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This paper presents a gradient approach for the quasi-static macroscopic modeling of superelasticity in
softening shape memory alloys bars. The model is assumed to be rate-independent and to depend on a
single internal variable. Regularization of the model is achieved through the free energy by assuming a
quadratic dependance with respect to the gradient of the internal variable. The quasi-static evolution
is then formulated in terms of two physical principles: a stability criterion which consists in selecting
the local minima of the total energy of the system and an energy balance condition. Both homogeneous
and non-homogeneous evolutions are investigated analytically for a family of material parameters. Non-
homogeneous evolutions can be divided into three stages: the localized martensite nucleation followed
by the propagation of the localized phase transformation front and finally the annihilation of the austen-
ite phase. For each stage, the local phase field profile as well as the global stress–strain response are
derived in closed-form. Due to the presence of an internal length related to the regularization, size effects
are inherent with such non-local model. We show that for sufficiently long bars, snap-backs occur at the
onset of localized phase transformation, leading to a time discontinuity in the quasi-static evolution.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Quasi-static tensile tests performed on superelastic NiTi strips
or wires at various speeds show that the martensitic phase trans-
formation is a non-homogeneous process (Huo and Müller, 1993;
Shaw and Kyriakides, 1995, 1997; Tobushi et al., 1993). It is char-
acterized in the global response by a first elastic-hardening phase
followed by a macroscopic instability: depending on the loading
rate, one or several martensite localizations nucleate along the
specimen and propagate at constant stress. Due to such non-
homogeneous response, the extraction of the intrinsic response
of SMA by means of a tensile test is a difficult task. Such underlying
material response is nevertheless fundamental for an appropriate
calibration of the macroscopic constitutive SMA models. Recently,
Hallai and Kyriakides (2013) have been able to stabilize a homoge-
neous phase transformation in the case of a superelastic NiTi. By
bonding stainless steel to the NiTi strip, instabilities in the NiTi
specimen are avoided due to the hardening character of the stain-
less steel, thus leading to a homogeneous phase transformation.
By subtracting the response of the stainless steel from the response
of the bonded specimen, extraction of the (forward) intrinsic
macroscopic behavior of the NiTi is then achieved. Stress–strain
response during the phase transformation is non-monotonous,
showing a significant softening part. Such result is consistent with
the fact that the critical stress at which occurs the non-homogeneous
phase transformation of NiTi corresponds approximatively to the
Maxwell line associated to the softening intrinsic curve. Such
experimental evidences emphasize the necessity to account for
the softening behavior in the macroscopic modeling of SMAs in
order to provide a correct modeling of their structural behavior
and a better understanding of the localization phenomena (Song
et al., 2012; Pham, 2014).

An important class of macroscopic superelastic SMA models for
superelasticity is based on the description of the phase transforma-
tion by means of internal variables. Such models can be either
derived from a micro-mechanical approach (Sun and Hwang,
1993a,b; Cherkaoui et al., 1998) or established phenomenologically
by postulating the free energy as well as the dissipated potential
with respect to the laws of thermodynamics (Auricchio and
Sacco, 1997; Popov and Lagoudas, 2007; Zaki and Moumni, 2007;
Song et al., 2012; Pham, 2014). However, most of these studies
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remain local in the sense that the constitutive behavior at a given
point in space is function of the state variables of the same point
only, being independent of the gradient of the state variables or
of the state of other points. Such local approach is valid as long
as the behavior does not show any sign of stress softening. As soon
as the intrinsic behavior exhibits stress softening, local models are
not any more mathematically well-posed and show a number of
serious pathologies. In particular, an infinite number of austen-
ite–martensite macroscopic interfaces can nucleate without any
energy dissipation. This is in contradiction with the experimental
results for which the number of localization is limited to one or
two for very slow loading rate. From the numerical point of view,
strong mesh sensitivities are observed and the propagation of the
phase transformation cannot be handled correctly. To avoid such
issues regularized models of SMA models must be considered.
Following the seminal work of Ericksen (1975), this has been
mainly done in the context of SMA by introducing either the gradi-
ent of the strain (Carr et al., 1985; Friedman and Sprekels, 1990;
Shaw, 2002) or the gradient of the internal variable (Duval et al.,
2011) in the constitutive equations and phase transformation cri-
teria. Some of these works exhibit numerical examples illustrating
the benefit of the regularization during the non-homogeneous
phase transformation. However analytical and rigorous results
are not always available on the properties of the localized solutions
and their evolution. Such results are fundamental to better
understand the impact of the regularization on the model behavior.

In this paper we consider a regularized model for a SMA bar
with stress-softening regularized through the introduction of an
internal length and an energy dissipation depending on the gradi-
ent of the phase-field. We derive a fully analytical solution of the
one-dimensional evolution problem including explicit expressions
for the homogeneous and localized response and a full description
of the nucleation phase and the propagation of the phase-transfor-
mation front. Moreover we show that global strain–stress response
can exhibit a snap-back depending on the ratio between the length
of the bar and the introduced internal length. The regularization
introduces a scale-effect, as classical in damage and fracture
(Bazant and Pijaudier-Cabot, 1989; Pham et al., 2011). Our model
is formulated in the framework of the variational theory of rate-
independent standard processes (Halphen and Nguyen, 1975;
Mielke, 2005). The cornerstone of this framework is the minimiza-
tion (in a certain sense) of the total energy of the system. Such
minimizing technique proves to be a particularly powerful tool
for non-convex problems such as phase transformation, plasticity
or fracture. Although it has been widely used at the microscopic
scale to account for the formation of martensite domains, self-
accommodation as well as shape-memory effect (Ball and James,
1989; Puglisi and Truskinovsky, 2000; Ren and Truskinovsky,
2000; Bhattacharya, 2003), such minimization approach can be
also extended to macroscopic scale to deal with the evolution of
stress-softening SMAs. In our context, the quasi-static evolution
is required to verify a local stability criterion and an energy balance
condition, requiring the continuity of the total energy with respect
to the loading parameter. This framework has proved its efficiency
in many areas which involve stress-softening issues such as brittle
fracture (Bourdin et al., 2008), damage (Pham et al., 2011), or cou-
pled damage-plasticity (Alessi et al., 2014). This work can be
regarded as an extension of Pham (2014), where a local SMA model
is formulated and analyzed in the same framework.

The paper is organized as follows. In Section 2, we introduce the
energetic formulation of the one dimensional non-local superelas-
tic model of SMA with gradient of the phase transformation
variable. Section 3 presents the study of a one dimensional bar
submitted to a tensile test. The associated evolution problem is
formulated in terms of a stability criterion based on the selection
of local minima of the total energy and an energy balance. The
strong formulation in terms of Kuhn–Tucker conditions is then
derived under specific hypothesis. In Section 4, we present the
homogeneous evolution of the bar and calibrate our model
according to published experimental data. Section 5 is devoted to
the analysis of solution involving the localization of the phase
field. The localization profile as well as the associated global
stress–strain response are derived for a class of material functions
and discussed. Conclusions are drawn in Section 6.

