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This paper studies the initiation of cracks in the thermal shock problem through the
variational analysis of the quasi-static evolution of a gradient damage model. We consider
a two-dimensional semi-infinite slab with an imposed temperature drop on its free
surface. The damage model is formulated in the framework of the variational theory of
rate-independent processes based on the principles of irreversibility, stability and energy
balance. In the case of a sufficiently severe shock, we show that damage immediately
occurs and that its evolution follows first a fundamental branch without localization. Then
it bifurcates into another branch in which damage localization will take place finally to
generate cracks. The determination of the time and mode of that bifurcation allows us to
explain the periodic distribution of the so-initiated cracks and to calculate the crack
spacing in terms of the material and loading parameters. Numerical investigations
complete and quantify the analytical results.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The shrinkage of materials, induced by cooling or drying, may lead to arrays of regularly spaced cracks in a range of
phenomena. Examples of such a situation come from various fields: civil engineering with the drying of concrete (Bisschop
and Wittel, 2011), mechanical engineering with the exposure of glass (Geyer and Nemat-Nasser, 1982) or ceramics to a
thermal shock (Bahr et al., 2010; Shao et al., 2010), geomaterials with the drying of soils (Morris et al., 1992; Chertkov, 2002;
Goehring et al., 2009) or colloidal suspensions (Gauthier et al., 2010), and the thermal shocks in overexploited gas storage
caverns (Berest et al., 2012). These cracks are of importance as they can weaken the body or govern future diffusion process,
modify the strength of the material (Shao et al., 2011) or compromise the safety of the structure.

In this paper, we focus on the thermal shock problem of a brittle slab, for which experimental results are reported in Bahr
et al. (1986), Shao et al. (2010), and Geyer and Nemat-Nasser (1982). The specimen is a thin slab, free at the boundary,
composed of a homogeneous material without prestress in its initial configuration. It is uniformly heated and then
quenched in a cold bath inducing a thermal shock on the exposed surfaces. Fig. 1 reports an example of the observed crack
pattern at the end of the cooling process (from Jiang et al., 2012). The central part of the specimen, where the temperature
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Fig. 1. Crack pattern on both faces of a thin slab (1 mm� 10 mm� 50 mm) after a thermal shock (from Jiang et al., 2012).
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field only depends on the distance from the wet surface, presents an array of parallel cracks. Some of these cracks stop
earlier during the penetration and the spacing of the crack increases with the depth.

The theoretical and numerical aspects of multiple cracking under thermal shock have been studied by many authors
using classical tools of the Griffith theory of fracture mechanics (Hasselman, 1969; Lu and Fleck, 1998; Bazant et al., 1979;
Bahr et al., 1988; Jagla, 2002; Jenkins, 2005; Bahr et al., 2010; Jiang et al., 2012). The most intriguing phenomena are the
period doubling in the crack spacing during the propagation inside the body and the crack initiation. The existing studies
assume a priori that the cracks are straight, parallel to each other, and periodically distributed. Hence, they usually perform
energetic analyses based on numerical or semi-analytical calculations of the strain energy associated to uniform or alternate
crack propagation modes. In this context, Bazant et al. (1979) explain selective crack arrest using a bifurcation analysis based
on the change of sign of the second derivative of the strain energy with respect to the crack penetration. Bahr et al. (1988)
perform a similar analysis with numerical boundary element calculations and discuss crack initiation assuming periodicity
and the presence of initial flaws. Jagla (2002) discusses the initiation and propagation of the periodic crack pattern using a
stress criterion for initiation and energy minimality for optimal spacing. More recently, Jenkins (2005) and Jiang et al. (2012)
study spacing and initiation by global minimization of the Griffith energy. Bahr et al. (2010) derives semi-analytical scale
laws for the spacing of the cracks as a function of the penetration and the severity of the thermal shock.

Removing the hypothesis on the topology of the crack pattern remains a major issue within classical fracture mechanics.
Yet similar problems may be naturally tackled, theoretically and numerically, in the framework of the variational approach
to fracture mechanics proposed by Francfort and Marigo (1998). This approach, now well established, extends the energetic
theory of Griffith by treating the crack geometry as a genuine unknown. It is based on the minimization of the sum of the
elastic energy and the crack energy among all admissible crack states. The associated numerical solution strategy proposed
by Bourdin et al. (2000) relies on a regularized functional approximating the total Griffith energy in the sense of Gamma-
convergence (Ambrosio, 1990; Braides, 2002). The regularized formulation introduces a smeared representation of the crack
through a smooth scalar field, which may be mechanically interpreted as a damage variable. The corresponding total energy
may be assimilated with that of a non-local gradient damage model in the framework of the general theory developed in
Pham and Marigo (2010a, 2010b). The link between the damage model quantities and those of the Griffith theory have been
extensively studied on a theoretical and numerical view-point in the one-dimensional case (Pham and Marigo, 2013).
Similar numerical methods become nowadays quite popular in the community of applied numerical engineering (Miehe
et al., 2010; Borden et al., 2012).

For the thermal shock problem of Fig. 1, Bourdin et al. (2011) report preliminary numerical results obtained through the
variational approach, focusing on the spacing between cracks as a function of the depth. We use similar numerical
simulations for an illustration of the phenomenology at initiation. The reader is referred to (Bourdin, 2007) for the details
about the numerical implementation. Fig. 2 reports the evolution of a scalar damage field α, affecting the stiffness of the
material and varying between 0 (sound material) and 1 (totally damaged material). Cracks are represented as bands, of finite
width, with localized damage (in red in the figure). If the loading is not large enough, the solution remains elastic and no
damage is observed. For sufficiently severe thermal shocks, a careful numerical computation (Fig. 2) shows the following
main stages:
1.
 Starting at t¼0 and for small times, a strip with diffuse damage propagates inside the body. Damage decreases from a
maximal value at the surface towards zero, being homogeneous in the direction parallel to the surface of the
thermal shock.
2.
 At some critical time tb, the homogeneous solution bifurcates towards a solution including a set of periodically
distributed damaged bands penetrating inside the body.
3.
 The damage field grows until 1 (fully damaged material) in the mid-line of these zones. A set of periodically distributed
cracks of equal length has formed and starts propagating inside the body.
4.
 Some damage bands stop to propagate whereas the other ones continue penetrating inside the body.
This numerical behavior is a typical illustration of the strength of the variational approach to fracture. Indeed, after a
diffuse damaging phase (step 1), it captures crack initiation (steps 2–3), as well as crack propagation (step 4). This paper
focuses on the steps (1)–(2), attempting to analytically justify and quantitatively predict the results of these numerical
experiments in the framework of the variational theory of gradient damage models (Pham and Marigo, 2010a, 2010b).



Fig. 2. Damage variable α for four time steps of the minimization process. The loading is given by the thermal shrinking induced by cooling through the top
surface. In blue, the sound material; in red, the totally damaged material. (a) Onset of a diffuse damage strip, (b) periodic solution, (c) array of fully
developed of cracks and (d) selecting crack arrest. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Table 1
Main nomenclature.

