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SUMMARY

The variational approach to fracture is effective for simulating the nucleation and propagation of complex
crack patterns but is computationally demanding. The model is a strongly nonlinear non-convex variational
inequality that demands the resolution of small length scales. The current standard algorithm for its solution,
alternate minimization, is robust but converges slowly and demands the solution of large, ill-conditioned
linear subproblems. In this paper, we propose several advances in the numerical solution of this model that
improve its computational efficiency. We reformulate alternate minimization as a nonlinear Gauss–Seidel
iteration and employ over-relaxation to accelerate its convergence; we compose this accelerated alternate
minimization with Newton’s method, to further reduce the time to solution, and we formulate efficient pre-
conditioners for the solution of the linear subproblems arising in both alternate minimization and in Newton’s
method. We investigate the improvements in efficiency on several examples from the literature; the new
solver is five to six times faster on a majority of the test cases considered. © 2016 The Authors International
Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Cracks may be regarded as surfaces where the displacement field may be discontinuous. Fracture
mechanics studies the nucleation and propagation of cracks inside a solid structure. Variational
formulations recast this fundamental and difficult problem of solid mechanics as an optimization
problem. The variational framework naturally leads to regularized phase-field formulations based
on a smeared description of the discontinuities. These methods are attracting an increasing interest
in computational mechanics. The aim of our work is to propose several improvements in the linear
and nonlinear solvers used in this framework.

The code for the algorithms proposed in this paper and the thermal shock example of Section 4.3,
are included as supplementary material.‡

1.1. Variational formulation of fracture and gradient damage models

The variational approach to fracture proposed by Francfort and Marigo [1] formulates brittle fracture
as the minimization of an energy functional that is the sum of the elastic energy of the cracked solid
and the energy dissipated in the crack. The simplest fracture mechanics model, due to Griffith [2],
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NUMERICAL SOLUTION OF A VARIATIONAL FRACTURE MODEL 649

assumes that the cracked solid � n � is linear elastic and that the surface energy is proportional to
the measure of the cracked surface � . The crack energy per unit area is the fracture toughness Gc , a
material constant. In this case, the energy functional to be minimized is as follows:

E.u; �/ D

Z
�n�

1

2
A0".u/ � ".u/dx CGcS.�/; (1)

where u is a vector-valued displacement field, ".u/ D sym.ru/ is the second-order tensor asso-
ciated to the linearized strains inside the material, A0 is the fourth-order elasticity tensor of the
uncracked solid, and S.�/ is the Hausdorff surface measure of the crack set � . In a quasi-static
time-discrete setting, given an initial crack set �0, the cracked stated of the solid can be found by
incrementally solving the following unilateral minimization problem [1, 3]:

arg min¹E.u; �/; u 2 C Nu.� n �/; � � �i�1º; (2)

where

C Nu.�/ � ¹u 2 H 1.�;Rn/; u D Nu on @ Nu�º (3)

is the space of admissible displacements, @ Nu� is the part of the boundary where the Dirichlet con-
ditions are prescribed, and H 1.� n �;Rn/ denotes the Sobolev space of vector fields defined on
�n� with values inRn. The minimization problem earlier is labeled unilateral because the crack set
cannot decrease in time. This problem is quasi-static and rate independent, so that time enters only
via the irreversibility constraint. The numerical solution of the free-discontinuity problem [4] ear-
lier is prohibitive, because of the difficulty related to the discretization of the unknown crack set �
where the displacement may jump.

To bypass this issue, Bourdin et al. [5] transposed to fracture mechanics a regularization strat-
egy introduced by Ambrosio and Tortorelli [6] for free-discontinuity problems arising in image
segmentation [7]. The regularized model approaches the solution of (2) by the solution of

arg min¹E.u; ˛/; u 2 C Nu.�/; ˛ 2 D˛i�1º; (4)

with the regularized energy functional
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with cw D 4
R 1
0

p
w.˛/ d˛. In this formulation, ˛ is a smooth scalar field that can be interpreted

as damage, and ` is an additional parameter controlling the localization of ˛. With ˛i�1 the solu-
tion at the previous time step and denoting by @ N̨� the part of the boundary where the Dirichlet
conditions are prescribed on ˛, the admissible space for ˛ is a convex cone imposing the unilateral
box constraint

D N̨ .�/ � ¹u 2 H 1.�;R/; N̨ 6 ˛ 6 1 a.e. in �; ˛ D N̨ on @ N̨�º; (6)

which prevents self-healing. Following [6], Bourdin et al. [5] uses a.˛/ D .1 � ˛/2 C k` and
w.˛/ D ˛2, with k` D o.`/. With these conditions, it is possible to show through asymptotic
methods (�-convergence) that the solutions of the global minimization problem (4) tend to the
solutions of the global minimization problem (2) as ` ! 0 [8]. In the regularized problem, the ˛-
field localizes in bands of thickness on the order of ` giving smeared representation of the cracks,
which is energetically equivalent to the Griffith model (the dissipated energy per unit crack surface
is Gc). This behavior is preserved for a large class of functions w and a.

Similar ‘smeared’crack models have been developed in other contexts. In the physics community,
they are regarded as phase-field approximations developed by adapting the Ginzburg–Landau theory
of phase transitions [9]. In mechanics, they are regarded as gradient damage models [10, 11]. The ˛

© 2016 The Authors International Journal for Numerical Methods in
Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 109:648–667
DOI: 10.1002/nme



650 P. FARRELL AND C. MAURINI

field is a damage variable that modulates the elastic stiffness and introduces an energy dissipation.
In this context, (5) can be regarded as a model per se for the evolution of damage in the material,
and one can associate a physical meaning to the internal length and to evolutions following local
minima of the functional (5). In particular, one can show that in quasi-static evolutions ruled by a
local minimality condition, the internal length is regarded as a constitutive parameter that controls
the critical stress in the material before failure. We refer the reader to [11] and Section 4 for further
details on this point.

