the difference

between the bifurcated shapes; however, in

these shells the energy, needed to move from

one equilibrium to the other, increases less

rapidly with the distance from the minimal

critical value as it scales as ð�hi � h�i Þ
2
.

4.4 Tristable shells with two bifurcated and one

everted configurations

(IV) Compute c��0 and c��i in (29).

(V) Build a shell with stress-free curvatures

�h0x ¼
ffiffiffi
b

p
h��0 ; �h0y ¼ h��0 ; �h0xy ¼ 0;

ð35Þ

and apply to it inelastic curvatures

�hix ¼
ffiffiffi
b

p
h��i ; �hiy ¼ h��i ; �hixy ¼ 0; ð36Þ

with

h��0 ; h��i
� �

¼ fc��0 ; c��i g=R
þ k fcos/; sin/g=R ð37Þ

and / given in (31). A word of caution is

needed in order to properly choose the

parameters k and p. Since the UC model

underestimates the apex of tristable region by

14 % in norm, the condition k[ 0 should be

substituted by a safer k[ 1. Moreover the

angle / (controlled by 0\p\1) is better

chosen to stay closer at the bottom boundary of

the tristability region; safer values for p are

within 0:05\p\0:5. This last choice allows

to avoid local instabilities that the UCmodel is

not able to describe and which are discussed in

Sect. 6.

5 Sample prototypes

We present an experimental example for each of the

three cases examined in the previous Section and

corresponding to points B, T and C in Figs. 3 and 5.

In particular the prototype corresponding to point B

in Fig. 5 is half a tennis ball, while the prototypes

corresponding to points C and T are made of silicone.

These two families of materials are parametrized by

l ¼ 0:5, which is the only parameter affecting the

shape of the stability diagram of Fig. 3; hence, this

diagram is valid for all cases. We remark that this

value of Poisson’s ratio is the highest possible for

isotropic materials, thus the one which is closest to the

condition (32).

5.1 Bistable spherical shell: half tennis-ball

A tennis ball is a spherical shell essentially made of

rubber. One half of such a ball constitutes a nice

example of bistable shell with both natural and everted

configurations as shown in Fig. 7.Modelling it as a shell

with circular planform of radius r ’ 0:03m, thickness

t ’ 0:003m, and using an isotropic rubber material

with b ¼ 1, m ¼ l ’ 0:5 and c ’ 0:25, we calculate:

w ¼ 3:96� 10�4, L ¼
ffiffiffiffiffiffi
2 p

p
r ’ 0:075m, L=t ’ 25,

R ¼ 0:13m, c�0 ¼ 2:45, h�0 ¼ c�0=R ¼ 18:84m�1.

Since b ¼ 1 and the stress-free curvature of half

tennis ball, namely �h0 ¼ 1=r ¼ 33:33m�1, is sensibly

larger than the threshold h�0, the everted configuration

is stable, Fig. 7. Clearly half a tennis ball is not a

shallow shell; yet the UC model predicts the correct

stability properties.

5.2 Bistable bifurcated shell and tristable shell:

silicones

Whilst we presented the very simple case of half a

tennis ball to illustrate the case of the bistable shell in

B, the points C and T in Fig. 5 do require the presence
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of inelastic curvatures: fabricating shells with large

initial and inelastic curvatures is not a trivial task from

the experimental point of view. The solution we

adopted here is to use the silicones Zhermack Elite

double 32 (referred as Green) and Zhermack Elite

double 8 (referred as Pink). These soft and isotropic

materials are easily moldable and can exhibit con-

trolled inelastic deformations if suitably prepared;

they are delivered in the form of liquid polymers

which, once mixed with a catalyst, undergo a rapid

polymerisation reaction.