Material and geometric constants
E, ν Young modulus and Poisson ratio (sound material)
a, kc Thermal expansion and thermal diffusivity
sc ;ℓ Critical stress (10) and internal length of the damage model
L Width of the slab (Fig. 3)

Space and time variables
x¼ ðx1 ; x2Þ Space variables in the physical space
t Physical time variable
y¼ x2=2

ffiffiffiffiffiffiffi
kct

p
Rescaled depth variable adapted to the diffusion process

τ¼ 2
ffiffiffiffiffiffiffi
kct

p
=θℓ Rescaled time adapted to the fundamental solution (35)

Thermal loading
ϑ Temperature drop at the surface
fc Complementary error function (Fig. 3)
θ¼ sc=aϑE Thermal shock mildness parameter (34)
ϵtht ðxÞ Thermal strain field (14)
ϵt ðxÞ Total strain field
ϵet ðxÞ ¼ ϵt ðxÞ�ϵtht ðxÞ Elastic strain field (14)

Fundamental branch
αn
t ðxÞ; un

t ðxÞ; rn
t ðxÞ Damage, displacement and stress fields in the physical variables t; x

χ n
t ¼ ðun

t ; α
n
t Þ State fields vector

ατðyÞ; rτðyÞ Damage and stress field in the scaled variables τ; y
Dn

t Damage penetration in the physical variables t;x

δτ ¼Dn

t =2
ffiffiffiffiffiffiffi
kct

p
Damage penetration in the scaled variables τ; y (35)

Bifurcation and stability
ζ¼ x2=D

n

t Rescaled depth variable adapted to the damage penetration (57)
Rn

t ðv; βÞ Rayleigh Ratio (53) studying the positivity of E00
t ðχ n

t Þ
Rb

t Minimum value of the Rayleigh ratio Rn

t ðv; βÞ over C � _D t (54) and of Rκ
τ ðV; βÞ over Rþ �H�H0 (60)

Rs
t Minimum value of the Rayleigh ratio Rn

t ðv; βÞ over C � _D þ
t (55)

tb; ts First time of bifurcation and loss of stability (65)

vb; βb Mode of bifurcation (66) and (67)

k; κ Wave number corresponding to the periodic solution (57) and (58)

ðκb ; V̂
b
; β̂

bÞ Normalized minimizers of Rκ
τb
ðV; βÞ

τb; δτb Rescaled time and damage penetration associated to the first bifurcation time
λb ¼ 2πθδτb τbℓ=κb Wavelength of the first bifurcation solution (68)

Db ¼ 2δτb
ffiffiffiffiffiffiffiffiffi
kctb

p
¼ θδτb τbℓ Damage penetration at the first bifurcation point (69)

P. Sicsic et al. / J. Mech. Phys. Solids 63 (2014) 256–284258
Different from previous works on thermal shocks, where initiation is obtained by introducing initial flows or assuming the
topology of the crack pattern, here we start with a truly sound and uniform material. The aim of this paper is two-fold:
(i) give further insight on the initiation phenomenon in thermal shock fracture, and, more generally, on the morphogenesis
of complex crack patterns; (ii) provide a non-trivial example of the study of the evolution and bifurcation problem of
gradient damage models in a two dimensional settings. We focus on the thermal shock problem for a semi-infinite two-
dimensional slab, in a quasi-static setting. By assuming a perfect conductivity at the surface of the thermal shock, we impose
a Dirichlet boundary condition on the temperature and use the analytically calculated temperature field, function of space
and time, to evaluate the mechanical loading in the form of thermally induced inelastic strains. We consider the same
damage model used in the regularized approach of the numerical simulations of Fig. 2. This model fits into the family of
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models introduced in Pham and Marigo (2010a, 2010b), for which a general analysis of the one-dimensional traction
problem has been reported in Pham et al. (2011) and Pham and Marigo (2013). It is characterized by a scalar damage variable
and a gradient term in the damage for the regularization, which introduces an internal length ℓ. The corresponding quasi-
static evolution problem is formulated in the framework of the variational theory of rate-independent processes, imposing
the three requirements of stability, irreversibility, and energy balance (Propositions 2). The loading is controlled by the
thermal shock mildness parameter θ¼ sc=ðEaϑÞ, where sc is the critical stress of the material, ϑ the temperature drop at the
surface, a the thermal expansion coefficient and E the Young modulus. For mild shocks (θZ1), one trivially obtains that the
solution remains purely elastic and the damage is null at any time. For sufficiently severe shock (θo1), the damage criterion
is reached at the beginning of the evolution. Looking for a solution invariant in the direction x1 parallel to the surface of
thermal shock, we show the existence of a fundamental solution with diffused damage localized in a finite strip (Proposition
3), where the damage field monotonically decreases from a maximum value at the surface to zero at a finite depth Dn

t (as in
Fig. 2(a)). Hence, we formulate the rate problem (Proposition 5) and the second-order stability conditions (Proposition 1)
about this fundamental solution, whose uniqueness and stability are determined through the minimization of a Rayleigh
ratio on linear spaces or convex cones (Proposition 8). The main result of this paper is the solution of this bifurcation and
stability problem (Proposition 10), which is obtained by adopting a partial Fourier decomposition in the direction parallel to
the surface of the slab. We prove the existence of a finite time tb fromwhich a bifurcation from the fundamental branch can
occur, the fundamental branch becoming unstable at a later time ts. Moreover we show that the bifurcated solution is stable
(Proposition 7) and characterized by a finite wavelength λb proportional to the internal length ℓ of the material. This
bifurcated solution represents the onset of the localization phenomena leading to the establishment of the periodic crack
pattern observed in the experiments. Quantitative results are obtained through the numerical solution of a one-dimensional
boundary value problem for the fundamental branch and of a parametric one-dimensional eigenvalue problem for
establishing the key properties of the bifurcated solution as a function of the loading parameter θ and the Poisson ratio.

Specifically the paper is organized as follows. Section 2 formalizes the thermal shock problem in a two dimensional
setting and recalls the formulation of the gradient damage model. Section 3 establishes the fundamental solution in the
elastic and damaged case. The following section is devoted to the bifurcation and loss of stability of this fundamental branch.
In Section 4.1 we formalize the rate problem, then we characterize bifurcation and stability by Rayleigh's ratio minimization
(Section 4.2) and give the main properties of the Rayleigh ratio (Section 4.3). We then characterize the first bifurcation
(Section 4.4). The numerical computation are gathered in Section 5, dealing first with the fundamental solution and then
with the bifurcation problem. The key results are resumed and commented in Section 6. Section 7 draws conclusions and
suggests future extensions.

Nomenclature and notation. A list of the main symbols and notations adopted in the paper is reported in Table 1.
The summation convention on repeated indices is implicitly adopted. The vectors and second order tensors are indicated by
boldface letters, like u and r for the displacement field and the stress field. Their components are denoted by italic letters,
like ui and sij. The fourth order tensors as well as their components are indicated by a boldface letters, like A or Aijkl for the
stiffness tensor. Such tensors are considered as linear maps applying on vectors or second order tensors and the application
is denoted without dots, like Aϵ whose ij-component is Aijklɛkl. The inner product between two vectors or two tensors of the
same order is indicated by a dot, like a � b which stands for aibi or r � ϵ for sijɛij. The symbol � denotes the tensor product
and � s its symmetrized, i.e. 2e1� se2 ¼ e1 � e2þe2 � e1. Ms denotes the space of 2�2 symmetric tensor and I is its
identity tensor. The classical convention is adopted for the orders of magnitude: oðεÞ denotes functions of ε such that
limε-0oðεÞ=ε¼ 0. If Að�Þ represents a quadratic form defined on a Hilbert space, the associated symmetric bilinear form is
denoted by A〈�; �〉, i.e.