While the original model of Bourdin et al. [5] assumes small deformations, isotropic materi-
als, and quasi-static evolution and allows for interpenetration of crack lips in compression, recent
contributions include extensions to dynamics [12–14], multiphysics couplings [15, 16], anisotropic
materials [17], large elastic deformations [18–20], cohesive fracture [21], and compressive failure
with unilateral contact at crack lips [22–26], plates and shells [27, 28], and thin films [29]. Other
works [10, 11, 30, 31] discuss how the choice of the functions a and w in (5) affects the proper-
ties of the solutions, by analytical and numerical investigations. On the basis of these results, recent
numerical works [e.g., 32] adopt the choice w.˛/ D ˛ and a.˛/ D .1 � ˛/2 C k`, which we also
employ in the rest of this paper. We refer the reader to [11] for a comparative analysis of this model
and the original model in Bourdin et al. [5].

In the remainder of this paper, we discuss the numerical solution of the minimization problem (4),
after a standard finite element discretisation. We focus on the simplest model, neglecting the effect of
geometrical nonlinearities and the non-symmetric behavior of fracture in traction and compression.
More complex physical effects drastically modify the character of the numerical problems to be
solved and require further problem-specific developments that are outside the scope of this work.

1.2. The optimization problem and current algorithms

The minimization problem (4) is numerically challenging, for the following reasons:

(1) the functional is non-convex, and thus, the minimization problem in general admits many local
minimizers;

(2) the irreversibility of damage, required to have a thermodynamically consistent model and to
forbid crack self-healing, introduces bound constraints on the damage variable ˛ and demands
the solution of variational inequalities;

(3) the problem size after discretization is usually very large, because the minimizers of (5) are
typically characterized by localization of damage and elastic deformations in bands of width
on the order of `. This width is usually very small with respect to the simulation domain, and
the mesh size must be small enough to resolve the bands;

(4) the linear systems to be solved are usually very badly conditioned, because of the presence
of damage localizations where the elastic stiffness varies rapidly from the undamaged value
to zero.

At each loading step, the minimization of (4) is an optimization problem with necessary
optimality conditions: Find .u; ˛/ 2 C Nu �D N̨i�1 satisfying the first-order optimality conditions

Eu.u; ˛I v/ D 0;8v 2 C0; E˛.u; ˛Iˇ � ˛/ > 0;8ˇ 2 D N̨i�1 (7)

with
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Z
�
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where Eu and E˛ are the Fréchet derivatives of the energy with respect to u and ˛. Because of
the unilateral constraint on the damage field ˛, the first-order optimality conditions on ˛ form a

© 2016 The Authors International Journal for Numerical Methods in
Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 109:648–667
DOI: 10.1002/nme



NUMERICAL SOLUTION OF A VARIATIONAL FRACTURE MODEL 651

variational inequality. The linearization of these conditions is find . Ou; Ǫ / 2 C0 �D0 such that for all
.v; ˇ/ 2 C0 �D0

Euu.u; ˛I v; Ou/C Eu˛.u; ˛I v; Ǫ / D �Eu.u; ˛I v/;
E˛u.u; ˛Iˇ � Ǫ ; Ou/C E˛˛.u; ˛Iˇ � Ǫ ; Ǫ / > �E˛.u; ˛Iˇ � Ǫ /;

(10)

where
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Note that the bilinear form Euu is akin to a standard linear elasticity problem and that the bilinear
form E˛˛ is akin to a Helmholtz problem.

The most popular algorithm for the solution of the system (7) is the alternate minimization method
proposed by Bourdin et al. [5]. This algorithm rests on the observation that while the minimization
problem (4) is non-convex, the functional is convex separately in u or ˛ if the other variable is fixed.
Alternating minimization consists of alternately fixing u and ˛ and solving the resulting smaller
minimization problem, iterating until convergence. At each iteration before convergence, the opti-
mization subproblem has a unique solution with a lower energy, and thus, the algorithm converges
monotonically to a stationary point [33]. The algorithm is detailed in Algorithm 1.

Algorithm 1: Standard alternate minimization
Result: A stationary point of (4).
Given .ui�1; ˛i�1/, the state at the previous loading step.
Set .u0; ˛0/ D .ui�1; ˛i�1/.
while not converged do

Find uk 2 C Nu W Eu.u; ˛k�1I v/ D 0 8v 2 C0.
Find ˛k 2 D˛i�1 W E˛.uk; ˛Iˇ � ˛k/ > 0; 8ˇ 2 D˛i�1 .

end
Set .ui ; ˛i / D .uk; ˛k/.

The first subproblem, finding the updated displacement given a fixed damage, involves solving
a standard linear elasticity problem, but with a strongly spatially varying stiffness parameter. The
second subproblem, finding the updated damage given a fixed displacement, involves solving a
variational inequality where the Jacobian is a generalized Helmholtz problem, again with spatially
varying coefficients. The standard termination criterion used in [5] is to stop when the change in the
damage field drops below a certain tolerance. Another approach [25] is to stop based on a normalized
change in the energy. Miehe et al. [34] perform a single alternate minimization iteration and propose
the use of an adaptive time-stepping.

The main drawback of alternate minimization is its slow convergence rate. This motivates the
development of alternative approaches using variants of Newton’s method for variational inequal-
ities [10], such as active set [35] or semismooth Newton methods [36]. Newton’s method is
quadratically convergent close to a solution, but its convergence is erratic when a poor initial guess
is supplied [37, 38]. Numerical experience indicates that Newton’s method alone does not converge
unless extremely small continuation steps are taken. Recent attempts to address these convergence
issues include the use of continuation methods [39] or globalization devices such line searches and
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652 P. FARRELL AND C. MAURINI

trust regions [40]. Moreover, Newton-type method results in a large system of linear equations to be
solved at each iteration; in prior work, direct methods have been employed, limiting the scalability
of the approach.

In this work, we make several contributions to the solution of (4). First, we cheaply accelerate
alternate minimization by interpreting it as a nonlinear Gauss–Seidel method and applying over-
relaxation. Second, we further reduce the time to solution by composing alternate minimization with
an active-set Newton’s method, in such a way that inherits the robustness of alternate minimization
and the asymptotic quadratic convergence of Newton-type methods. Third, we design scalable linear
solvers for both the alternate minimization subproblems and the coupled Jacobians of the form (10)
arising in active-set Newton methods.

Following Bourdin et al. [5], we spatially discretize the problem with standard piecewise-linear
finite elements on unstructured simplicial meshes [41]. This discretization converges to local min-
imizers of the Ambrosio–Tortorelli functional [42]. Alternatives proposed in the literature, but not
considered here, include isogeometric approaches [13]. Adaptive remeshing is a valuable method
of improving to computational efficiency [43]. The presence of thin localization bands renders
anisotropic remeshing strategies [44] particularly attractive. Our work on the linear and nonlinear
solver is potentially synergetic with these other efforts to improve computational efficiency.