The following notations are used: the dependence on the time
parameter t is indicated by a subscript whereas the dependence
on the spatial coordinate x is indicated classically by parentheses,
e.g. x # utðxÞ stands for the displacement field at time t. In general,
the material functions of the phase transformation variable are
represented by sans serif letters, like E; G or R. The prime denotes
either the derivative with respect to x or the derivative with
respect to the phase transformation variable, the dot stands for
the time derivative, e.g. u0tðxÞ ¼ @utðxÞ=@x; E0ðaÞ ¼ dEðaÞ=da or
_utðxÞ ¼ @utðxÞ=@t.

2. Gradient model of SMA with an internal variable

Macroscopic phase transformation processes are usually under-
stood as rate-independent processes. The main source of rate-
dependency usually comes from the heat release during the
austenitic–martensitic phase transformation which has an auto-
catalytic effect. However, by enforcing sufficiently slow elongation
rate (�10�5 s�1 to 10�4 s�1), the system can be considered as
isothermal and fully rate-independent. Such quasi-static hypothesis
will be considered in this article. The modeling of the macroscopic
superelastic behavior of SMA will be done within the standard
framework (Halphen and Nguyen, 1975) for which the material
behavior admits an energetic formulation. The standard model
we will consider is based on a single scalar internal variable z
which will account both for the phase transformation as well as
the transformation strain due to the oriented martensite (Pham,
2014). We assume that z belongs to the interval ½0;1�, with z ¼ 0
and z ¼ 1 representing a fully transformed state of austenite and
martensite, respectively. The formulation of the standard model
starts here by postulating directly the form of the strain work den-
sity at a material point. In a non-local setting, we assume that this
material point is described by its strain state e, the phase field z and
its gradient z0. Hence, let us call Wðe; z; z0Þ the strain work required
to transform a material point from the reference state ð0;0;0Þ to a
state ðe; z; z0Þ. This quantity depends not only on the final state
ðe; z; z0Þ but also on the history of the loading because of the dissi-
pative nature of the transformation. For standard models of dissi-
pative processes and for homogeneous evolutions (no effect of
gradient i.e. z0 ¼ 0), the strain work can be decomposed as follows

Wðe; z;0Þ ¼ /ðe; zÞ þ Dðz; _zÞ; ð1Þ

where /ðe; zÞ and Dðz; _zÞ represent the local free energy and the
total dissipated energy, respectively. Under the small strain
assumption, the free energy is taken as a quadratic function of e
which is cast under the following form

/ðe; zÞ ¼ 1
2

EðzÞðe� pðzÞÞ2 þ GðzÞ: ð2Þ

The free energy is a state function which does not depend on the his-
tory of the loading and which involves four material functions of the
internal variables, namely the Young’s modulus of the mixture of
austenite–martensite z # EðzÞ, the phase transformation strain
z#pðzÞ and the latent energy released (or absorbed) during the forward
(or the backward) phase transformation z#GðzÞ. For the following
developments it is useful to introduce also the compliance function
S : z#1=EðzÞ. The total dissipated energy Dðz; _zÞ depends on the
history of the loading. For rate-independent processes, its time
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derivative, the intrinsic dissipation, is a homogeneously positive
function of degree 1 of _z. As a result, Dðz; _zÞ can be written as

Dðz; _zÞ ¼
Z t

0
R0ðzÞj _zjds; ð3Þ

where RðzÞ is a material function such that Rð0Þ ¼ 0. In virtue of the
second law of thermodynamics which stipulates that the rate of
dissipation _Dðz; _zÞ ¼ R0ðzÞj _zj is positive, we have necessarily R0 > 0.
The quantity RðzÞ can be interpreted as the total dissipated energy
during a monotonous forward phase transformation from 0 to z such
that _z > 0. To provide a correct response of the model at the local
level, we make the following assumptions:

Hypothesis 2.1. We assume that all the material functions are
differentiable and we suppose
� E0 > 0 with Eð0Þ ¼ EA and Eð1Þ ¼ EM;
� p0 > 0 with pð0Þ ¼ 0 and pð1Þ ¼ p1;
� R0 > 0 with Rð0Þ ¼ 0 and Rð1Þ ¼ R1;
� G0 � R0 > 0 with Gð0Þ ¼ 0.

The parameters EA (resp. SA) and EM (resp. SM) represent the
Young’s modulus (resp. the compliance) of the austenite and the
martensite phases respectively with EA > EM; p1 > 0 is the maxi-
mum martensite strain reached at the end of the phase transfor-
mation; R1 > 0 is the total energy dissipated during a
monotonous austenite to martensite transformation. As a result,
the assumptions on the monotonicity of E; p and R follow from
the physical meaning of EA; EM; R1 and p1. An energetic explana-
tion on the assumption G0 � R0 > 0 will be given once the evolution
problem is obtained.

To penalize the nucleation of localized interfaces at the macro-
scopic scale, we choose here to introduce gradient effects in the
ðSÞ :
8ðv; bÞ 2 C0 �ZðztÞ; 9r� > 0;8h 2 ½0; r�Þ; ðut þ hv; zt þ hbÞ 2 Ct �Z0;

Ptðut ; ztÞ 6 Eðut þ hv; zt þ hbÞ þ
R L

0

R t
0 R0ðzsÞ j _zs j dsdxþ

R L
0 j Rðzt þ hbÞ � RðztÞ j dx;

(
ð9Þ
standard model by assuming that the free energy of a state
ðe; z; z0Þ is, as done in gradient damage models (Frémond and
Nedjar, 1996; Pham et al., 2011), a function of not only the local
variables ðe; zÞ but also of the spatial gradient of the phase transfor-
mation variable z0. In a linearized setting, the non-local strain work
then reads

Wðe; z; z0Þ ¼ 1
2

R1‘
2z02 þ /ðe; zÞ þ

Z t

0
R0ðzÞj _zjds; ð4Þ

where the term involving the gradient of z has to be positive to
effectively penalize interfaces. As a result, by renormalizing the gra-
dient term by R1, the non-local term introduces an internal length ‘

which is an additional material parameter to be identified. Other
choices can be considered such as introducing gradient effects into
the dissipated energy density (3) as done in gradient model of
crystal plasticity (Gurtin and Anand, 2005; Qiao et al., 2011).