4A〈χ ; ξ〉≔AðχþξÞ�Aðχ�ξÞ:

2. Setting of the problem and damage law

2.1. Setting of the gradient damage model

We simply recall here the main steps of the construction of a gradient damage model by a variational approach, the reader
interested by more details should refer to Pham and Marigo (2010a, 2010b). Since the applicationwill concern a very thin body, we
describe the behavior in a plane stress setting corresponding to the membrane theory of plates (without bending). Thus we
consider a homogeneous (two-dimensional) plate made of a damaging isotropic material whose behavior is defined as follows:
1.
 The damage parameter is a scalar which can only grow from 0 to 1, α¼ 0 denoting the undamaged state and α¼ 1 the
completely damaged state.
2.
 The state of the volume element is characterized by the triplet ðϵe;α;gÞ where ϵe, α and g denote respectively the elastic
(in-plane) strain tensor, the damage parameter and the gradient of damage vector (g¼∇α).
3.
 The bulk energy density of the material is the state function W: ðϵe;α;gÞ↦Wðϵe; α;gÞ. Therefore, the material behavior is
non local in the sense that it depends on the gradient of damage. We assume that the bulk energy density is the sum of
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three terms: the stored elastic energy ψðϵe; αÞ, the local part of the dissipated energy by damage wðαÞ and its non local
part 1

2wℓ
2g � g,

Wðϵe; α;gÞ ¼ ψðϵe;αÞþwðαÞþ1
2 wℓ

2g � g; ð1Þ
each of these terms enjoying the following properties:

(a) The elastic energy reads as

ψðϵe; αÞ ¼ 1
2ð1�αÞ2Aϵe � ϵe; ð2Þ

where A is the stiffness tensor of the sound material. Thus, ð1�αÞ2A represents the stiffness tensor of the material in
the damage state α, it decreases from A to 0 when α grows from 0 to 1. The material being isotropic and by virtue of
the plane stress assumption, the in-plane stiffness coefficients read as

Aijkl ¼
νE

1�ν2
δijδklþ

E

2ð1þνÞðδikδjlþδilδjkÞ; i; j; k; lA 1;2f g; ð3Þ

where E represents the Young modulus of the sound material and ν is the Poisson ratio (which does not change
throughout the damage process). The compliance tensor of the sound material will be denoted by S. Hence S¼ A�1

reads as

Sijkl ¼ � ν

E
δijδklþ

1þν

2E
ðδikδjlþδilδjkÞ; i; j; k; lA 1;2f g: ð4Þ

(b) The local dissipated energy density reads as

wðαÞ ¼wα ð5Þ
and hence is a positive increasing function of α, increasing from 0 when α¼ 0 to the finite positive value w when
α¼ 1. Therefore w represents the energy dissipated during a complete, homogeneous damage process of a volume
element: w¼wð1Þ.

(c) The non local dissipated energy density is assumed to be a quadratic function of the gradient of damage. Since the
damage parameter is dimensionless and by virtue of the above definition of w, ℓ has the dimension of a length.
Accordingly, ℓ can be considered as an internal length characteristic of the material while having always in mind that
the definition of ℓ depends on the normalizations associated with the choices of the critical value 1 for α and w for
the multiplicative factor.
The dual quantities associated with the state variables are respectively the stress tensor r, the energy release rate density Y

and the damage flux vector q:

r¼ ∂W
∂ϵe

ðϵe; α;gÞ; Y¼ �∂W
∂α

ðϵe;α;gÞ; q¼ ∂W
∂g

ðϵe; α;gÞ: ð6Þ

Accordingly, these dual quantities are given by the following functions of state:

r¼ ð1�αÞ2Aϵe; Y¼ ð1�αÞAϵe � ϵe�w; q¼wℓ2g: ð7Þ
The underlying local behavior is characterized by the function W0 defined by W0ðϵe; αÞ ¼Wðϵe; α;0Þ. This corresponds to a
strongly brittle material, in the sense of Pham and Marigo (2013, Hypothesis 1) i.e. the material has a softening behavior and
the energy dissipated during a process where the damage parameter grows from 0 to 1 is finite. The latter property is
ensured by the fact that wð1Þoþ1. The former one requires that the elastic domain in the strain spaceRðαÞ is an increasing
function of α while the elastic domain in the stress space RnðαÞ is a decreasing function of α. Those elastic domains are
defined by

RðαÞ ¼ ϵeAMs :
∂W0

∂α
ðϵe; αÞZ0

� �
; RnðαÞ ¼ rAMs :

∂Wn

0

∂α
ðr; αÞr0

� �

where Wn

0ðr; αÞ ¼ supϵAMs
fr � ϵe�W0ðϵe; αÞg and Ms denotes the space of symmetric 2� 2 tensors.

In the present context, one gets

W0ðϵe; αÞ ¼ 1
2ð1�αÞ2Aϵe � ϵeþwα ð8Þ

and hence

Wn

0ðr; αÞ ¼ r � ϵ0þ 1
2ð1�αÞ2

Sr � r�wα: ð9Þ
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Accordingly, the elastic domains RðαÞ and RnðαÞ now read

RðαÞ ¼ ϵeAMs : Aϵe � ϵer
w

1�α

n o
; RnðαÞ ¼ rAMs : Sr � rr ð1�αÞ3w

n o
and one immediately checks that the softening properties are satisfied. The critical stress sc (which represents for this
specific damage model both the yield stress and the peak stress) in a uniaxial tensile test such that r¼ sce1 � e1 is then
given by

sc ¼
ffiffiffiffiffiffiffi
wE

p
: ð10Þ
2.2. The body and its thermal loading

The natural reference configuration of the plate (Fig. 3) is the semi-infinite strip Ω¼ ð0; þLÞ � ð0; þ1Þ. We assume that
the length L is much greater than the internal length ℓ of the material. (This assumption plays a role in the bifurcation and
stability analyses – Section 4.) The body forces are neglected. The sides x1 ¼ 0 or L are submitted to boundary conditions so
that the normal displacement and the shear stress vanish, whereas the side x2 ¼ 0 is free. Accordingly, the mechanical
boundary conditions read as

u1jx1 ¼ 0 or L ¼ 0; s21jx1 ¼ 0 or L ¼ 0; ð11Þ

s22jx2 ¼ 0 ¼ s12jx2 ¼ 0 ¼ 0: ð12Þ

In x1 ¼ 0 or L and x2 ¼ 0 no boundary condition are imposed on the damage field, which can thus freely evolve. Up to time 0,
the plate is at the reference uniform temperature T0 and hence in its reference configuration, stress free and undamaged:

utðxÞ ¼ 0; ϵet ðxÞ ¼ 0; αtðxÞ ¼ 0; rtðxÞ ¼ 0; 8xAΩ; 8tr0:

From time 0, a colder temperature T1 ¼ T0�ϑ is prescribed on the side x2 ¼ 0. Assuming that the temperature field is not
influenced by the damage evolution and that the sides x1 ¼ 0 or L are thermally insulated, the diffusion of the temperature
inside the body is governed by the classical heat equation. Therefore, assuming the temperature boundary condition in
x2 ¼ 0 is of Dirichlet type, the temperature field at time t40 is given by

TtðxÞ ¼ T0�ϑfc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �

; 8 t40; ð13Þ

where fc it the complementary error function (Fig. 3), strictly decreasing from 1 to 0 at infinity, i.e.

fcðxÞ ¼
2ffiffiffi
π

p
Z 1

x
e� s2 ds;

and kc is the thermal diffusivity, a material constant. Thus the temperature field is uniform with respect to the x1 direction.
At every time t, the elastic strain field ϵet is the difference between the total strain field ϵt and the thermal strain field ϵtht .