The Green and Pink silicones have similar mechan-

ical properties, namely m ’ 0:5, b ¼ 1, q ¼ 1=3

(leading to l ¼ 0:5 and c ¼ 0:25), but are character-

ized by different Young moduli (EGreen ¼ 1; 364MPa,

EPink ¼ 0; 186MPa) and by different hygroscopic

properties. We use this circumstance to produce shells

with controlled inelastic effects: indeed we observed

that the polymerisation of a layer of Pink silicone,

which is laid over a layer of already polymerized

Green silicone, produces a bilayered medium with

inelastic curvature (an effect which is not documented

in the technical material specifications). Moreover,

this effect is also obtained when the top layer is made

of a mixture of Pink and Green silicone, and the

resulting inelastic curvature can be controlled by

tuning the relative percentage of Pink and Green

silicone used in the mixture. In particular, we suppose

the bottom layer being made entirely of Green silicone

and we characterize the mixture of the upper layer by

its percentage q of Pink silicone (q 2 ½0; 100�, the
percentage of Green silicone being then ð100� qÞ).
We measured the resulting inelastic curvature hi
experimentally on 2 mm-thick two-layered strips

corresponding to different values of q: results are

shown in Fig. 8.We note that in such assemblies also a

small percentage of Pink silicone in the upper layer

suffices to produce an inelastic curvature higher than

the critical threshold h�i .

For the material properties of these silicones and a

circular planform the preliminary steps described in

Sect. 4.1 give:

(I) w ¼ 3:96� 10�4.

(II) The planform radius and thickness are chosen

respectively 5 cm and 2 mm. Hence

L2=t ¼ 3:93m.

(III) R ¼ 0:271m.

To build the bistable shell with quasi-cylindrical

configurations, we follow the steps in Sect. 4.3 to get:

(IV) c�i ¼ 0:943.

(V) h�i [ 3:48m�1.

Fig. 7 Natural (a) and
everted (b) configurations
for half a tennis ball
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Fig. 8 Inelastic curvature hi of bi-layered Pink–Green silicone

strips induced by the percentage q of Pink material in the Pink–

Green mixture of the upper layer. The critical value h�i , needed
in the sample case discussed, and the inelastic curvatures of

points T and C are reported: these last correspond to a 40 %

Pink–60 % Green mixture
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Entering with this last value in Fig. 8b dictates a

Pink percentage q in the upper layer higher than 5 %;

we choose in particular q ’ 40% which corresponds

to the inelastic curvatures �hix ¼ �hiy ’ 13m�1 and to

point C in Fig. 3. The resulting bifurcated configura-

tions are shown in Fig. 9.

Finally, to build the tristable shell we follow the

steps in Sect. 4.4 to get:

(IV) c��0 ¼ 2:74 and c��i ¼ 1:03

(V) The choice k ¼ 3:4 and p ¼ 0:24 leads to

h��0 ’ 18:1m�1 and h��i ’ 13m�1

The choice made for k and p allows to have the same

inelastic curvature of the previous case and, therefore,

it is obtained as before with a mixture of 40 % Pink

and 60 % Green in the upper layer. But now the

bilayer plate must not be flat and must have curvature

radius 1=h��0 ’ 5:5 cm equal in all directions since

b ¼ 1. To this end, using a 3D printer, we have

produced the mold shown in Fig. 10, and the poly-

merization phases for both the Green and Pink–Green

layers has taken place inside this mold. The three

stable shapes of the resulting tristable shell are shown

in Fig. 11.

Despite the silicone shells shown in Figs. 9 and 11

are clearly not shallow, their multistable behaviour is

well predicted by applying the design rules provided

by our UC shallow-shell model based on Föppl-von

Kármán assumptions.

6 Concluding remarks

We have reported on modelling, numerical approxi-

mation and design criteria of simple multistable shells.

Using soft isotropic materials, we have built sample

prototypes for three relevant cases. The following

conclusions can be drawn:

1. All the FE results have been obtained with fully

non-linear simulations of shells in Abaqus (S4R

element, Full-Newton scheme: see the Appendix

for details). Even if the Föppl-von Kármán model,

or its UC and QC approximations, are based on the

assumptions of thin (t 	 L) shallow (k 	 1=L)

shells, yet the UC and QC models are able to give

an accurate description of the stability scenario

(Fig. 3) even for large curvatures.