3. Evolution problem

3.1. Energetic formulation of the evolution problem

We consider a one dimensional SMA bar of length L and axial
coordinate x 2 ½0; L� whose displacements are prescribed at the
extremities of the bar. The end x ¼ 0 of the bar is fixed, whereas
the displacement of the end x ¼ L is submitted to a value Ut

depending on an increasing parameter t which plays the role of
the ‘‘time’’. The nominal strain is then given by �et ¼ Ut=L. For this
one dimensional problem, the admissible displacement fields and
phase-field belongs to the following spaces

Ct ¼ fu 2 H1ð0; LÞ : uð0Þ ¼ 0;uðLÞ ¼ Utg; Z0 ¼ H1ðð0; LÞ; ½0;1�Þ;
ð5Þ

where H1ð0; LÞ is the space of functions that are square integrable
and whose first derivatives are square integrable while H1ðð0; LÞ;
½0;1�Þ is the closed subspace of functions of H1ð0; LÞ bounded by 0
and 1. For a given z 2 Z0, let us associate the space of admissible
test directions ZðzÞ defined by

ZðzÞ ¼ fb 2 H1ð0; LÞ : b P 0 where z ¼ 0; b 6 0 where z ¼ 1g:
ð6Þ

For an admissible state of displacement and phase transformation
variable ðut; ztÞ 2 Ct �Z0, the total energy of the system in this state
reads

Ptðut; ztÞ ¼
Z L

0
Wðu0t ; zt ; z0tÞdx ¼ Eðut ; ztÞ þ

Z L

0

Z t

0
R0ðzsÞ j _zs j dsdx;

ð7Þ

where the total free energy is given by

Eðut; ztÞ ¼
Z L

0

1
2

R1‘
2z02t þ /ðu0t ; ztÞ

� �
dx: ð8Þ

A variational formulation of the evolution problem allows the
natural derivation of the evolution equations including the role of
the gradient term. Specifically, we require the solutions of the
evolution problem to obey two basic principles, namely a stability
criterion ðSÞ and an energy balance condition ðEÞ:
ðEÞ : Ptðut; ztÞ ¼ P0ðu0; z0Þ þ
Z t

0
rt�

_Ut�dt�: ð10Þ

The stability criterion consists in selecting local minimizers of
the total energy among all the possible admissible states at each
time step. Indeed, the right-hand side of ðSÞ can be interpreted as
the total energy of the state ðut þ hv ; zt þ hbÞ obtained as the final
state of an infinitesimal evolution from the state ðut ; ztÞ in the
direction ðhv ;hbÞ. In particular the term

R L
0 j Rðzt þ hbÞ � RðztÞ j dx

represents the total dissipated energy to evolve from zt to zt þ hb
along a monotonic evolution. This stability criterion allows
to select physically observable solutions. This is particularly
important when uniqueness is no longer guaranteed, as typical
in softening models including bifurcation and localization
phenomena.

The energy balance condition requires the absolute time conti-
nuity of the total energy with respect to the time. While this con-
dition gives the classical Kuhn–Tucker consistency condition for
evolutions regular in time, this global condition can be used to
follow also brutal evolutions. As we will see in Section 5.2, this
happens in case of snap-back in the global response.

To make the link with the classical formulations of phase trans-
formations which usually performed at the local level, let us derive
the first order conditions of optimality of this problem.
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3.2. Strong formulation of the problem

The strong formulation of the evolution problem is obtained by
establishing the first order optimality condition which is a neces-
sary condition of local minimality. Starting from (9), this condition
reads

8ðv ;bÞ 2 C0 �ZðztÞ; lim
h!0

Eðut ; ztÞ � Eðut þ hv; zt þ hbÞ
h

6 lim
h!0

R L
0 j Rðzt þ hbÞ � RðztÞ j dx

h
: ð11Þ

Taking the limit when h tends to 0, we obtain

�DEtðut ; ztÞðv ;bÞ 6
Z

X
R0ðztÞ j b j dx; ð12Þ

which conversely reads

Z L

0

@/
@e

u0t ; zt
� �

v 0 þ @/
@z

u0t ; zt
� �

bþ R1‘
2z0tb

0 þ R0ðztÞjbj
� �

dx P 0:

ð13Þ

Such variational formulation leads to the strong formulation of the
mechanical equilibrium as well as the phase transformation criteria.
In particular we have the following result (the proof is reported in
Appendix A):

Proposition 3.1 (Phase transformation criteria). In ð0; LÞ, the phase
transformation criteria are the following:

@/
@z

u0t; zt
� �

� R1‘
2z00t þ R0ðztÞP 0 where zt < 1; ð14Þ

� @/
@z

u0t ; zt
� �

þ R1‘
2z00t þ R0ðztÞP 0 where zt > 0: ð15Þ

At the boundaries, we have at x ¼ 0

z0tð0ÞP 0 if ztð0Þ < 1; z0tð0Þ 6 0 if ztð0Þ > 0 ð16Þ

and at x ¼ L

z0tðLÞ 6 0 if ztðLÞ < 1; z0tðLÞP 0 if ztðLÞ > 0: ð17Þ

The derivation of the consistency conditions at the local level is
obtained from the energy balance conditions. Here, we assume that
the evolution fields are regular enough in time so that the deriva-
tive in time of the phase transformation field makes sense. Specif-
ically, by taking the derivative in time of (10) and after some
calculations which are reported in Appendix A, we obtain the
following result.
2

Proposition 3.2 (Phase transformation consistency condi-
tion). In ð0; LÞ, the phase transformation consistency condition is the
following:

R0ðztÞ _zt ¼ � @/
@z

u0t ; zt
� �

þ R1‘
2z00t

� �
j _zt j: ð18Þ

At the boundaries, we have

z0tðLÞ _ztðLÞ ¼ 0; z0tð0Þ _ztð0Þ ¼ 0: ð19Þ

Therefore, the Kuhn–Tucker conditions of the phase transfor-
mation including the non-local contributions are obtained as a first
order condition of optimality associated to the stability criterion in
combination with the energy balance condition written for regular
solutions in time.
4. Homogeneous evolution

4.1. Stress–strain response

Homogeneous evolutions are of particular interest from the
experimental point of view as they give a direct access to the
intrinsic behavior of the material. They consist in evolutions for
which both the strain and the phase transformation variable do
not depend on x. The strain field is then equal to the average (nom-
inal) strain �et . For such homogeneous behavior, the mechanical
equilibrium (71) is automatically satisfied and it remains to inves-
tigate the phase transformation evolution. One has to solve the
Kuhn–Tucker conditions (75), (77) and (84) with null gradient
terms.