Since the material is isotropic, assuming that the shrinkage is linear, this latter one reads as ϵtht ðxÞ ¼ aðTtðxÞ�T0ÞI, where a

denotes the thermal dilatation coefficient of the material and I is the identity tensor of Ms. Accordingly, the thermal and
Fig. 3. Thermal shock problem statement. (a) Mechanical and thermal boundary conditions and (b) the complementary error function.
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elastic strain fields read as

ϵtht ðxÞ ¼ �aϑfc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �

I; ϵet ðxÞ ¼ ϵðutÞðxÞþaϑfc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �

I; ð14Þ

where ϵðutÞ is the symmetrized part of the gradient of ut . The loading (14) induces positive shrinkage without positive
stress. This justifies the use of a damage model that does not differentiate the effect of compression and traction.

We will only consider the first stage of the damage process so that α reaches nowhere the critical value 1 corresponding
to the loss of rigidity of the material. Accordingly, the set of admissible damage fields D and the set of kinematically
admissible displacement fields C are defined as

D≔fβAH1ðΩÞ : 0rβo1 in Ωg; C≔fvAH1ðΩÞ2 : v1 ¼ 0 on x1 ¼ 0 or Lg ð15Þ
where H1ðΩÞ denotes the usual Sobolev space of functions which are square integrable over Ω and whose distributional
gradient is also square integrable. The spaces D and C are time independent and are equipped with the natural norm of
H1ðΩÞ. With every pair of admissible displacement and damage fields, i.e. with every ðv; βÞAC �D, one associates the total
energy of the body at time t in this state, that is

Etðv; βÞ≔
Z
Ω
WðϵðvÞ�ϵtht ; β;∇βÞ dx¼

Z
Ω

1
2ð1�βÞ2AðϵðvÞ�ϵtht Þ � ðϵðvÞ�ϵtht Þþwβþwℓ2

2
∇β � ∇β

� �
dx: ð16Þ

where ϵðvÞ denotes the symmetrized gradient of v.
Throughout the paper we use the directional derivatives of Et and its partial derivatives with respect to time. All these

derivatives up to the second order are defined below.
Definition 1 (Derivatives of the total energy).
1.
 First partial derivative with respect to t:
_E tðv; βÞ ¼ �

Z
Ω
ð1�βÞ2AðϵðvÞ�ϵtht Þ � _ϵtht dx; ð17Þ
2.
 Second partial derivative with respect to t:
€E tðv; βÞ ¼

Z
Ω
ðð1�βÞ2A _ϵtht � _ϵtht �ð1�βÞ2AðϵðvÞ�ϵtht Þ � €ϵtht Þ dx; ð18Þ
3.
 First directional derivative of Et at ðu; αÞ in the direction ðv; βÞ:
E0
tðu; αÞðv; βÞ ¼

Z
Ω
ðð1�αÞ2AðϵðuÞ�ϵtht Þ � ϵðvÞþðw�ð1�αÞAðϵðuÞ�ϵtht Þ � ðϵðuÞ�ϵtht ÞÞβþwℓ2∇α �∇βÞ dx; ð19Þ
4.
 Second directional derivative of Et at ðu;αÞ in the direction ðv; βÞ:

E00
t ðu;αÞðv; βÞ ¼

Z
Ω
ðð1�αÞ2AϵðvÞ � ϵðvÞ�4ð1�αÞAðϵðuÞ�ϵtht Þ � ϵðvÞβþAðϵðuÞ�ϵtht Þ � ðϵðuÞ�ϵtht Þβ2þwℓ2∇β �∇βÞ dx; ð20Þ

In (20), E00
t ðu; αÞ is considered as a quadratic form. The associated symmetric bilinear form is still denoted by E00

t ðu; αÞ, but is
discriminated by denoting by E00

t ðu; αÞ〈ðv; βÞ; ðv ; βÞ〉 its application to a pair of directions. Accordingly, one has
E00
t ðu; αÞðv; βÞ ¼ E00

t ðu; αÞ〈ðv; βÞ; ðv; βÞ〉.

5.
 Second order cross term:

_E 0
tðu; αÞðv; βÞ ¼

Z
Ω
ð�ð1�αÞ2A _ϵtht � ϵðvÞþ2ð1�αÞAðϵðuÞ�ϵtht Þ � _ϵtht βÞ dx: ð21Þ

2.3. The damage evolution law

Following the variational approach presented in Pham and Marigo (2010a, 2010b), the evolution of the damage in the
body is governed by the three principles of irreversibility, stability and energy balance. Specifically, in the present context
these conditions read as follows:

Damage law. The damage evolution is governed by the three following conditions:
ðIRÞ
 Irreversibility: t↦αt must be non decreasing and, at each time tZ0, αtAD.

ðSTÞ
 Stability: At each time tZ0, the real state ðut ;αtÞAC �Dmust be stable in the sense that for all vAC and all βAD such that

βZαt , there exists h40 such that for all hA ½0;h�

Etðutþhðv�utÞ; αtþhðβ�αtÞZEtðut ; αtÞ: ð22Þ
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Energy balance: At each time tZ0 the following energy balance must hold
ðEBÞ
Etðut ; αtÞþ
Z t

0

Z
Ω
rs � _ϵths dx ds¼ 0; ð23Þ

where rs and _ϵths denote respectively the stress field and the rate of the thermal strain field at time s.
An evolution t↦ðut ;αtÞ which starts from ð0;0Þ at time 0 and which satisfies the three conditions above will be called a stable
evolution.

To simplify the presentation, we will only consider evolutions smooth both in space and time. It is not really a restrictive
assumption because we are essentially interested by the loss of uniqueness and of stability of the “fundamental branch”
which is smooth as we will see in the next section. Specifically, we make the following smoothness assumption:
Hypothesis 1. We will only consider evolutions such that
1.
 Each component of ut and αt are continuously differentiable in Ω and belong to H2ðΩÞ at every tZ0;

2.
 t↦ut and t↦αt are continuous and piecewise continuous differentiable. The right and the left time derivatives _u7

t and _α7
t

exist at every time, _u7
t belongs to C and _α7

t belongs to Dþ , where
Dþ≔H1ðΩÞ \ fβZ0g:

Note that the concept of stability adopted here is that of directional stability. For a given admissible direction ðv; βÞ, the

inequality (22) must hold for sufficiently small h, this neighborhood depending on the direction. Accordingly, for a given
direction considering small h and expanding the energy of the perturbed state with respect to h up to the second order, the
inequality (22) becomes

0rE0
tðut ; αtÞðv�ut ; β�αtÞþh

2
E00
t ðut ; αtÞðv�ut ; β�αtÞþoðhÞ; ð24Þ

where E0
t and E00

t denote the first and second directional derivatives of Et . By virtue of Definition 1, one gets

E0
tðut ; αtÞðv; βÞ ¼

Z
Ω
ðrt � ϵðvÞ�Ytβþqt �∇βÞ dx; ð25Þ

where rt , Yt and qt denote respectively the stress tensor, the energy release rate density and the damage flux vector at time t
which are given in terms of the current state by the constitutive relations (6).