The paper is organized as follows. Section 2 presents our improved nonlinear solver. The under-
lying linear solvers and preconditioners are discussed in Section 3. Section 4 introduces three
fundamental test problems that we use to assess the performance of the solvers. The results of the
corresponding numerical experiments are reported in Section 5. Finally, we conclude in Section 6.

2. NONLINEAR SOLVERS

In this section, we propose several improvements to the nonlinear solver employed for the mini-
mization of the regularized energy functional (4). The first improvement is to reinterpret alternate
minimization as a nonlinear Gauss–Seidel iteration: This naturally suggests employing an over-
relaxed Gauss–Seidel approach, which we discuss in Section 2.1. This over-relaxation greatly
reduces the number of iterations required for convergence, with minimal computational overhead.
The second improvement is to use alternate minimization as a preconditioner for Newton’s method
[45], as discussed in Section 2.3. By combining these, our solver enjoys the robust convergence
of (over-relaxed) alternate minimization and the rapid convergence of Newton’s method. Alter-
nate minimization is used to drive the approximation within the basin of convergence of Newton’s
method; once this is achieved, Newton’s method takes over and solves the nonlinear problem to
convergence in a handful of iterations. As our numerical experiments in Section 5 demonstrate, this
strategy is faster than relying on alternate minimization alone, even with over-relaxation.

2.1. Over-relaxed alternate minimization

In the block-Gauss–Seidel relaxation method for linear systems, the solution variables are par-
titioned; at each iteration, some variables are frozen, and a linear subproblem is solved for the
remaining free variables. The updated values for these variables are used in the solution of the next
subset. Similarly, a nonlinear block-Gauss–Seidel relaxation first solves a nonlinear subproblem
for one subset of the variables, then uses those updated values to solve for the next subset, and so
on [46]. Alternate minimization is precisely a nonlinear block-Gauss–Seidel method that iterates
between the displacement and damage variables. Just as over-relaxation can accelerate linear Gauss–
Seidel [47], it can also accelerate nonlinear Gauss–Seidel [46]. Therefore, we augment the standard
alternate minimization algorithm with a simple over-relaxation approach, Algorithm 2. The state
before and after each alternate minimization substep is compared to determine the update direction,
and over-relaxation is applied along that direction with relaxation parameter !. In the damage step,
the bound constraint on ˛ is enforced during the line search: If a step with ! would be infeasible, the
algorithm sets N! to the midpoint of Œ1; !� and repeats this recursively until the update to ˛ retains
feasibility. (The question of infeasibility does not arise for ! < 1.)

© 2016 The Authors International Journal for Numerical Methods in
Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 109:648–667
DOI: 10.1002/nme



NUMERICAL SOLUTION OF A VARIATIONAL FRACTURE MODEL 653

Algorithm 2: Over-relaxed alternate minimization
Result: A stationary point of (4).
Given .ui�1; ˛i�1/, the state at the previous loading step, and the over-relaxation parameter
! 2 .0; 2/.
Set .u0; ˛0/ D .ui�1; ˛i�1/.
while not converged do

Find Quk 2 C Nu W Eu.u; ˛k�1I v/ D 0 8v 2 C0.
Set ıuk D Quk � uk�1.
Set uk D uk�1 C !ıuk .

Find Q̨k 2 D˛i�1 W E˛.uk; Q̨kIˇ � Q̨k/ > 0 8ˇ 2 D˛i�1 .
Set ı˛k D Q̨k � ˛k�1.
Choose the largest N! 2 .0; !/ so that ˛k�1 C N!ı˛k 2 D˛i�1 .
Set ˛k D ˛k�1 C N!ı˛k .

end
Set .ui ; ˛i / D .uk; ˛k/.

The literature on over-relaxation methods is vast, and we briefly summarise the main points here.
In linear successive over-relaxation (SOR) applied to a matrix A, the convergence depends on the
spectral radius of the SOR iteration matrix

M D .D � !L/�1.!U C .1 � !/D/;

where D;�L, and �U are the diagonal, lower triangular, and upper triangular components of A.
Essentially, over-relaxation attempts to choose an ! that reduces �.M/. A similar result holds for
block SOR [48]. Kahan [49] proved that ! 2 .0; 2/ is a necessary condition for the convergence
of SOR, that is, for �.M/ < 1. Ostrowski [50] proved that this is sufficient for convergence in
the case where A is symmetric and positive definite. For nonlinear SOR, Ortega and Rheinboldt
[46, Theorem 10.3.5] proved the surprising result that the asymptotic convergence rate depends on
the spectral radius of the SOR iteration matrix evaluated at the Jacobian of the residual evaluated at
the solution. Nonlinear Gauss–Seidel methods (! D 1) can also be extended to minimisation prob-
lems with constraints, under the name of block coordinate descent. We are not aware of any analysis
of over-relaxation in the context of constraints, or in the infinite dimensional setting, as would be
necessary here for a proof of convergence; however, the numerical experiments of Section 5 demon-
strate that convergence was achieved for all problems with all values of ! 2 .0; 2/ attempted and
that over-relaxation can significantly reduce the number of iterations required for convergence on
difficult problems.

2.2. Choosing the relaxation parameter !

The number of iterations required depends sensitively on the choice of !. Extrapolating from the
nonlinear SOR theory, we hypothesize that the optimal ! is the one that minimizes the spectral
radius of the SOR iteration matrix associated with the unconstrained degrees of freedom at the
minimizer. Unfortunately, identifying this ! a priori appears to be difficult: Such an analysis would
rely on the spectral properties of the Hessian at the unknown minimizer [51], which are not in
general known. In this work, we rely on the naïve strategy of numerical experimentation on coarser
problems and defer an automated scheme for choosing ! to future work.

2.3. Composing over-relaxed alternate minimization with Newton

Even with over-relaxation, achieving tight convergence of the optimization problem takes an imprac-
tical number of iterations (on the order of hundreds or thousands for difficult problems). Therefore,
instead of driving the optimization problem to convergence with over-relaxed alternate minimization
(ORAM), we use it instead to bring the iteration within the basin of convergence of a Newton-type
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method, Algorithm 3. There are two main problems to solve in designing such a composite solver:
first, deciding when to switch from ORAM to Newton and, second, handling the possible failure of
the Newton-type method.