This problem has been studied in Pham (2014). We report in the
following Propositions the main results obtained for the homoge-
nous forward and backward phase transformation at prescribed
strain

Proposition 4.1 (Homogeneous forward phase transforma-
tion). The response of the material point during the loading phase
(t # �et increasing) follows three successive stages:

1. Austenite phase: �et 2 ½0; �eAMð0Þ�. At the onset of the loading, the
response of the material is first elastic. The phase transformation
variable is equal to 0 and the stress–strain relation reads
rt ¼ EA�et : ð20Þ

Forward phase transformation: �et 2 ½�eAMð0Þ;�eAMð1Þ�. The stress, the
strain and the phase transformation variable are linked during the
forward phase transformation through the relations

zt ¼ ð�eAMÞ�1ð�etÞ; r ¼ �rAMðztÞ: ð21Þ

where the two functions z # �eAMðzÞ; z # �rAMðzÞ on ½0;1� are
defined as follows

�rAMðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðzÞ2 þ 2S0ðzÞðG0ðzÞ þ R0ðzÞÞ

q
� p0ðzÞ

S0ðzÞ ;

�eAMðzÞ ¼ SðzÞ�rAMðzÞ þ pðzÞ: ð22Þ

Martensite phase: �et 2 ½�eAMð1Þ;þ1Þ. The response becomes again
elastic. The phase transformation variable is equal to 1 and the
stress–strain relation reads

rt ¼ EMð�et � p1Þ: ð23Þ
Proposition 4.2 (Homogeneous backward phase transforma-
tion). The response of the material point during the unloading phase
(t # �e decreasing) follows three successive stages:

1. Martensite phase: �et 2 ½�eMAð1Þ;þ1Þ. At the onset of the loading,
the response of the material is first elastic. The phase transforma-
tion variable is equal to 0, while the stress is given by
rt ¼ EMð�et � p1Þ: ð24Þ

. Backward phase transformation: �et 2 ½�eMAð0Þ;�eMAð1Þ�. The stress,
the strain and the phase transformation variable are linked dur-
ing the backward phase transformation through the relations

�et ¼ �eMAðztÞ; r ¼ �rMAðztÞ: ð25Þ

where the two functions z # �eMAðzÞ; z # �rMAðzÞ on ½0;1� are
defined as follows
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�rMAðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðzÞ2 þ 2S0ðzÞðG0ðzÞ � R0ðzÞÞ

q
� p0ðzÞ

S0ðzÞ ;

�eMAðzÞ ¼ SðzÞ�rMAðzÞ þ pðzÞ; ð26Þ

3. Austenite phase: �et 2 ½0; �eMAð0Þ�. The response becomes again
elastic. The phase transformation variable is equal to 1, while
the stress is given by

rt ¼ EA�et: ð27Þ
Fig. 1. Intrinsic softening stress–strain curve from our model (Black) versus
intrinsic (homogeneous) stress–strain response of NiTi SMA from Hallai and
Kyriakides (2013) (Red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Proof. We invite the reader to refer to Pham (2014) for a detailed
proof. h

Knowing the intrinsic response of the material, we can now
introduce a set of definitions related to the hardening and soften-
ing properties of the model:

Definition 4.3 (Hardening and softening phase transformation
behavior). The forward (resp. backward) phase transformation is
said to be stress-hardening if �r0AMðzÞ > 0 (resp. �r0MAðzÞ > 0) and
stress-softening if �r0AMðzÞ < 0 (resp. �r0MAðzÞ < 0) for z 2 ½0;1�.

We will focus in this article only on stress-softening behavior
which is responsible of the main issues such as strain localization
and loss of uniqueness and which require the regularization of the
model. On the other hand, stress-hardening behavior leads to the
well-posedness of the evolution problem and stability of the
homogeneous state (Pham, 2014).

4.2. Example

To illustrate the intrinsic properties of the model, we consider a
set of material functions that allow the calculation of closed form
localized solutions as we will see in Section 5. These laws are
derived from the ones introduced by Alessi et al. (2014) in the con-
text of gradient damage models with plasticity. First, let us call
z # wðzÞ an intermediary function defined over ½0;1� as

wðzÞ ¼ 1� ð1� ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1� gÞ

p
ÞzÞ2

1� jð1� gÞ ; ð28Þ

where j is a positive parameter. Note that the function w is increas-
ing over ½0;1� with wð0Þ ¼ 0 and wð1Þ ¼ 1 and g is given by

g ¼ 1� EM

EA

ð29Þ

with EA and EM being the Young’s modulus of the austenite and the
martensite phases. Hence, we introduce the material functions as
follows:

EðzÞ ¼ EA
1�ð1�jð1�gÞÞwðzÞ

1þðj�1ÞwðzÞ ;

pðzÞ ¼ p1
jð1�gÞwðzÞ

1�ð1�jð1�gÞÞwðzÞ ;

RðzÞ ¼ R1wðzÞ;
GðzÞ ¼ G1wðzÞ:

8>>>><
>>>>:

ð30Þ

Therefore, the local model depends on six material parameters,
namely EA; EM; j; p1, G1 and R1. In virtue of the homogeneous
response given by Proposition 4.1, a direct calculation shows that
z # �rAMðzÞ and z # �rMAðzÞ are given by

�rAMðresp:�rMAÞðzÞ

¼ p1EAð1�gÞ
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2gðG1þðresp:�ÞR1Þ

EAp2
1jð1�gÞ2

1�ð1�jð1�gÞÞwðzÞð Þ2
s

�1

 !
:

ð31Þ

Since w0 > 0, the model will exhibit stress-softening during the
forward and the backward phase transformation if and only if
0 < j < 1
1�g. For j ¼ 1

1�g, the homogeneous phase transformation
occurs at constant stress while for j ¼ 0, the homogeneous phase
transformation occurs at constant strain. Thus, the parameter j
measures the magnitude of the stress-softening. Renormalizing
the peak nucleation stress in the work of Hallai and Kyriakides
(2013), we propose the following material parameters to approxi-
mate the experimental intrinsic curve with our model:

EA ¼ 1:5; EM ¼ 0:5; j ¼ 2:2; p1 ¼ 4:6%; R1 ¼ 1:15; G1 ¼ 3:

ð32Þ

Fig. 1 reports the intrinsic forward and backward response of
the model with the above choice of material parameters. Note that
in the work of Hallai and Kyriakides (2013), only the intrinsic for-
ward stress–strain curve is obtained through tensile experimental.
Indeed, to stabilize a homogeneous evolution, the authors used
laminates consisting of face-strips of stainless steel (with a
stress-hardening behavior) and NiTi. They showed that such proce-
dure allows to suppress localized evolutions in the NiTi sample. By
subtracting the hardening contribution of the stainless steel, they
obtained the intrinsic behavior of the NiTi. However, due to the
plastic behavior of the stainless steel, the NiTi is constrained to stay
in its martensite phase at the end of the experiment and the
reverse transformation could not be obtained. As a result, no
experimental data could be used for fitting the reverse stress–
strain curve. For the sake of completeness, we display in Fig. 1
the analytical results also for the reverse phase transformation.
Note that a better fit of the experimental can be obtained with a
different set of material functions, see Pham (2014). We choose
this model in this paper as it allows for a fully analytical treatment
and accounts for the key phenomena revealed in the experiments.
5. Localized evolution

5.1. Evolution of the localized martensite profile

We will first present the construction of a non-homogeneous
evolution which will be characterized by three stages: (i) nucle-
ation of a martensite localization; (ii) propagation of the localized
phase transformation front; (iii) annihilation of the austenite
phase. For each of these three stages, we will derive the phase-field
profile in closed-form for the particular constitutive law (28)–(30).