Passing to the limit when h goes to 0 in (24) and using the fact that C is a linear space, one immediately deduces that the
stability condition (22) is satisfied only if, at each time, the body is at equilibrium and the damage criterion is satisfied.
Specifically, these necessary conditions read asZ

Ω
rt � ϵðvÞ dx¼ 0; 8vAC; ð26Þ

Z
Ω
ð�Ytðβ�αtÞþqt � ∇ðβ�αtÞÞ dxZ0; 8βAD : βZαt : ð27Þ

The two conditions (26) and (27) can be seen as the first order stability conditions. They are necessary but not always
sufficient in order for (22) to hold. More precisely, if the direction β is such that the inequality is strict in (27), then (24) is
satisfied for h small enough and hence the stability is ensured in this direction. However, if the direction β is such that the
inequality is an equality in (27), then (24) requires that the second derivative be non negative in order that the state be
stable with respect to this direction of perturbation (and the stability in this direction is ensured if the second derivative is
positive). We have thus obtained the following.
Proposition 1 (Second order stability conditions).
1.
 When E0
tðut ; αtÞðv�ut ; β�αtÞ40, then ðut ; αtÞ is stable with respect to the direction of perturbation ðv; βÞ;
2.
 When E0
tðut ; αtÞðv�ut ; β�αtÞ ¼ 0, then ðut ; αtÞ is stable with respect to the direction of perturbation ðv; βÞ:

� if E00
t ðut ; αtÞðv�ut ; β�αtÞ40,

� only if E″
t ðut ; αtÞðv�ut ; β�αtÞZ0.
By standard arguments of the calculus of variations and by virtue of Hypothesis 1 of regularity of the fields, one easily

deduces from (26) and (27) that the first order stability conditions are satisfied if and only if the following local conditions hold

div rt ¼ 0 in Ω; rte2 ¼ 0 on x2 ¼ 0; rte1 � e2 ¼ 0 on x1 ¼ 0 or L; ð28Þ
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ð1�αtÞAϵet � ϵet �wþwℓ2Δαtr0 in Ω;
∂αt
∂n

Z0 on ∂Ω: ð29Þ

Thus (28) corresponds to the volume equilibrium equations and the natural boundary conditions whereas (29) corresponds
to the damage yield criterion. Because of the presence of gradient terms in the energy, the criterion in the bulk involves the
second derivatives of the damage field and a natural boundary condition appears involving the normal derivative of the
damage field.

Let us use the energy balance (23). Owing to the smoothness assumption on the time evolution, taking the derivative of
(23) with respect to t leads to

0¼ d
dt

Z
Ω
WðϵðutÞ�ϵtht ; αt ;∇αtÞ dxþ

Z
Ω
rt � _ϵtht dx¼

Z
Ω
ðrt � ϵð _utÞ�Yt _αtþqt �∇ _αtÞ dx

¼ �
Z
Ω
ðdivrt � _utþðYtþdivqtÞ _αtÞdxþ

Z
∂Ω
ðrtn � _utþqt � n _αtÞ ds: ð30Þ

Taking into account the equilibrium and the boundary conditions (28), the terms containing rt vanish in (30). Therefore,
one gets

0¼ �
Z
Ω
ðð1�αtÞAϵet � ϵet �wþwℓ2ΔαtÞ _αt dxþ

Z
∂Ω
wℓ2∂αt

∂n
_αt ds: ð31Þ

By virtue of the irreversibility conditions and the inequalities (29), the equality (31) holds if and only if the following
pointwise equalities hold

ð1�αtÞAϵet � ϵet �wþwℓ2Δαt
� �

_αt ¼ 0 in Ω;
∂αt
∂n

_αt ¼ 0 on ∂Ω: ð32Þ

These equalities can be seen as the local energy balances. They correspond also to what is generally called the consistency
relations in Kuhn–Tucker conditions.

We have thus established the following.

Proposition 2. A smooth stable evolution t↦ðut ; αtÞAC �D must satisfy the following set of local conditions at every time tZ0
(with the convention that at any time when t↦αt is not differentiable, the relations hold both for _α�

t and _αþ
t ):
1.
 The Kuhn–Tucker conditions in the bulk

In Ω :

_αtZ0;
ð1�αtÞAðϵðutÞ�ϵtht Þ � ðϵðutÞ�ϵtht Þ�wþwℓ2Δαtr0;
ðð1�αtÞAðϵðutÞ�ϵtht Þ � ðϵðutÞ�ϵtht Þ�wþwℓ2ΔαtÞ _αt ¼ 0:

8><
>:
2.
 The Kuhn–Tucker conditions on the boundary

On ∂Ω : _αtZ0;
∂αt
∂n

Z0;
∂αt
∂n

_αt ¼ 0:
3.
 The equilibrium equations and the static boundary conditions
div rt ¼ 0 in Ω; rte2 ¼ 0 on x2 ¼ 0; rte1 � e2 ¼ 0 on x1 ¼ 0 or L:
4.
 The stress–strain relation
rt ¼ ð1�αtÞ2AðϵðutÞ�ϵtht Þ in Ω:
These conditions are sufficient in order for the irreversibility condition and the energy balance to be satisfied, but not sufficient to
verify the full stability condition (22). Accordingly, a smooth evolution which satisfies only the four conditions above will be called
a stationary evolution.
3. The fundamental branch

3.1. The elastic response

Let us consider the elastic response of the plate, i.e. the response such that αt ¼ 0 at every t. The stress and strain fields
are then given by

rtðxÞ ¼Eaϑfc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �

e1 � e1; ϵðutÞðxÞ ¼ �ð1þνÞaϑfc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �

e2 � e2; ð33Þ
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fromwhich one easily deduces ut (in particular ut � e1 ¼ 0 and ut � e2 only depends on x2). Since jst11j is maximal on the side
x2 ¼ 0 where it takes the value Eaϑ at every tZ0, the damage criterion (29) is satisfied everywhere in Ω at every time if and
only if aϑrsc=E with sc ¼

ffiffiffiffiffiffiffi
wE

p
given by (10). Specifically, one has
1.
 If Ea2ϑ2rw, then inserting (33) into (19) leads to

E0
tðut ;0Þðv�ut ; βÞ ¼

Z
Ω

w�Ea2ϑ2 fc
x2

2
ffiffiffiffiffiffiffi
kct

p
� �2

 !
β dx; 8t40; 8ðv; βÞAC �D:

Since fcðxÞ decreases from 1 to 0 when x grows from 0 to 1, E0
tðut ; αtÞðv�ut ; βÞZ0 and the equality holds if and only if

β¼ 0 everywhere in Ω. Moreover, by virtue of (20), in such directions the second derivative reads as

E00
t ðut ;0Þðv�ut ;0Þ ¼

Z
Ω
AϵðvÞ � ϵðvÞ dx:

Therefore E″
t ðut ;0Þðv�ut ;0Þ40 for every vAC\f0g and hence the elastic response is stable at every time tZ0 in all

directions by virtue of Proposition 1.

2.
 If Ea2ϑ24w, then at every time t40 there exists a subdomain of Ω where the damage criterion (29) is not satisfied.

Hence, the elastic response is never stable. Damage occurs as soon as t40.