2. The UC model gives faithful indications of the

stability, associated to rather large natural and

inelastic curvatures, despite the simplicity of the

Uniform Curvature assumption. In particular the

predictions on all the boundaries of the monosta-

bility region fall within a 3 % error.

We note that this remains true even when the

actual (or FE computed) shapes violate the UC

assumption. Figure 12a shows, for instance, the

Fig. 9 Bifurcated shapes of the silicone shell corresponding to

point C in Fig. 3. The principal directions of curvature are

marked on the shell in red and blue

Fig. 10 Mold with radius of curvature 5.5 cm used to build the

tristable shell in Fig. 11

Fig. 11 Shapes of the silicone shell corresponding to point T in

Fig.3. The principal directions of curvature are marked on the

shell in red and blue
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UC shapes (yellow) of a square tristable shell as

compared with the ones predicted by the QC

model or by FE simulations (brown). For the

everted configuration, Fig. 12b shows the varia-

tions of the FE curvature fields with respect to

their averages.

3. The QC model, based on a quadratic ansatz of the

curvature field, is slightlymore precise than the UC

model for predicting the number of stable equilibria

(see, for instance, the lower boundary of the

tristability region in Fig. 3) and the actual equilib-

rium shapes (Fig. 12a). However, in a possible

Fig. 12 a Upper row shapes predicted by UC (yellow) and QC

(brown) models for a square shell within the tristable region

c0 [ 0, ci [ 0; actually, the FE predictions are almost confused

with the QC ones and are not reported exactly. b Lower row

variations of the curvatures computed with FE with respect to

their spatial averages: from the left components Kx � Kx, Ky �
Ky and Kxy � Kxy in the everted configuration of a square shell

Fig. 13 a Comparison of

the average shell curvatures

for c0 ¼ 4:4 and ci
increasing: UC (gray), QC

(brown), FE (black). b The

Kxy field when ci reaches the

critical value making the

everted configuration

unstable as computed in

Abaqus
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trade-off between these QC precision enhance-

ments and the simple closed-form solutions allowed

by the UC model, the latter should, in our opinion,

be preferred because it is simpler but it suffices to

well describe the multistability phenomena both

qualitatetively and quantitatively.

4. Still with reference to Fig. 3 the more pronounced

difference between the UC (or QC) predictions

and the FE results lies in the upper stability

boundaries of the tristable regions. In Fig. 13a we

have plotted the average shell curvatures Kx and

Ky as predicted by UC (gray), QC (brown) and FE

(black) for c0 ¼ 4:4. Clearly in the FE simulation

the everted configuration looses stability for

ci ’ 4:6, i.e. much earlier than the UC and QC

predictions. Plotting, in Fig. 13b, the FE spatial

distribution of the component Kxy as ci ’ 4:6 is

approached, we understand that the stability is lost

for a localization of the twisting curvature; a

bifurcation mode that evidently could not be

contemplated under the simple hypotheses of a

uniform or quadratically varying curvature.
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Appendix: Identification of stability boundaries

for multistable shells by FE simulations

In Fig. 3, we resume the prediction of the stability

boundaries for multistable shells: results obtained by

applying the UC and QC models (solid and dashed

lines, respectively) can be compared to the ones

computed by refined Finite Element approximations

(marked as black dots). In particular, we performed FE

simulations with Abaqus CAE using the S4R element,

which is a shell element with four nodes and five

degrees of freedom per node with reduced integration.