Stage 1: Localized martensite nucleation To construct a localized
response, we assume that the non-local phase transformation cri-
terion (14) is reached only on a subset of ð0; LÞwhile the remaining
part is unloaded elastically. We suppose that the subset where the



1 The forward Maxwell stress is the critical height of the horizontal line that cut the
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martensite localization arises at the left end of the bar and is of
length Dt where Dt is a positive parameter which depends in prin-
ciple on the loading. We will construct here a localized bifurcated
branch, starting at the end of the elastic phase when the stress
reaches the critical value �rAMð0Þ. This is the first time instant at
which the forward phase transformation criterion becomes an
equality over the whole bar:

G0ð0Þ þ R0ð0Þ ¼ 1
2

S0ð0Þr2
AMð0Þ þ p0ð0ÞrAMð0Þ: ð33Þ

Let us call rt and x # ztðxÞ the (constant) stress field over the bar
and the phase transformation variable associated to the non-
homogeneous solution, respectively. On the support ð0;DtÞ of the
half-localization, the forward phase transformation criterion is
assumed to be an equality

�R1‘
2z00t �

1
2

S0ðztÞr2
t � p0ðztÞrt þ G0ðztÞ þ R0ðztÞ ¼ 0 on ð0;DtÞ

ð34Þ

with the

Nucleation boundary conditions :

z0tð0Þ ¼ 0;
ztðDtÞ ¼ 0;
z0tðDtÞ ¼ 0:

8><
>: ð35Þ

The rest of the domain is assumed to be in an austenitic elastic state
and hence zt ¼ 0 on ðDt ; LÞ. The phase transformation criterion (14)
is then satisfied on ðDt ; LÞ provided that rt 6 rAMð0Þ. Now, multiply-
ing (34) by zt , integrating with respect to x and making use of the
boundary conditions (35), we find

1
2

R1‘
2z0t

2 ¼ �1
2
ðSðztÞ � SAÞr2

t � rtpðztÞ þ GðztÞ þ RðztÞ on ð0;DtÞ:

ð36Þ

Now injecting in this first order differential equation the material
functions (28)–(30), we obtain

1
2

R1‘
2z0t

2 ¼ wðztÞ G1 þ R1 �
1
2 jgSAr2

t

1� ð1� jð1� gÞÞwðztÞ
� jð1� gÞp1rt

1� ð1� jð1� gÞÞwðztÞ

� �
: ð37Þ

By introducing the change of variable

x # ŵtðxÞ ¼ wðztðxÞÞ; ð38Þ

which is licit since w0 > 0, after some calculations, Eq. (36) can be
rewritten in the form

R1‘
2ð1� jð1� gÞÞ2

8ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1� tÞÞ

p ŵ02t

¼ ŵt
1
2
jgSAðrAMð0Þ2 � r2

t Þ þ p1jð1� gÞðrAMð0Þ � rtÞ
�

ð39Þ

� ðG1 þ R1Þð1� jð1� gÞÞŵt

�
; ð40Þ

where we used that

G1 þ R1 ¼
1
2
jgSAr2

AMð0Þ þ jð1� gÞp1rAMð0Þ ð41Þ

and the boundary conditions ŵtð0Þ ¼ 0; ŵtðDtÞ ¼ 0. The solution of
this differential equation is of the form

ŵtðxÞ ¼ ŵHðrtÞ cos2 px
2DAM

� �
; ð42Þ

where DAM is given by

DAM ¼
R1ð1� jð1� gÞÞ

8 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1� tÞ

p� �
ðG1 þ R1Þ

 !1=2

p‘ ð43Þ
and ŵH

t ðrtÞ is defined as

ŵHðrtÞ ¼
1
2 jgSAðrAMð0Þ2 � r2

t Þ þ p1jð1� gÞðrAMð0Þ � rtÞ
ðG1 þ R1Þð1� jð1� gÞÞ ð44Þ

with ŵHðrtÞP 0 for rt 6 rAMð0Þ. Thus, for the present choice con-
stitutive law, the size DAM of the localization is constant during
the whole nucleation process. Note that the differential equation
(40) can be simply rewritten in the form

DAM

p

� �2

ŵ02t ¼ ŵtðŵHðrtÞ � ŵtÞ: ð45Þ

The localized martensite profile ztðxÞ ¼ w�1ðŵtðxÞÞ is then obtained
by inverting the relation (38) by means of (28). The amplitude of
the localization ŵHðrtÞ is increasing when rt is decreasing with
ŵHðrAMð0ÞÞ ¼ 0. It reaches the critical value 1 when rt ¼ ~rAM where
~rAM is given by the relation

G1 þ R1 ¼
1
2

g
1� g

~r2
AM þ p1 ~rAM: ð46Þ

Based on Pham (2014, see Eq. (89)), the stress ~rAM satisfying the
relation (46) precisely corresponds to the forward Maxwell stress1

of the stress-softening homogeneous phase transformation. We plot
in Fig. 2 (Left) the evolution of the half localization for different val-
ues of rt ranging from rAMð0Þ to ~rAM.

Stage 2: Propagation of the localized phase transformation front
When rt reaches the critical Maxwell stress ~rAM, the phase trans-
formation front propagates in the right direction at fixed stress. The
phase field profile along the bar is reported in Fig. 3. It consists in
three different phases:

� x 2 ð0;HtÞ: a homogeneous transformed martensitic part of size
Ht;
� x 2 ðHt ;Ht þ DAMÞ: an austenite–martensite mixture part with

the same profile than at the end of the previous stage;
� x 2 ðHt þ DAM; LÞ: a homogeneous austenitic part.

To establish how Ht evolves with the loading, let us integrate
the stress–strain constitutive relation over the bar:

~rAM

1
L

HtSM þ
Z HtþDAM

Ht

SðztÞdxþ ðL�Ht � DAMÞSA

� �

¼ �et �
1
L

Htp1 þ
Z HtþDAM

Ht

pðztÞdx
� �

: ð47Þ

We deduce that, during this stage, the length Ht grows linearly with
the nominal strain �et according to the relation

Ht

L
¼

�et � ~�eAM

ðSM � SAÞ~rAM þ p1
: ð48Þ

When Ht þ DAM ¼ L, the phase transformation front reaches the
right end of the bar and the annihilation of the localized phase
transformation front begins.

Stage 3: Annihilation of the austenite phase During this stage, the
boundary conditions that the phase transformation variable has to
satisfy are the following:

Annihilation boundary conditions :

ztðL� DAMÞ ¼ 1;
z0tðL� DAMÞ ¼ 0;
z0tðLÞ ¼ 0:

8><
>: ð49Þ

Following a similar procedure as for the nucleation phase, by inte-
grating the phase transformation criterion, one can show that the
phase field should satisfy the following first order differential
equation:
homogeneous forward stress–strain curve in two separate regions of equal areas.



Fig. 2. (Left) Evolution of the martensite front during nucleation phase, rt is decreasing from rAMð0Þ to ~rAM . (Right) Evolution of the martensite front during annihilation
phase, rt is decreasing from to ~rAM to rAMð1Þ.