3.2. The fundamental branch

From now on we will only consider the case when aϑE4sc and we introduce the dimensionless loading parameter θ
which characterizes the mildness of the thermal shock

θ¼ sc
aϑE

o1: ð34Þ

If we consider the elastic response, one sees that the damage criterion is violated in the strip 0ox2o2f�1
c ðθÞ ffiffiffiffiffiffiffi

kct
p

which
grows progressively with time. One can suspect that damage occurs in this strip. Moreover, since the loading and the
geometry are invariant with respect to the x1 direction, one can seek first for an evolution which only depends on x2 and t.
Accordingly, we consider a stationary evolution ðun

t ;α
n
t Þ such that αn

t is of the form:

αn

t ðxÞ ¼ ατðyÞ; τ¼ 2
ffiffiffiffiffiffiffi
kct

p

θℓ
; y¼ x2

2
ffiffiffiffiffiffiffi
kct

p ; ð35Þ

where we have introduced new spatial and time variables inspired by the thermal diffusion process. Inserting this form into
(28), it is easy to see that the displacement field is the same as the elastic one and hence

ϵðun

t ÞðxÞ ¼ ϵτðyÞ≔�ð1þνÞaϑfcðyÞe2 � e2: ð36Þ
The stress field is different because of the damage evolution

rn

t ðxÞ ¼ rτðyÞ≔ð1�ατðyÞÞ2EaϑfcðyÞe1 � e1: ð37Þ
It remains to find ατ . Assuming that the support of ατ is the interval ½0; δτÞ where δτ has to be determined, by virtue of (29)
and (32), ατ must satisfy the following differential equation in this interval:

1
τ2
d2ατ

dy2
ðyÞþ fcðyÞ2ð1�ατðyÞÞ ¼ θ2 8yA ð0; δτÞ: ð38Þ

The Kuhn–Tucker condition at x2 ¼ 0 requires that the first derivative of ατ vanishes at y¼0. The continuity of ατ and of its
first derivative at y¼ δτ require that both quantities vanish. Therefore the boundary conditions read

dατ

dy
ð0Þ ¼ 0; ατðδτÞ ¼ 0;

dατ

dy
ðδτÞ ¼ 0: ð39Þ

Moreover, the damage criterion is satisfied for yZδτ if and only if fcðδτÞrθ and hence if and only if

δτZ f�1
c ðθÞ: ð40Þ

The existence and the uniqueness of ατ and δτ as a solution of (38)–(40) is a consequence of the following.

Proposition 3. At each time τ40 the damage field ατ is necessarily the unique minimizer of E τ over fβAH1ð0;1Þ : 0rβr1g,
where

E τðβÞ≔
Z 1

0

1
2τ2

β′ðyÞ2þ1
2fcðyÞ2ð1�βðyÞÞ2þθ2βðyÞ

� �
dy: ð41Þ

Accordingly, the support of ατ is really a finite interval ½0; δτÞ and ðατ; δτÞ satisfy (38)–(40). Moreover ατ is monotonically
decreasing in ½0; δτÞ from ατð0Þo1 to 0.
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Proof. The proof is given in Appendix A.

From the characterization of ατ , it is easy to obtain its asymptotic behavior at small times and at large times. This leads to
the following.

Proposition 4 (Asymptotic behaviors of ατ).
1.
 When τ tends to 0, ðατ=τ2; δτÞ strongly converges in H1ð0;1Þ � R to ðα0; δ0Þ given by

δ0 is the unique positive number such that θ2δ0 ¼
Z δ0

0
fcðyÞ2 dy; ð42Þ

α 00
0ðyÞ ¼ θ2� fcðyÞ2 if yA ½0; δ0Þ

α0ðyÞ ¼ 0 if y4δ0

(
; α0ðδ0Þ ¼ α 0

0ðδ0Þ ¼ 0: ð43Þ
2.
 When τ tends to 1, ðατ; δτÞ strongly converges in L2ð0;1Þ � R to ðα1; δ1Þ given by

δ1 ¼ f�1
c ðθÞ; α1ðyÞ ¼ 1� θ2

fcðyÞ2
if yA ½0; δ1Þ

0 if yZδ1

8><
>: : ð44Þ
Proof. This result is quite natural in view of (38) and (39). It can be rigorously proved by virtue of Proposition 3 and using
classical arguments of functional analysis based on first estimates, weak and strong convergences. The proof is left to the
reader. &

In order that t↦ðun
t ; α

n
t Þ be an admissible evolution (at least a stationary evolution), it remains to verify that t↦αn

t satisfies
the irreversibility condition, i.e. is monotonically increasing. Unfortunately, this property cannot be proved analytically and
will be only checked numerically. Indeed, using the chain rule, _αn

t ðxÞ reads as

_αn

t ðxÞ ¼
dατ

dy
ðyÞ∂y

∂t
þ _ατðyÞ

dτ
dt
:

The first term on the right hand side above is positive because y↦ατðyÞ is monotonically decreasing at given time and y is a
decreasing function of t at given x2. On the other hand, τ↦ατ is not monotonically increasing. Indeed, τ↦δτ is in fact
monotonically decreasing. (In particular one immediately deduces from (42) and (44) that δ04δ1.) Consequently, the second
term on the right hand side above is not always positive and one cannot conclude. (In fact we could prove the monotonicity
of t↦αn

t for values of θ close to 1, but not on the full range ð0;1Þ.) Accordingly, one adopts the following.

Hypothesis 2 (Monotonicity of t↦αn
t ). Throughout the next section we will assume that t↦αn

t is monotonically increasing and
hence that the depth Dn

t≔2δτ
ffiffiffiffiffiffiffi
kct

p
of the damage zone associated with the fundamental branch is an increasing function of time.

Those properties will be checked numerically in Section 5.

4. Bifurcation from and instability of the fundamental branch

In the wake of Nguyen (1994, 2000) we use bifurcation and stability theory, introduced in the case of non local damage
for the selection of solutions in Benallal and Marigo (2007). The response can follow the fundamental branch only as long as
the associated state is stable. But the evolution can bifurcate on another branch before the loss of stability of the
fundamental branch, whenever such a branch exists and is itself stable (at least in a neighborhood of the bifurcation point).
Accordingly, it is important to identify the possible points of bifurcation on the fundamental branch. It is the aim of this
section.
4.1. Setting of the rate problem

Let t40 be a given time and ðun
t ; α

n
t Þ be the associated state of the fundamental branch, given by (35)–(40). Let us study

the evolution problem in the time interval ½t; tþηÞ, with η40 and small enough, assuming that the state of the body is the
fundamental one ðun

t ; α
n
t Þ at time t. Let fðus; αsÞgsA ½t;tþηÞ be a possible solution of the evolution problem during the time

interval ½t; tþηÞ. One assumes that the evolution is sufficiently smooth so that the right derivative exists at t. This derivative
is denoted ð _u; _αÞ and is defined by

_u ¼ lim
h↓0

1
h
ðutþh�un

t Þ; _α ¼ lim
h↓0

1
h
ðαtþh�αn

t Þ; ð45Þ
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these limits being understood in the sense of the natural norm of C �D. Moreover, the construction of the rate problem
giving ð _u; _αÞ needs an additional smoothness assumption relative to the growth of the damage zone. Specifically, one adopts
the following.

Hypothesis 3 (Smooth growth of the damage zone). Let Ωd
s be the damage zone at time sA ½t; tþηÞ in the evolution

fðus;αsÞgsA ½t;tþ ηÞ, i.e.

Ωd
s ¼ fxAΩ : αsðxÞ40g: ð46Þ

Thus Ωd
t ¼ ð0; LÞ � ½0;Dn

t Þ. By virtue of the irreversibility condition and Hypothesis 2, s↦Ωd
s is increasing. One assumes that this

growth is smooth in the sense that there exists C40 such that

Ωd
s \Ω

d
t � ð0; LÞ � ½Dn

t ;D
n

t þCðs�tÞÞ:

Thus, the new damaging points in the time interval (t,s) are included in a strip of width Cðs�tÞ.
Of course, if the evolution follows the fundamental branch, then ð _u; _αÞ ¼ ð _un

t ; _α
n
t Þ and Hypothesis 3 is satisfied because

τ↦δτ is smooth.
Our purpose is to find whether another rate is possible, recalling that one only considers the case θo1. Imposing the

evolution to satisfy the three items ðIRÞ, ðSTÞ and ðEBÞ and Hypothesis 1, one deduces the following variational formulation
for the rate problem.