Algorithm 3: Over-relaxed alternate minimization combined with Newton
Result: A stationary point of (4).
Given .ui�1; ˛i�1/, the state at the previous loading step.
Set .u0; ˛0/ D .ui�1; ˛i�1/.
while not converged do

Set kˆ0k to be the norm of the residual of the optimality conditions evaluated at .uk; ˛k/.

while kˆkk=kˆ0k > inner tolerance do
Apply over-relaxed alternate minimization, Algorithm 2.

end

while not converged and maximum iterations not reached do
Apply an active-set Newton method with backtracking line search, such as Algorithm 4.

end
end
Set .ui ; ˛i / D .uk; ˛k/.

The inner termination criterion for the over-relaxed alternate minimization used in this work is
based on the norm of the residual of the optimality conditions (7). As the optimality conditions are a
variational inequality, it is not sufficient to merely evaluate a norm of ŒEu; E˛�, because the feasibility
condition should enter in the termination criterion. Instead, the residual is defined via a so-called
nonlinear complementarity problem (NCP) function ˆ: a function that is zero if and only if the
variational inequality is satisfied [52]. In this work, we use the Fischer–Burmeister NCP function,
which is described in Section 2.4. A typical inner termination criterion might be to switch when the
norm of the Fischer–Burmeister residual has decreased by two orders of magnitude, although the
choice taken should vary with the difficulty of the problem considered. If the inner tolerance is too
tight, an excessive number of alternate minimization iterations will be performed before switching
to Newton; if the inner tolerance is too loose, then the Newton iteration may not converge, and the
extra cost of solving Jacobians yields no advantage.

If the Newton-type method diverges (possibly significantly increasing the residual), it can be han-
dled in one of two ways. The first is to check at the end of an outer iteration whether Newton’s
method reduced the residual: If not, discard the result of Newton and continue with more alternate
minimization iterations. The second is to choose a Newton-type method that is guaranteed to mono-
tonically decrease the norm of the residual or to terminate with failure: This property is achieved by
complementing the Newton iteration with a backtracking line search. This latter option was imple-
mented in our experiments. If the Newton method fails to achieve a sufficient reduction, the outer
composite solver simply reverts to alternate minimization to bring the solution closer to the basin
of convergence. In this way, the robustness and monotonic convergence of alternate minimization is
combined with the quadratic asymptotic convergence of Newton’s method.

2.4. Reduced-space active-set method

Both the damage subproblem and the subproblem to be solved at each coupled Newton itera-
tion are variational inequalities, which when discretized, yield complementarity problems. In this
section, we briefly review the Newton-type method used to solve these complementarity problems,
a reduced-space active-set method implemented in PETSc [53, 65]. While semismooth Newton
methods have gained significant popularity in recent years, the reduced-space method employed in
this work makes devising preconditioners for the linear system to be solved in Section 3.3 more
straightforward.
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A mixed complementarity problem (MCP) is defined by a residual F W Rn ! Rn, a lower bound
vector l 2 Rn�1, and an upper bound vector x 2 Rn1, where R1 D R [ ¹1º and R�1 D
R[¹�1º. A solution x 2 ¹x 2 Rn W l 6 x 6 uº satisfies MCP.F; l; u/ iff, and for each component
i , precisely, one of the following conditions holds:

Fi .x/ D 0 and li < xi < ui
Fi .x/ > 0 and li D xi
Fi .x/ 6 0 and xi D ui :

(12)

A special case of a mixed complementarity problem is the choice l D 0; u D 1, which is
referred to as a nonlinear complementarity problem (NCP), NCP.F /. For clarity, the algorithm will
be described in the context of NCPs; the extension to MCPs is straightforward [52].

An NCP-function � W R � R ! R is a function with the property that �.a; b/ D 0 ” a >
0; b > 0; ab D 0, that is, that a solves NCP.b/. An example is the Fischer–Burmeister function [54]

�FB.a; b/ D
p
a2 C b2 � a � b: (13)

NCP functions are useful because it is possible to reformulate an NCP as a rootfinding problem.
Given an NCP function, it is possible to define a residual of NCP.F /:

ˆi .x/ D �.xi ; Fi .x//: (14)

A solution x satisfies NCP.F / iffˆ.x/ D 0. Whileˆ.x/ is semismooth, its squared-norm kˆ.x/k2

is smooth [55].
At each iteration, the algorithm constructs a search direction d . The search direction is defined

differently for the active and inactive components of the state. Given an iterate x and a fixed zero
tolerance � > 0, define the active set

A D ¹i W xi 6 � and Fi .x/ > 0º (15)

and define the inactive set N as its complement in ¹1; : : : ; nº. The active set represents a hypothesis
regarding which variables will be zero at the solution. At each iteration, the active subvector of
the search direction is zeroed. For the inactive component of the search direction, a Newton step is
performed. The inactive component is defined by approximately solving

JN;NdN D FN ; (16)

where J is the Jacobian of the residual F . The submatrix retains any symmetry and positive-
definiteness properties of the underlying Jacobian [53]. Given this search direction, a line search
is performed with merit function kˆ.x/k2, with each candidate projected on to the bounds with
projection operator � . If this line search fails, the steepest descent direction is used instead. The
algorithm is listed in Algorithm 4. A major advantage of this approach over other algorithms is that
the linear systems to be solved in (16) are of familiar type: They are submatrices of PDE Jaco-
bians, which have been well studied in the literature. This familiarity is exploited to design suitable
preconditioners for (16) in Section 3.3.

Algorithm 4: Reduced-space active-set method.

Result: A solution of NCP.F /.
Given x0, the initial guess.
while kˆ.xk/k > tolerance do

Compute the active and inactive sets A and N via (15).
Set dA D 0.
Solve the reduced Newton step (16) for dN .
Choose the step length 	 such that kˆk2 is minimized, via line search on �

�
xk C 	d

�
; if

this search direction fails, use the steepest descent direction instead.
end
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3. LINEAR SOLVERS AND PRECONDITIONERS

With this configuration of nonlinear solvers, there are three linear subproblems to be solved: linear
elasticity for the displacement field with fixed damage, a Helmholtz-like operator for the damage
field with fixed displacement, and (submatrices of) the coupled Jacobian of the optimality con-
ditions. As it is desirable to solve finely discretized problems on supercomputers, it is important
to choose scalable iterative solvers and preconditioners for each subproblem. These are discussed
in turn.