Fig. 3. Propagation of the martensite front phase along the bar.
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1
2

R1‘
2z0t

2 ¼ �1
2
ðSðztÞ � SMÞr2

t � ðpðztÞ � p1Þrt þ GðztÞ þ RðztÞ

on ðL� DAM; LÞ: ð50Þ

For the material law (30), we obtain

1
2

R1‘
2z0t

2 ¼ ðwðztÞ � 1Þ

� G1 þ R1 �
1
2 gSAr2

t

ð1� gÞð1� ð1� jð1� gÞÞwðztÞÞ
� p1rt

1� ð1� jð1� gÞÞwðztÞ

� �
:

ð51Þ

Using that the critical stress rAMð1Þ at which the homogeneous for-
ward phase transformation ends should satisfy

G1 þ R1 ¼
1
2 jgSAr2

AMð1Þ
jð1� gÞ2

þ p1rAMð1Þ
jð1� gÞ ; ð52Þ

we find after performing the change of variable (38) that

1
2

R1‘
2 ð1� jð1� gÞÞ2

4ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1� tÞÞ

p ŵ02t ¼ ðŵt � 1Þ
 

1
2 jgSA

jð1� gÞ rAMð1Þ2 � jð1� gÞr2
t

� �

þ p1

jð1� gÞ rAMð1Þ � jð1� gÞrtð Þ

� G1 þ R1Þð1� jð1� gÞÞŵtð
!
: ð53Þ

The solution of the such differential equation is of the form

ŵtðxÞ ¼ 1þ ðŵ�ðrtÞ � 1Þ cos2 pðL� xÞ
2DAM

� �
; ð54Þ

where ŵ�t ðrtÞ is defined as

ŵ�ðrtÞ ¼

1
2jgSA

jð1�gÞ rAMð1Þ2 � jð1� gÞr2
t

� �
þ p1

jð1�gÞ rAMð1Þ � jð1� gÞrtð Þ
ðG1 þ R1Þð1� jð1� gÞÞ

ð55Þ
with ŵ�ðrtÞ being strictly increasing from 0 to 1 when rt goes from
~rAM to rAMð1Þ. Here, ŵ�ðrtÞ corresponds to the minimum value of
the localized phase transformation profile at x ¼ L. The size of the
localization during the annihilation phase is constant and is the
same as during the nucleation phase. Note that under such defini-
tions, the differential equation (53) can be simply rewritten as

DAM

p

� �2

ŵ02t ¼ ð1� ŵtÞðŵt � ŵ�ðrtÞÞ: ð56Þ

The localized martensite profile ztðxÞ is then obtained by inverting
the relation (38) by means of (28). We plot in Fig. 2 (Right) the evo-
lution of the annihilation stage for different values of rt . When
rt ¼ rAMð1Þ, the bar has completely turned into its martensite
phase and the evolution of the bar retrieves its homogeneous elastic
character with the martensite Young’s modulus.

Remark 1. Once we have established the localized evolution
during the forward phase transformation, the reverse localized
evolution can be obtained. It suffices to replace R1 by �R1 in all the
previous calculation in virtue of the form of the reverse phase
transformation criterion (15).
5.2. Global stress–strain response

Based on the previous results, we can now derive the global
stress–strain response of the bar for the evolution of a phase trans-
formation front. In this perspective, let us integrate over the bar
the constitutive relation rt ¼ EðztÞðet � pðztÞÞ. Given that rt is
spatially constant in virtue of the equilibrium, we obtain

rt ¼
1
L

Z L

0
SðztÞdx

� ��1

�et �
1
L

Z L

0
pðztÞdx

� �
: ð57Þ

Again, we will distinguish three different cases namely the nucle-
ation, propagation and annihilation stages.

Stage 1: Localized martensite nucleation During this stage, the
martensite consists in a half-localization on a part of the bar of
length DAM while the remaining part is in the austenite phase.
Hence, we have

1
L

Z L

0
SðztÞdx ¼ 1

L

Z DAM

0
SðztÞdxþ ðL� DAMÞSA

� �
; ð58Þ

where the first integral term of the right hand side readsZ DAM

0
SðztÞdx ¼ SA

Z DAM

0

1þ ðj� 1ÞwðztÞ
1� ð1� jð1� gÞÞwðztÞ

dx: ð59Þ



Fig. 4. Global stress–strain diagram of the localized (plain line) and homogeneous
(dashed line) phase transformation evolution for ‘=L ¼ 0:2. During nucleation,
propagation, and annihilation of the martensite front, the spatially constant stress
decreases from rAMð0Þ to ~rAM and from ~rAM to rAMð1Þ, respectively.
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Given the differential equation (45) from which is derived the local-
ized martensite profile (42), let us perform the change of variable
y ¼ cos2 px

2DAM

� �
. This givesZ DAM

0
SðztÞdx¼ DAMSA

p

Z 1

0

1þðj�1ÞŵHðrtÞy
1�ð1�jð1�gÞÞŵHðrtÞyð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

p dy:

ð60Þ

With the same reasoning, we also have for the integration of the
martensitic strainZ L

0
pðztÞdx¼jð1�gÞDAMp1

p

Z 1

0

ŵHðrtÞy
1�ð1�jð1�gÞÞŵHðrtÞyð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1�yÞ

p dy

ð61Þ

Therefore, we have obtained the following global stress–strain rela-
tion that governs the localized martensite nucleation stage

�et ¼ SArt þ
DAM

pL
jgSArt þ jð1� gÞp1ð Þ

�
Z 1

0

ŵHðrtÞ
ffiffiffi
y
p

1� ð1� jð1� gÞÞŵHðrtÞyð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p dy: ð62Þ

Stage 2: Propagation of the localized phase transformation front.
This stage occurs at the constant Maxwell stress ~rAM. Let us call
~�eAM the nominal strain value at which the martensite localization
reaches the value 1 i.e. when rt ¼ ~rAM in (62)

~�eAM ¼
1
L

Z DAM

0
SðztÞdxþ ðL� DAMÞSA

� �
~rAM þ

1
L

Z DAM

0
pðztÞdx: ð63Þ

The propagation starts when the martensite nucleation reaches the
value 1 for �et ¼ ~�eAM and ends when the front reaches the right end
for �et ¼ ~�e�AM with

~�e�AM ¼ ~�eAM þ 1� DAM

L

� �
ððSM � SAÞ~rAM þ p1 ð64Þ

according to (48).
Stage 3: Annihilation of the austenite phase Finally, let us derive

the global stress–strain response during the annihilation stage
which consist in the disappearance of the half localization at the
right end of the bar. Following the same procedure as in the nucle-
ation stage, let us first compute the spacial average of the compli-
ance which reads