Proposition 5 (The rate problem). Let t40 be a given time. At this time, the rate ð _u; _αÞ of any branch which is solution of the
evolution problem and follows the fundamental branch up to time t is such that

_χ ¼ ð _u; _αÞAC � _Dþ
t ; 8ξ¼ ðv; βÞAC � _Dþ

t E00
t ðχ n

t Þ〈 _χ ; ξ� _χ 〉þ _E 0
tðχ n

t Þðξ� _χ ÞZ0: ð47Þ

In (47) _Dþ
t is the set of admissible damage rate fields at time t, i.e.

_Dþ
t ¼ fβAH1ðΩÞ : βZ0 in Ωd

t ; β¼ 0 in Ω\Ωd
t g; Ωd

t ¼ ð0; LÞ � ½0;Dn

t Þ:

Proof. The proof is given in Appendix C.

4.2. Characterization of bifurcation and stability by Rayleigh's ratio minimization

The rate _χ n

t ¼ ð _un

t ; _α
n
t Þ is solution of (47). The question is to know whether another solution exists. The uniqueness is

guaranteed when the quadratic form E″
t ðχ n

t Þ is positive definite on the linear space C � _Dt , _Dt denoting the linear space
generated by _Dþ

t , i.e.

_Dt ¼ fβAH1ðΩÞ : β¼ 0 in Ω\Ωd
t g: ð48Þ

Indeed, in such a case, let us consider another solution _χ . Making ξ¼ _χ n

t in (47) we obtain

E00
t ðχ n

t Þ〈 _χ ; _χ n

t � _χ 〉þ _E 0
tðχ n

t Þð _χ n

t � _χ ÞZ0: ð49Þ

Making ξ¼ _χ in the variational inequality satisfied by _χ n
t , we get

E00
t ðχ n

t Þ〈 _χ n

t ; _χ � _χ n

t 〉þ _E 0
tðχ n

t Þð _χ � _χ n

t ÞZ0: ð50Þ

The addition of the two inequalities (49) and (50) leads to E″
t ðχ n

t Þð _χ � _χ n
t Þr0 which is possible only if _χ ¼ _χ n

t when E″
t ðχ n

t Þ is
positive definite.

Let us now consider the question of the stability of ð _un

t ; _α
n
t Þ. By virtue of Proposition 1, this fundamental state is stable

only if E00
t ðχ n

t Þð_ξÞZ0, for all ξAC � _Dþ
t , and if E00

t ðχ n
t Þð_ξÞ40 for all rates _ξa0 in C � _Dþ

t . Accordingly, the stability is governed
by the positivity of E″

t ðχ n
t Þ on C � _Dþ

t .
By virtue of (20), E″

t ðχ n
t Þ can be read as the difference of two definite positive quadratic forms on C � _Dt , i.e.

E00
t ðχ n

t Þ ¼An

t �Bn

t

with

An

t ðv; βÞ ¼
Z
Ω
ðAðð1�αn

t ÞϵðvÞ�2ϵent βÞ � ðð1�αn

t ÞϵðvÞ�2ϵent βÞþwℓ2∇β � ∇βÞ dx; ð51Þ

Bn

t ðβÞ ¼
Z
Ω
3Aϵent � ϵent β2 dx; ϵent ðxÞ ¼ aϑfc

x2
2
ffiffiffiffiffiffiffi
kct

p
� �

ðe1 � e1�νe2 � e2Þ: ð52Þ

where ϵent ðxÞ comes from (14) and (33). Accordingly, we have:
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Proposition 6. The study of the positivity of E00
t is equivalent to compare the following Rayleigh ratio Rn

t with 1:

Rn

t ðv; βÞ ¼
An

t ðv; βÞ
Bn

t ðβÞ
if βa0

þ1 otherwise

8><
>: : ð53Þ

Specifically, the possibility of bifurcation from the fundamental state is given by

Rb
t≔min

C� _D t

Rn

t ;
Rb

t 41 ⟹ no bifurcation

Rb
t r1 ⟹ bifurcation possible

(
ð54Þ

while for the stability of the fundamental state one gets

Rs
t≔min

C� _D þ
t

Rn

t ;
Rs

t41 ⟹ stability

Rs
to1 ⟹ instability

(
ð55Þ

Remark 1. By standard arguments one can prove that both minimization problems admit a solution. Since the dependence
on time of the fundamental state is smooth, so is the dependence on time of the minima Rb

t and Rs
t . Since _Dþ

t � _Dt , one
immediately gets Rb

t rRs
t and hence one can suspect that a bifurcation occurs before the instability. The proof of that result

as well as the determination of the times tb and ts when the bifurcation and the loss of stability occur are the aim of the next
subsections.

The bifurcated branch is only observed if it corresponds to stable states. Thus the following result characterizes the
neighboring states after bifurcation from the stable fundamental branch.

Proposition 7. Let ðun
t ;α

n
t Þ be the state of the fundamental branch at time tots. Let s↦ðus;αsÞ be a stationary evolution (as

defined in Proposition2) in the time interval ½t; tþηÞ which starts from ðun
t ; α

n
t Þ at time t. Then for η sufficiently small, all the states

of this branch satisfy ðSTÞ and are thus stable.

Proof. The proof is given in Appendix B.

4.3. Some properties of Rayleigh's ratio minimizations

Let ξ̂ ¼ ðv̂ ; β̂Þ be a minimizer of Rn

t over C � _Dt . It satisfies the following optimal conditions which involve the symmetric
bilinear forms An

t 〈�; �〉 and Bn

t 〈�; �〉 associated with the quadratic forms An

t ð�Þ and Bn

t ð�Þ:
An

t 〈ξ̂ ; ξ〉¼Rb
t Bn

t 〈β̂ ; β〉; 8ξ¼ ðv; βÞAC � _Dt : ð56Þ
By standard arguments, one deduces the natural boundary conditions ∂β̂=∂x1 ¼ 0 on x1 ¼ 0 or L. Therefore, as it is suggested
by the x1 independence of the fundamental state, one can decompose β̂ into the following Fourier series:

β̂ðxÞ ¼ ∑
kAN

β̂
kðζÞ cos kπ

x1
L

	 

; ζ¼ x2

Dn

t
; ð57Þ

where one introduces the change of coordinate x2↦ζ in order that the support of the functions β̂
k
be the fix interval ½0;1Þ.

Accordingly, the β̂
k
's can be seen as elements of H0,

H0 ¼ fβAH1ð0;1Þ : βð1Þ ¼ 0g:
In the same way, using the boundary conditions v̂1 ¼ 0, ɛ12ðv̂Þ ¼ 0 and hence ∂v̂2=∂x1 ¼ 0 on x1 ¼ 0 or L, v̂ can be
decomposed as follows:

v̂ðxÞ ¼ ∑
kAN

2aϑδτ
ffiffiffiffiffiffiffi
kct

p
V̂

k
1ðζÞ sin kπ

x1
L

	 

e1þ V̂

k
2ðζÞ cos kπ

x1
L

	 

e2

� �
ð58Þ

where the V̂
k
's are normalized to simplify future expressions and belong to H

H¼H1ð0;1Þ2:
Considering only the rates ðv; βÞ in C � _Dt which can be decomposed in the same manner and using the orthogonality

between the trigonometric functions of x1 entering in the expansions of ðv; βÞ, the different modes ðVk; βkÞ are uncoupled
from each other. Specifically An

t and Bn

t can read as

An

t ðv; βÞ ¼ ∑
kAN

Ak
t ðVk; βkÞ Bn

t ðβÞ ¼ ∑
kAN

Bk
t ðβkÞ:

Therefore, if one introduces the Rayleigh ratios Rk
t ðV; βÞ ¼Ak

t ðV; βÞ=Bk
t ðβÞ for kAN, then

Rb
t ¼min

kAN
min
H�H0

Rk
t : ð59Þ
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Indeed, let R̂
k
t be the minimum of Rk

t over H�H0 and let ðV̂ k
t ; β̂

k
t Þ be a minimizer. Let k̂t be a minimizer of k↦R̂

k
t . (All these

minimizers exist.) Then Ak
t ðV; βÞZR̂

k̂ t

t Bk
t ðβÞ for all kAN and all ðV; βÞAH�H0. Therefore, Rb

t ZR̂
k̂ t

t . But since

R̂
k̂ t

t ¼Rn

t ðV̂
k̂t

t ; β̂
k̂ t

t Þ, one gets R̂
k̂ t

t ZRb
t and hence R̂

k̂ t

t ¼Rb
t .