3.1. Linear elastic subproblem

The linear elastic problem is symmetric and positive definite, and hence, the method of conju-
gate gradients [56] is used. However, the problem is poorly conditioned because of the strong
variation in stiffness induced by damage localization, and appropriate preconditioners must
be employed. The Krylov solver is preconditioned by the GAMG smoothed aggregation alge-
braic multigrid preconditioner [57], which is known to be extremely efficient for large-scale
elasticity problems.

For algebraic multigrid to be efficient, it is essential to supply the algorithm with the near-
nullspace of the operator, eigenvectors associated with eigenvalues of small magnitude [58]. The
elasticity problem without damage has a near-nullspace consisting of the rigid body modes of the
structure; with damage, the localized variation in stiffness induces additional near-nullspace vec-
tors. Calculations of the smallest eigenmodes of the elasticity operator with SLEPc [59] indicate that
if the structure is partitioned into two or more undamaged regions separated by damaged regions,
the elasticity operator has additional near-nullspace vectors associated to independent rigid body
motions of the separate regions. For example, suppose algebraic multigrid alone (no Krylov acceler-
ator) is used to solve the elasticity problem arising with the converged damage field of the problem
of the traction of a bar (Section 4.2). With no nullspace configured, convergence is achieved in 2004
multigrid V-cycles; if only the entire rigid body modes are supplied, convergence is achieved in
50 V-cycles, and if the additional near-nullspace vectors corresponding to the partition are supplied,
then convergence is achieved in six V-cycles.

While these additional near-nullspace vectors assist the convergence of the algebraic multigrid
algorithm, they are very difficult to compute, as they depend on the damage field itself. Therefore
in this work, we do not supply these additional near-nullspace vectors, supplying only the rigid
body modes of the entire structure. When a Krylov method is used to accelerate the convergence
of the algebraic multigrid, the ratio of iteration counts between the full and partial near nullspaces
decreases from approximately 10 to approximately 2. However, it may be possible to improve the
convergence of the linear elasticity problem by approximating the additional near-nullspace vec-
tors arising due to damage. This could be of significant benefit, as this phase constitutes a large
proportion of the solver time.

3.2. Damage subproblem

The inactive submatrix of the Helmholtz problem for damage is also solved with conjugate gra-
dients, and the ML smoothed aggregation multigrid algorithm [60, 61], with the near-nullspace
specified as the constant vector.

3.3. The Newton step

Let the inactive submatrix of the coupled Jacobian be partitioned as follows:

J D

�
A B

BT C

�
; (17)

where A is the assembly of linear elasticity operator (11a) and B and C are the inactive submatrices
of the coupling term (11b) and the linearized damage operator (11c). The fast iterative solution of
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block matrices has been a major topic of research in recent years [62], with most preconditioners
relying on the approximation of a Schur complement of the operator. It is straightforward to verify
that if A is invertible, then the inverse of a block matrix like (17) can be written as [63, Eq. (3.4)]

J�1 D

�
A�1 0

0 I

� �
I �B
0 I

� �
A 0

0 S�1

� �
I 0

�BT 0

� �
A�1 0

0 I

�
(18)

D

�
A�1 C A�1BS�1BTA�1 �A�1BS�1

�S�1BTA�1 S�1

�
; (19)

where S D C � BTA�1B is the (dense) Schur complement matrix of J with respect to A. In this
work, we take the simple approximation S � C , which yields the preconditioner

P�1 D

�
A�1 0

0 I

� �
I �B
0 I

� �
A 0

0 C�1

� �
I 0

�BT 0

� �
A�1 0

0 I

�
(20)

D

�
A�1 C A�1BC�1BTA�1 �A�1BC�1

�C�1BTA�1 C�1

�
; (21)

which requires one application of C�1 and two applications of A�1 per preconditioner application.
This is implemented in PETSc using the symmetric multiplicative variant of the PCFIELDSPLIT
preconditioner [64, 65]. Both inverse actions are approximated by two V-cycles of algebraic multi-
grid. MINRES [66] is employed as the outer Krylov solver, as far from minimizers the Hessian may
not be positive definite.

4. TEST CASES

In this section, we introduce three test cases that are used to assess the performance of the proposed
solvers. These test cases will then be used to assess the performance of the solver in Section 5.
The first case investigates temporally smooth propagation of a single crack driven by appropriately
controlled Dirichlet boundary conditions. The second case consists of the uniaxial traction of a bar,
testing crack nucleation. The last case considers a thermal shock problem involving the nucleation
and propagation of a complex pattern. All test cases consider isotropic homogeneous materials. In
this context, the relevant material parameters are the Poisson ratio 
, the Young’s modulus E, the
fracture toughness Gc , and the internal length `. One can show that the internal length may be
estimated by knowledge of the limit stress �c through the relation

` D
3

8

GcE

�2c
: (22)

Dimensional analysis shows that without loss of generality, both Gc and E can be set to 1, with a
suitable rescaling of the loading. Hence, in all experiments, we fix Gc D E D 1, and in addition,
we fix 
 D 0:3.

4.1. Surfing: smooth crack propagation

The main advantage of the variational regularized approach to fracture analyzed in this paper is
its ability to compute the propagation of cracks along complex paths, including crack bifurcation,
merging, and possible jumping in time and space. However, it is desirable to test the numerical
algorithm in a simpler situation where a single preexisting crack is expected to propagate smoothly
along a straight path with an assigned velocity v. To this end, we consider the surfing experiment
proposed by Hossein et al. [67]. This consists of a rectangular slab � D Œ0; L� � Œ�H=2;H=2� of
length L and height H with the Dirichlet boundary condition
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u.x1; x2; t / D Nu.x1 � Lc � v t; x2/ on @� (23)

imposed on the whole boundary of the domain. Nu is the asymptotic Mode-I crack displacement of
linear elastic fracture mechanics