1
L

Z L

0
SðztÞdx ¼ 1

L
ðL� DAMÞSM þ

Z L

L�DAM

SðztÞdx
� �

: ð65Þ

Given the change of variable y ¼ cos2 pðL�xÞ
2DAM

� �
and the differential

equation (56), we obtain for the integral over the half-localizationZ L

L�DAM

SðztÞdx ¼ DAMSA

p

�
Z 1

0

1þ ðj� 1Þ 1þ ð1� ŵ�ðrtÞÞyð Þ
1� ð1� jð1� gÞÞ 1þ ð1� ŵ�ðrtÞÞyð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

p dy:

ð66Þ
On the other hand, the average of the martensitic strain is

1
L

Z L

0
pðztÞdx ¼ 1

L
ðL� DAMÞp1 þ

Z L

L�DAM

pðztÞdx
� �

; ð67Þ

where
R L

L�DAM
pðztÞdx is given byZ L

L�DAM

pðztÞdx ¼ DAMp1

p

Z 1

0

�
jð1� gÞ ŵ�t ðrtÞ þ ð1� ŵ�t ðrtÞÞy

� �
1� ð1� jð1� gÞÞŵ�t ðrtÞyð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

p dy: ð68Þ

Finally, the global stress–strain relation is again deduced by means
of (57). To obtain the reverse global response during the backward
transformation, it suffices to replace R1 by �R1 in all the previous
calculation.

On Fig. 4, we have plotted the global response during a whole
cycle for ‘=L ¼ 0:2. The global response of such localized evolution
highly depends on the magnitude of the ratio ‘=L. In Fig. 5, we see
that for sufficiently large ratio ‘=L, martensite nucleation is a con-
tinuous process with respect to the loading parameter. In particu-
lar, the total energy evolves continuously during the whole
nucleation stage. On the other hand, for sufficiently small values
of ‘=L, two snap-backs occur: one at the peak elastic stress
rAMð0Þ during the nucleation stage and one at the beginning of
the annihilation stage. In both cases, the evolution of the total
energy and the phase transformation variable are discontinuous
in time jumping from the peak stress to the Maxwell stress. In par-
ticular, balance of energy cannot be satisfied as it enforces the total
energy to be a continuous function of the loading. A quick calcula-
tion shows that a snap-back occurs during the forward transforma-
tion at the peak stress rAMð0Þ as soon as d�et

drt
ðrAMð0ÞÞ > 0. With our

family of models, given that ŵHðrAMÞ ¼ 0, then

d�et

drt
ðrAMð0ÞÞ ¼ SA þ

DAM

2L
jgSArAMð0Þ þ jð1� gÞp1ð ÞðŵHÞ0ðrAMð0ÞÞ:

ð69Þ

We deduce the critical length L�AM above which a snap-back occurs

L�AM ¼
ðjgSArAMð0Þ þ jð1� gÞp1Þ2

2SADAMðG1 þ R1Þð1� jð1� gÞÞ : ð70Þ
5.3. Energy balance condition and time regularity of the evolution

Regularity in time of quasi-static evolutions is an important
issue for softening models. Indeed, for bars of length L such that
L > L�AM we have seen that a snap-back in the global response
occurs during the localized martensite nucleation. Such snap-back
prevents from following continuously the global response with
respect to the increasing loading parameter. In particular, by jump-
ing from the peak stress rAMð0Þ to the Maxwell stress ~rAM, the total
energy and the local fields will experience also a time discontinu-
ity, some energy will be lost during the nucleation process and the
energy balance condition will not be satisfied. To deal with such
issue, different points of views can be adopted.



Fig. 5. Influence of the ratio ‘=L on the forward global response of the localized
evolution: the smaller is ‘=L, the greater is the snap-back. Markers refer to different
values of the ratio ‘=L as follows: H : 0:02;J : 0:08; � : 0:2;N : 0:4;j : 0:6, whereas
the dashed line corresponds to the homogenous evolution. The insets represent the
localized evolution during nucleation and annihilation.

Fig. 6. Evolution path (thick, black line) that satisfies the energy balance condition
in case of a snap-back for ‘=L ¼ 0:02. The energy-conserving path corresponds to
the Maxwell line that equates the two gray areas.
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On the one hand, one can assume that such time discontinuity
in the global response is a manifestation of the dynamic nature of
the nucleation process that is not captured by a quasi-static
approach for long bars. The dynamic modeling of such stage would
in principle account for the kinetic energy consumed during this
stage. However it is a difficult task that goes beyond the scope of
the presented framework. On the other hand, if one remains in a
pure quasi-static setting, it is still important to evaluate precisely
the energy loss through this nucleation process. To achieve such
task, one has to be able to follow the snap-back, whether by means
of a continuation method or analytically as presented before in this
one dimensional context. Then, the energy loss during the nucle-
ation process can be obtained by computing the difference of areas
in the global stress–strain diagram when jumping from the peak
stress rAMð0Þ to the Maxwell stress ~rAM. Of course, we cannot
assert that this difference of energy corresponds to the kinetic
energy that would be obtained in a dynamic approach. Neverthe-
less it still gives a relevant information on how the quasi-static
approach can deal with such discontinuity issue.

Moreover, assuming that the snap-back in the global response is
known, an alternative evolution can be proposed. Indeed, one can
enforce the energy balance condition to be satisfied, even through
the nucleation stage. Since the total energy of the system is given
in the global stress–strain response, a possible choice is to follow
the vertical line labeled by the critical elongation e�AM shown on
Fig. 6. Such line is constructed in such a way that the two gray
zones are of equal area and thus, corresponds to a vertical Maxwell
line associated to the nucleation process. As a result, following this
vertical line will ensure the continuity of the total energy and will
enforce the energy balance condition. Note that the strain and
phase fields will still experience a time discontinuity. Note that
as the ratio ‘=L diminishes, the snap-back becomes more pro-
nounced and thus, the vertical Maxwell line tends to shift towards
the critical strain ~rAM=EA. Despite enforcing the energy balance
condition, such approach can be questioned as the austenite elastic
stage is stable (Pham, 2014) and leaving such stable would force to
cross an energy barrier.

Experiments on NiTi wires give different kind of answers on this
issue of nucleation. In particular, depending on how the boundary
conditions are applied, martensite nucleation can occur at different
stress level. For instance, if no particular precautions are taken at
the boundaries, due to the stress concentration, some austenite
already transforms into martensite inside the grips at the onset
of the loading. In this case, the macroscopic martensite localization
tends to occur approximatively at the Maxwell stress level, see for
instance Shaw and Kyriakides (1995). On the other hand, Iadicola
and Shaw (2002) showed that by increasing locally the tempera-
ture where the NiTi is gripped by means of a temperature-con-
trolled conduction block, the austenite is stabilized at the
boundaries. In this case, the martensitic transformation appears
in the bulk of the specimen where the stress and temperature
fields are uniform with a peak nucleation stress significantly higher
than the Maxwell stress, see for instance Fig. 9 in Iadicola and
Shaw (2002).
6. Conclusions

In this article, we have studied localized evolutions of a super-
elastic regularized rate-independent SMA model. The total strain
energy of the system is defined as the sum of a free energy and a
dissipated energy. Regularization is taken of the simplest form by
adding quadratic terms of the gradient of the internal variable in
the free energy. This results in a model that depends on four mate-
rial functions of the internal variable along with an internal length
‘. The quasi-static evolution problem of one dimensional bar of
length L is formulated in terms of two physical principles: a stabil-
ity criterion ðSÞ which enforces at each time step local minimality
of the total energy among a space of admissible states and an
energy balance condition ðEÞ which requires the absolute continu-
ity of the total energy of the system with respect to the loading
parameter. By writing the first order condition of stability, we
derive the local equations, namely the bar equilibrium, the non-
local Kuhn–Tucker conditions as well as natural boundary condi-
tions associated to the phase transformation.