Geometrical non linearities are taken into account in a

Full-Newton scheme. In order to validate the analyt-

ical results as well as to locate the experimental

response of the prototypes described in Sect. 5, results

of simulations correspond to the same material system

as in experiments, that is 2 mm-thick bilayered shells

made of Green�(GreenþPink) silicone material. The

non-dimensional diagram of Fig. 3 is valid for both

silicone and rubber materials since they have the same

Poisson’s ratio (l ¼ 0:5) which is the only parameter

affecting its boundaries. The planform of the shell is

circular, but simulations based on square planforms

were also performed and gave similar results. The

diameter was initially fixed at D ¼ 10 cm in order to

reproduce the experimental results. Simulations were

also performed with a diameter of D ¼ 20 cm in order

to apply sufficiently high initial curvatures c0 (points

with c0 [ 5 in Fig. 3).

In the analytical models, the shell is free and no

boundary condition is applied; thus, in the FE

simulations we only clamped the central node in order

to avoid rigid body motions.

In order to reproduce the stability diagram of Fig. 3,

the two parameters to be varied in the FE study are the

natural curvature c0 and the inelastic curvature ci (we

remind that c0 and ci are adimensional curvatures,

according to definitions given in Sect. 3). Different

levels of natural curvature c0 simply correspond to

different paraboloid shell surfaces c0
R
ðx2 þ y2Þ, where

R is the characteristic radius defined by Eq. (10):

changing c0 required to build a newmesh for the initial

stress-free configuration, the number of elements of

the mesh varying from 1456 (9114 d.o.f.) for a disk

(c0 ¼ 0) to 1828 (11346 d.o.f.) for the deepest shell

considered (c0 ¼ 9). Different levels of inelastic

curvature ci were induced by applying an equivalent

uniform temperature change DT to the shell (different

expansion coefficients are defined for the two layers,

thus inducing an inelastic curvature of the shell: values

of the ficticious expansion coefficients are identified

from the experimental behaviour of the silicone

material system, shown in Fig. 8).

From an operational point of view, we fixed a

discrete set of c0 values (see dots on Fig. 3). For each

value of c0, we built the corresponding mesh (stress-

free configuration) of the shell and we found the

corresponding everted configuration at ci ¼ 0, if it

existed, by applying imposed displacements onto the

shell: clearly there is a range of values of c0
(c0 2 ½�c�0; c

�
0�) where the everted configuration can-

not be found. Then, starting from each natural

configuration and from each everted configuration,

we have progressively increased the inelastic curva-

ture value ci (in practice, the temperature change DT)
until the stability was lost, thus marking the critical

values of inelastic curvature in order to obtain

bifurcation or loss of equilibrium.
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In order to find the different points on the stability

diagram (see Fig. 14), we followed the procedures

described hereafter.

1. Intersection between solid gray and dashed gray

lines (black point, c�i ): start from a flat disk and

increase the inelastic curvature ci until finding the

critical value c�i inducing bistability through a

pitchfork bifurcation (evolution of curvatures is

shown in Fig. 2a).

2. Intersection between dashed black line and the

horizontal axis ci ¼ 0 (gray point, c�0): start from a

spherical shallow shell and impose displacements

onto the shell in order to evert the curvature;

repeat the simulations by increasing the initial

curvature c0 until the existence of the everted

configuration is established at c0 ¼ c�0 (see results

on Fig. 1).

3. Dashed gray boundary (c0 [ 0): start from a

spherical shell with initial curvature c0 [ 0 and

apply a positive inelastic curvature ci until finding

the value corresponding to the pitchfork bifurca-

tion of the natural configuration into two quasi-

cylindrical shapes.

4. Dashed black boundary (c0 [ 0): first find the

everted configuration, then apply a positive

inelastic curvature ci until it looses stability

(above the dashed black line the everted config-

uration is no longer stable: tristability is attested

above the dashed gray line and below the dashed

black line).

5. Solid black boundary (c0\0): start from a curved

shell with initial negative c0 curvature, and apply

a positive inelastic curvature ci until it looses

stability.

6. Solid gray boundary (c0\0): apply a positive

inelastic curvature ci onto an everted configura-

tion corresponding to intial negative natural

curvature c0 and increase ci until the everted

configuration bifurcates into two quasi-cylindrical

shapes.
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