Nu D
KI

2	

r
r

2�

�
3 � 


1C 

� cos �

�
.cos .�=2/e1 C sin.�=2/e2/ ; (24)

where .r; �/ are the polar coordinates, .e1; e2/ are the Cartesian unit vectors, 	 is the shear modulus,
and Lc is the length of the preexisting crack. The intensity of the loading is controlled by the stress
intensity factor KI . From the theory, we expect that the crack propagates at the constant speed v
along the line x2 D 0 forKI D KcI D

p
Gc E. In the numerical experiments, we setKI=KcI D 1:0,

v D 1, L D 2, H D 1, and Lc D 0:05.
Figure 1 reports the results of the corresponding numerical simulations. This test is particularly

useful to verify that the dissipated energy does not depend on ` and is equal to the product of
the crack length and the fracture toughness Gc . Obviously, in order for this condition to hold, the
discretisation should be changed with the internal length, as ` controls the width of the localization
band. We typically set the mesh size to h D `=5. In the present test, to speed up the benchmarks,
we use a non-uniform mesh respecting this condition only in the band where we expect the crack to
propagate, as shown in Figure 1. This a priori mesh refinement is exceptional and not applicable in
general. In all other tests, a sufficiently fine uniform mesh will be employed.

4.2. Traction of a bar

A basic problem of fracture mechanics is to estimate the ultimate load before fracture of a straight
bar in traction. We consider a 2D bar of length L and heightH under uniaxial traction with imposed
displacement, as shown in Figure 2. Analytical studies [11, 30] show that, for L sufficiently greater
that `, a local minimum of the energy functional (5) is the purely elastic solution ˛ D 0 for t <
tc D

p
3Gc=8E` and the solution with one crack represented in Figure 2 for t > tc . The cracked

solution has a vanishing elastic energy and a surface energy given by Gc W . The test may be easily
extended to a 3D geometry. The critical load tc is the same in 1D under a uniaxial stress condition,
in 2D plane stress, or in 3D.

4.3. Thermal shock

The thermal shock problem of a brittle slab [32] is a challenging numerical test for the nucleation
and propagation of multiple cracks. In physical experiments [68, 69], several ceramic slabs are

Figure 1. Smooth crack propagation test on a rectangular slab of dimensions 2 � 1 with the surfing loading
(24) applied on the boundary. Left: snapshot of the damage field and mesh for ` D 0:05 and h D 0:01.
Right: Dissipation energy versus time for v D 1 and KI D 1 comparing the results obtained through the
damage model when varying the internal length ` and the mesh size h; the continuous line is the expected
surface energy according to the Griffith model, corresponding to a constant crack speed v D 1. The given

mesh size refers to the typical element dimension in the refined band in the middle.
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Figure 2. Uniaxial traction of bar. Left: boundary conditions and damage field for t > tc . The width of the
localization band may be calculated analytically and is given by 2

p
2 `. Right: evolution of the energy at the

solution given by the minimization algorithm as the applied end-displacement t is increased.

Figure 3. Geometry and boundary conditions for the thermal shock problem (left), where u1 and u2 denotes
the two components of the displacement field. The loading is given by the thermal stress induced by the
temperature field T .x2; 
/ of (26), whose dependence in x2 is sketched on the right for different times 
 .

bound together, uniformly heated to a high temperature and quenched in a cold bath, so as to submit
the boundary of the domain to a thermal shock. The inhomogeneous temperature field induces an
inhomogeneous stress field inside the slab, causing the emergence of a complex crack pattern, with
an almost periodic array of cracks nucleating at the boundary and propagating inside the slab with
a period doubling phenomenon. Following [32, 70], we consider a simplified model of this experi-
mental test. The computational domain � D Œ�L=2;L=2� � Œ0;H� (Figure 3) is a slab of width L
and height H , with a thermal shock applied at the bottom surface x2 D 0. At each timestep 
i , we
seek the quasi-static evolution of the cracked state of the solid by solving for a stationary point of
the following energy functional:

E`.u; ˛/ D
Z
�

a.˛/

2
A0 "eff.uI 
/ W "eff.uI 
/dx C

Gc

cw

Z
�

�
w.˛/

`
C `r˛ � r˛

�
dx; (25)

where "eff.uI 
/ D ".u/ � "0.
/ is the effective elastic deformation accounting for the thermally
induced inelastic strain

"0.
/ D ˇ T .
/ I ; T .
/ D ��T Erfc

�
x2=`




�
; (26)

where ˇ is the thermal expansion coefficient. The temperature field T imposed is the analytical
solution of an approximate thermal diffusion problem with a Dirichlet boundary condition on the
temperature for a semi-infinite homogeneous slab of thermal diffusivity kc . In particular, it neglects
the influence of the cracks on the thermal diffusivity. The function Erfc denotes the complementary
error function and 
 D 2

p
kct=`2 a dimensionless time acting as the loading parameter.

As discussed by Bourdin et al. [32], the system is governed by three characteristic lengths: the size
of the domain L, the internal length `, and the Griffith length `0 D Gc=E.ˇ�T /2. Hence, choosing
` as the reference length, the solution depends on two dimensionless parameters: the mildness of the
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thermal shock `0=` and the size of the slab L=`. Here, we perform numerical simulations for fixed
slab dimensions L D 20 and internal length ` D 1. We apply the displacement boundary conditions
described in Figure 3 and do not impose any Dirichlet boundary condition on the damage field. As
can be show by dimensional analysis, without loss of generality, we set E D 1, Gc D 1, ˇ D 1. We
consider the performance of the solver for varying �T and mesh sizes h.

Analytical and semi-analytical results are available for verification purposes and for the design of
the numerical experiments. For �T < �Tc D

p
8E`=3ˇ2Gc , the solution is purely elastic with

no damage (˛ D 0 everywhere) [32, 70]. For �T > �Tc , the solution evolves qualitatively as in
Figure 4, with (1) the immediate creation of an x-homogeneous damage band parallel to the exposed
surface, (2) the bifurcation of this solution toward an x-periodic one, which (3) further develops in a
periodic array of crack bands orthogonal to the exposed surface. These bands further propagate with
a period doubling phenomenon (4). The three columns in Figure 4 show the phases (2)–(4) of the
evolution for �T=�Tc equal to 2, 4, and 8. The wavelength of the oscillations and the spacing of
the cracks increase with�T . In particular, [32] shows that for�T � �Tc , the initial crack spacing
is proportional to

p
`0`. Figure 5 reports the evolution of the dissipated energy versus time for the

three cases of Figure 4. We note in particular that, while the evolution is smooth for intense thermal
shocks (see the curve �T D 8�Tc), for mild shocks, there are jumps in the energy dissipation and

Figure 4. Snapshot of the evolution of the damage variable ˛ during the evolution (blue: ˛ D 0; red: ˛ D 1)
showing the initial solution independent of the x1 variable, the emergence of a periodic crack pattern and
its selective propagation with period doubling. Each column corresponds to the result obtained for a specific
intensity, increasing from left (2) to right (8). Here, ` D 1 and the slab dimensions are 40 � 10 with a mesh

size h D 0:2.