Localized evolutions of the phase transformation have been
fully investigated for a specific class of material functions, from
the onset of the martensitic phase transformation to the backward
transformation. Closed-form formula of the localized phase trans-
formation profile have been derived as well as the associated glo-
bal responses. Those responses are strongly dependent of the
length ratio ‘=L. Specifically, for L > L�AM, the martensite nucleation
is a continuous process at both local i.e. localization profile, and
global level i.e. total energy. For L < L�AM, the presence of a snap-
back requires to reconsider the evolution to satisfy the energy bal-
ance condition. A possibility is to follow the vertical Maxwell line
related to the snap-back. In this case, although at the local level
the nucleation remains a brutal event, the continuity of the total
energy is retrieved. Future works will be dedicated to a generaliza-
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tion of such energetic approach in a higher dimensional case and
non-proportional loadings.

Appendix A
Proof of Proposition 3.1. By putting b ¼ 0 in (13), we obtain the
weak form of the mechanical equilibrium

8v 2 C0;

Z L

0
rtv 0dx ¼ 0; ð71Þ

where rt ¼ @/
@e u0t ; zt
� �

¼ EðztÞ u0t � pðztÞ
� �

corresponds to the stress
field in the bar. Integrating by part (71), we find

�
Z L

0
r0tvdxþ ½rtv �L0 ¼ 0: ð72Þ

Since v 2 C0, we have vð0Þ ¼ vðLÞ ¼ 0. By a classical argument of
calculus of variation, we deduce that the stress rt is spatially con-
stant and only depends on time t. Now by putting v ¼ 0 in (13),
we obtain the weak form of the phase transformation criterion.
Integrating it by parts, we findZ L

0

@/
@z

u0t ; zt
� �

b� R1‘
2z00t bþ R0ðztÞjbj

� �
dx� ½R1‘

2z0tb�
L

0 P 0: ð73Þ

Let us first consider test direction b 2 ZðztÞ such that b P 0 on ð0; LÞ
and bð0Þ ¼ bðLÞ ¼ 0. On the subsets of ð0; LÞ where zt ¼ 1, we have
necessarily b ¼ 0. Then, (73) reduces to

8b P 0;
Z

zt<1

@/
@z

u0t; zt
� �

� R1‘
2z00t þ R0ðztÞ

� �
jbjdx P 0: ð74Þ

Again, by means of a classical argument of calculus of variation, we
find that

@/
@z

u0t; zt
� �

� R1‘
2z00t þ R0ðztÞP 0 where zt < 1: ð75Þ

Conversely, let us consider test direction b 2 ZðztÞ such that b 6 0
on ð0; LÞ and bð0Þ ¼ bðLÞ ¼ 0. On the subsets of ð0; LÞ where zt ¼ 0,
we have necessarily b ¼ 0. Then, (73) reduces to

8b P 0;
Z

zt>0
� @/
@z

u0t; zt
� �

þ R1‘
2z00t þ R0ðztÞ

� �
jbjdx P 0: ð76Þ

Again, using a classical argument of calculus of variation, we find
that

� @/
@z

u0t ; zt
� �

þ R1‘
2z00t þ R0ðztÞP 0 where zt > 0: ð77Þ

Non-local inequalities (75) and (77) constitute the phase transfor-
mation criteria that rule the forward and backward phase trans-
formations, respectively. In particular, the non-local Laplacian
term of zt is not introduced arbitrarily but is instead derived nat-
urally from the first order optimality condition. It remains to
derive the boundary conditions on the phase transformation var-
iable. Again, this is done from the weak form of the phase trans-
formation criterion (73). By considering vanishing b in the bulk
but which remain non-zero at the boundaries, we find in the
limit that

�R1‘
2z0tðLÞbðLÞ þ R1‘

2z0tð0Þbð0ÞP 0 ð78Þ

for any b 2 ZðztÞ. We then deduce the following boundary condi-
tions at x ¼ 0

z0tð0ÞP 0 if ztð0Þ < 1;

z0tð0Þ 6 0 if ztð0Þ > 0

	
ð79Þ

and at x ¼ L
z0tðLÞ 6 0 if ztðLÞ < 1;

z0tðLÞP 0 if ztðLÞ > 0:

	
� ð80Þ
Proof of Proposition 3.2. By taking the right derivating of the
energy balance condition (10) with respect to time, we find

Z L

0

@/
@e

u0t;zt
� �

_u0tþ
@/
@z

u0t;zt
� �

_ztþR1‘
2z0t _z0t

� �
dxþ

Z L

0
R0ðztÞj _zt jdx¼rt

_Ut:

ð81Þ

Integrating by parts the last term of the first integral and making
use of the equilibrium which givesZ L

0

@/
@e

u0t ; zt
� �

_u0t

� �
dx ¼ rt

Z L

0
_u0tdx ¼ rt

_Ut;

we obtainZ L

0

@/
@z

u0t; zt
� �

� R1‘
2z00t

� �
_ztdx� ½R1‘

2z0t _zt �
L

0 þ
Z L

0
R0ðztÞ j _zt j dx ¼ 0:

ð82Þ

By considering now the subsets of ½0; L� where _zt > 0 and _zt < 0, let
us decompose (82) asZ
j _zt j>0

@/
@z

u0t ; zt
� �

þ R0ðztÞ � R1‘
2z00t

� �
j _zt jdx

þ
Z
j _zt j<0

@/
@z

u0t; zt
� �

� R0ðztÞ � R1‘
2z00t

� �
j _zt jdx

� R1‘
2z0tðLÞ _ztðLÞ þ R1‘

2z0tð0Þ _ztð0Þ ¼ 0 ð83Þ

Since zt < 1 (resp. zt > 0) when _zt > 0 (resp. _zt < 0) and given (79)
and (80), we deduce that all the terms of the left-hand side of
(83) are positive. As a result, we have found the following consis-
tency conditions in the bulk

R0ðztÞ _zt ¼ � @/
@z

u0t ; zt
� �

þ R1‘
2z00t

� �
j _ztj ð84Þ

and at the boundaries

z0tðLÞ _ztðLÞ ¼ 0; z0tð0Þ _ztð0Þ ¼ 0: � ð85Þ
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