Figure 5. Dissipated energy versus time for the thermal shock problem with intensity �T=�Tc equal to
0.9, 2, 4, and 8, as in Figure 4. For intensity �T D 2�Tc , the evolution shows two clear jumps in time,
corresponding to snap-backs and sudden crack growths. By contrast, the evolution is smooth for �T D

8�Tc .
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hence in the crack length (see the curve �T D 2�Tc). These jumps correspond to snap-backs in
the evolution problem, where the minimization algorithm is obliged to search for a new solution,
potentially far from the one at the previous time step.

This problem constitutes a relevant and difficult test for the solver. First, the presence of a large
number of cracks renders the elastic subproblem particularly ill conditioned and tests the effec-
tiveness of the linear subsolvers and the coupled preconditioning strategy. Second, the presence
of bifurcations and snap-backs stresses the convergence and effectiveness of the outer nonlinear
solver. Third, the solution of the overall quasi-static evolution problem is strongly influenced by the
irreversibility condition, testing the effectiveness of the variational inequality solvers.

5. RESULTS OF NUMERICAL EXPERIMENTS

We present here the results of the numerical experiments that were performed to assess the per-
formance of the proposed solvers. All problems were solved to an absolute l2 residual tolerance
of 10�7. For each test problem, we analyze the dependence of the results on the relevant physical
parameter: We vary the internal length ` in the traction and surfing tests and the intensity of the
loading �T=�Tc in the thermal shock problem.

5.1. Over-relaxation

We first consider ORAM, the over-relaxation of alternate minimization described in Section 2.1.
Each problem of Section 4 was solved with values of the over-relaxation parameter ! taken from
¹0:8; 1:0; : : : ; 1:8º. To consider the effect of over-relaxation alone, the Newton solver was disabled,
and all linear solves were performed with LU [71].

The results for the surfing, traction, and thermal shock problems are shown in Tables I–III, respec-
tively. In all tables, the reduction column describes the decrease in iterations for the optimal !

Table I. Impact of over-relaxation on the surfing case.

` ! D 0:8 ! D 1:0 ! D 1:2 ! D 1:4 ! D 1:6 ! D 1:8 Reduction

0.20 361 233 148 98 174 394 57.94%
0.10 564 369 251 159 148 307 59.89%
0.05 1168 773 537 368 236 320 69.47%
0.02 2523 1680 1182 835 569 461 72.56%

Standard alternate minimization converges slowly, and over-relaxation significantly reduces
the number of iterations required.

Table II. Impact of over-relaxation on the traction case.

` ! D 0:8 ! D 1:0 ! D 1:2 ! D 1:4 ! D 1:6 ! D 1:8 Reduction

0.10 124 53 111 181 324 729 0%
0.05 120 37 115 185 326 747 0%
0.02 132 39 121 195 332 726 0%
0.01 139 39 121 186 325 709 0%

Standard alternate minimization converges rapidly for all values of `, and over-relaxation
hinders convergence.

Table III. Impact of over-relaxation on the thermal shock case.

�T=�Tc ! D 0:8 ! D 1:0 ! D 1:2 ! D 1:4 ! D 1:6 ! D 1:8 Reduction

2 3577 2364 1685 1273 1095 1666 53.68%
4 3283 2156 1548 1184 1023 1611 52.55%
8 5100 2619 1844 1354 1094 1542 58.23%
16 5097 3382 2367 1669 1226 1756 63.75%

Standard alternate minimization converges slowly, and over-relaxation significantly reduces the
number of iterations required.
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compared with standard alternate minimization, ! D 1. In the traction case, standard alternate min-
imization is extremely efficient: A small number of iterations is required; the number of iterations
required does not grow with `, and applying any other ! slows the convergence of the method. By
contrast, in the surfing and thermal shock cases, standard alternate minimisation converges slowly,
and the number of iterations required increases as the physical parameters ` and �T=�Tc are var-
ied. In this sense, the surfing and thermal shock cases are harder than the traction case. In these
problems, over-relaxation helps significantly, reducing the number of iterations required by a fac-
tor between 1=2 and 3=4. Furthermore, the advantage gained by over-relaxation increases as the
problem gets harder.

5.2. Composition of alternate minimization with Newton’s method

We next consider ORAM combined with Newton, the composition of alternate minimization
with Newton’s method as described in Section 2.3. For these experiments, Newton’s method was
attempted once alternate minimization had reduced the l2 norm of the residual by 10�1. All linear
solves (both for alternate minimization and Newton’s method) were performed with LU, and all
alternate minimizations employed the optimal over-relaxation parameter determined in the previous
experiments (! D 1:6 for the surfing and thermal shock cases, ! D 1 for the traction case). The
time in seconds was measured for both approaches, as comparing iteration counts would be irrel-
evant. The runs were executed in serial on an otherwise unloaded Intel Xeon E5-4627 3.30-GHz
CPU with 512 GB of RAM.

The results for the surfing, traction, and thermal shock problems are shown in Tables IV–VI,
respectively. Again, the traction case is unusual compared with the other two: While the gains are
marginal in the traction case, composition yields a worthwhile and consistent reduction in runtime
for the other tests. If a more robust semismooth Newton solver was available, the speedup from
composition would further increase.

5.3. Preconditioning the full Jacobian

The preconditioner (20) requires inner solvers for the displacement elasticity operator A and the
damage Helmholtz operator C . We first consider the performance of (20) with ideal inner solvers
(LU), to investigate how the iteration counts scale with the physical parameters and with mesh size h.
We then consider the performance with practical inner solvers, two V-cycles of algebraic multigrid

Table IV. Combining alternate minimization with Newton’s method for
the surfing case.

Time (s)
` Alternate minimization alone Composite solver Reduction

0.20 9.11 3.68 59.60%
0.10 27.00 15.43 42.85%
0.05 168.42 96.83 42.51%
0.02 2643.86 1886.53 28.64%

This further reduces the runtime of the solver compared with over-relaxed
alternate minimization.

Table V. Combining alternate minimization with Newton’s method for
the traction case.

Time (s)
` Alternate minimization alone Composite solver Reduction

0.10 2.94 2.60 11.56%
0.05 5.94 5.71 3.87%
0.02 41.90 29.32 30.02%
0.01 195.97 175.06 10.67%

In this case, the gains are modest.
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Table VI. Combining alternate minimization with Newton’s method for the
thermal shock case.

Time (s)
�T=�Tc Alternate minimization alone Composite solver Reduction

2 312.29 215.68 30.94%
4 319.87 220.73 30.99%
8 335.38 238.28 28.95%
16 386.57 287.48 25.63%

This further reduces the runtime of the solver compared with over-relaxed
alternate minimization.

Table VII. The average Krylov iterations
per Newton step for different internal
lengths ` and mesh sizes h for the surfing

case, with ideal inner solvers (LU).

Average Krylov iterations
` h D `=5 h D `=10 h D `=15

0.20 6.17 9.47 12.03
0.10 8.92 10.91 13.53
0.05 10.74 13.07 15.58
0.02 13.07 14.95 18.03

The preconditioner depends weakly on mesh
refinement and on `.

Table VIII. The average Krylov iterations
per Newton step for different internal
lengths ` and mesh sizes h for the surfing
case, with practical inner solvers (AMG).

Average Krylov iterations
` h D `=5 h D `=10 h D `=15

0.20 6.33 10.57 11.64
0.10 8.50 10.93 13.68
0.05 11.13 13.53 16.15
0.02 13.53 15.61 18.80

Switching to practical inner solvers hardly
affects the convergence of the preconditioner.

for A and C . Each Jacobian solve was terminated when the l2 norm of the residual was reduced by
a factor of 10�6, although adaptive tolerance selection should be used in practical calculations to
retain quadratic convergence of the inexact Newton method [72]. For each configuration of physical
parameters and h, the total number of Krylov iterations required for convergence over all loading
steps was divided by the total number of Newton iterations to compute the average number of
Krylov iterations required to solve a Jacobian. In these experiments, the alternate minimization was
terminated with a relative residual reduction of 10�3, or if the absolute residual norm reached 10�6.
As the gains from employing Newton’s method in the traction case were marginal, we consider here
only the surfing and thermal shock problems.

The results for the surfing case with ideal and practical inner solvers are shown in Tables VII and
VIII, and the corresponding results for the thermal shock case are shown in Tables IX and X. In the
surfing case, the number of iterations required grows slowly as the mesh is refined and grows slowly
as ` is reduced. However, even for the smallest ` on the finest mesh, the number of outer Krylov
iterations required is modest, and the results barely differ if the ideal inner solvers are replaced with
practical variants. In the thermal shock case, the number of iterations required stays approximately
constant as the mesh is refined and grows slowly with the intensity �T=�Tc . Here, replacing the
ideal inner solvers with practical variants does have a measurable cost in iteration count; this could
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Table IX. The average Krylov iterations per
Newton step for different intensities �T=�Tc
and mesh sizes h for the thermal shock case,

with ideal inner solvers (LU).

Average Krylov iterations
�T=�Tc h D `=4 h D `=8 h D `=16

2 10.11 7.87 6.87
4 10.56 11.44 14.70
8 15.97 19.64 17.75
16 23.15 22.37 22.03

The preconditioner depends weakly on mesh
refinement and on Griffith length.

Table X. The average Krylov iterations per
Newton step for different intensities �T=�Tc
and mesh sizes h for the thermal shock case,

with practical inner solvers (AMG).

Average Krylov iterations
�T=�Tc h D `=4 h D `=8 h D `=16

2 15.25 12.54 11.82
4 12.95 13.42 18.25
8 19.08 19.65 22.51
16 27.79 27.22 29.54

In this case, using practical inner solvers somewhat
degrades the convergence of the preconditioner.

be reduced by tuning the parameters of the algebraic multigrid algorithm employed or by employing
stronger inner solvers. These results show that the preconditioner (20) is a practical and efficient
solver for the full-coupled Jacobian, whose performance degrades slowly as the difficulty of the
problem is increased.

6. CONCLUSION

In this paper, we proposed several improvements to the current standard algorithm for solving
variational fracture models. Over-relaxation is extremely cheap and simple to implement but can
greatly reduce the number of iterations required for convergence. Composing over-relaxed alternate
minimization with Newton-type methods yields a further decrease in runtime, although at a more
significant development cost. Together, these improvements to alternate minimization reduce the
time to solution by a factor of five to six times for the surfing and thermal shock test cases. Lastly,
we proposed and tested preconditioners for the linear subproblems in alternate minimization and the
coupled Jacobian arising in the Newton iterations when solving the whole problem with a mono-
lithic active-set method. These efforts are complementary to other approaches recently proposed in
the literature, such as adaptive remeshing [44], adaptive time-stepping, continuation algorithms [39],
or refined line-search techniques [40] that were not considered in this work. Our tests focus only on
the simplest settings for variational fracture mechanics assuming small deformations and a simple
rate-independent material behavior. However, the developed techniques can be readily adapted to
more complex contexts, including hyperelasticity, viscoelasticity, and inertial effects.

These results suggest several directions for future research. It would be highly desirable to
develop a convergence analysis of block over-relaxed nonlinear Gauss–Seidel for variational
inequalities, although we do not anticipate this will yield constructive insight for the choice of the
over-relaxation parameter !. It may be possible to design `-robust preconditioners for the coupled
Jacobian (where the convergence is independent of `) by choosing appropriate `-dependent inner
products for the displacement and damage function spaces. If the appropriate Babuška constants are
independent of `, the convergence will be also [73].
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In this work, we have considered only the simplest fracture model, assuming small deformations
and symmetric behavior in traction and compression. Our developments on over-relaxation and
composition of alternate minimization with Newton could be applied with minor modifications to
more complex cases, including for example the tension–compression splitting of the elastic energy
to account for the non-interpenetration condition on the crack lips [22–26]. In this case, an efficient
solver would require the development of suitable preconditioners for the elastic subproblem and the
coupled Jacobian.
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