Finally, after a last change of variable (63) and introducing the assumption that the internal length ℓ is small by
comparison with the width of the body L, we are in a position to set the following.

Proposition 8. Assuming that ℓ⪡L, at a given time t40, the minimum of the Rayleigh ratio Rn

t over C � _Dt is given by

Rb
t ¼min

κZ0
min
H�H0

Rκ
τ ; Rκ

τðV; βÞ ¼
Aκ

τ ðV; βÞ
BτðβÞ

if βa0

þ1 otherwise

8><
>: ; ð60Þ

where the dimensionless quadratic forms Aκ
τ and B τ are given by

Aκ
τ ðV; βÞ ¼

Z 1

0

ð1�ατðδτζÞÞ2
1�ν2

κ2V1ðζÞ2þV ′
2ðζÞ2þ2νκV1ðζÞV ′

2ðζÞþ
1�ν

2
ðV ′

1ðζÞþκV2ðζÞÞ2
� �

dζ

þ
Z 1

0
ð�4ð1�ατðδτζÞÞfcðδτζÞκV1ðζÞβðζÞþ4fcðδτζÞ2βðζÞ2Þ dζþ

1
δ2τ τ

2

Z 1

0
ðκ2βðζÞ2þβ′ðζÞ2Þ dζ; ð61Þ

BτðβÞ ¼
Z 1

0
3fcðδτζÞ2βðζÞ2 dζ: ð62Þ

The optimal “wave number” k̂t is related to the optimal dimensionless “wave number” κ̂ τ (minimizer of Rκ
τ) by

k̂t ¼ κ̂ τ
πθδττ

L

ℓ
; τ¼ 2

ffiffiffiffiffiffiffi
kct

p

θℓ
; ð63Þ

and, since ℓ⪡L, the discrete minimization problem over N for k can be replaced by a continuous minimization problem over Rþ

for κ.

Proof. The change of variable ζ¼ x2=D
n

t reduces the support of β to ½0;1Þ. By virtue of (59), it suffices to insert (57) and (58)
into (51)–(53) to obtain after some calculations (60)–(63). &

The next Proposition gives some useful estimates of the Rayleigh ratio minima.

Proposition 9 (Some estimates of Rb
t , minH�H0R

κ
τ and Rs

t).
1.
 There exists C40 such that minH�H0R
κ
τZ

C
τ2
for all τ40 and all κZ0;

κ
2.
 limt-0R
b
t ¼ limτ-0ðminH�H0Rτ Þ ¼ þ1, 8κZ0;
3.
 limt-1Rb
t r limt-1Rs

to1;

4.
 minH�H0R0

τ Z4=3, 8τ40. Moreover, limτ-1minH�H0R0
τ ¼ 4=3.
5.
 For given τ40,

lim
κ-1

min
H�H0

Rκ
τ

κ2
¼ 1
3δ2τ τ2

:

Proof. The proof is given in Appendix D.

4.4. Determination of the first bifurcation

We are now in a position to obtain the major result of this paper.

Proposition 10. There exists a time tb40 such that Rb
t 41; 8totb and Rb

tb
¼ 1. Therefore tb is the first time at which a

bifurcation from the fundamental branch can occur. The fundamental branch is still stable at this time but becomes definitively
unstable at a time ts such that tbotsoþ1.
Moreover, at time tb, the rate problem admits other solutions than the rate ð _un

tb
; _αn

tb
Þ corresponding to the fundamental branch.

Such bifurcation rates ð _u; _αÞ are necessarily of the following form:

ð _u; _αÞ ¼ ð _un

tb
; _αn

tb
Þþcðvb; βbÞ ð64Þ
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where ðvb; βbÞ is a minimizer of Rn

tb
over C � _Dtb while c is an arbitrary (but non-zero) constant whose absolute value is

sufficiently small so that _αn
tb
þcβbZ0. Conversely, if ðvb; βbÞ is a minimizer of Rn

tb
over C � _Dtb , then there exists c40 such that,

for every c with jcjrc, ð _u; _αÞ given by (64) is really solution of the rate problem at tb.
Specifically, the time tb and the mode of bifurcation ðvb; βbÞ are given by

tb ¼
θ2τ2bℓ

2

4kc
; ð65Þ

vbðxÞ ¼ aϑDb V̂
b
1

x2
Db

� �
sin 2π

x1
λb

� �
e1þ V̂

b
2

x2
Db

� �
cos 2π

x1
λb

� �
e2

� �
; ð66Þ

βbðxÞ ¼ β̂
b x2

Db

� �
cos 2π

x1
λb

� �
: ð67Þ

In (65)–(67) the wave number κb and the modes ðV̂b
; β̂

bÞ are (normalized) minimizers of Rκ
τb
ðV; βÞ over all κZ0 and all

ðV; βÞAH�H0 while τb is such that Rκb
τb
ðV̂b

; β̂
bÞ ¼ 1. Since 0oκboþ1, the damage mode of bifurcation is a sinusoid with

respect to x1 whose wavelength λb is finite and given by

λb ¼ 2π
θδτbτb
κb

ℓ: ð68Þ

In (66) and (67), Db represents the depth of the damage zone at time tb, i.e.

Db≔2δτb
ffiffiffiffiffiffiffiffiffi
kctb

p
¼ θδτbτbℓ: ð69Þ

Hence, λb and Db are proportional to the internal length ℓ of the material. The coefficients of proportionality only depend on the
Poisson ratio ν and on the dimensionless parameter θ characterizing the amplitude of the thermal shock.

Proof. The proof is divided into 3 steps:

(i) Definitions of tb and ts. By virtue of Proposition 9 (Properties 2 and 3), Rb
t varies continuously from a value less than 1 to

þ1 when t goes from 0 to þ1. Hence, there exists at least one time s such that Rb
s ¼ 1. Any such time is necessarily non-

zero and finite, i.e. 0osoþ1. Defining tb as the smallest of such times, one gets Rb
t 41 for all totb by virtue of Property 2.

Therefore, by virtue of (54), tb is the first time when a bifurcation can occur.
In the same way, since Rs

tZRb
t and by virtue of the Properties 2 and 3, Rs

t varies continuously from a value less than 1 to
þ1 when t goes from 0 to þ1. Hence there exists at least one time s such that Rs

s ¼ 1. Any such time is necessarily non-
zero and finite, i.e. 0osoþ1. Defining ts as the largest of such times, one gets Rs

to1 for all t4ts by virtue of Property 3.
Therefore, by virtue of (55), the fundamental branch is never stable after ts. Hence, these critical times are such that
0otbrtsoþ1. (The inequality tbots will be proved in the next step.)
(ii) Necessary form of a bifurcation rate. Let us consider the rate problem at time tb and let _χ be a solution. Inserting into

(47) and taking into account that _χ n

tb
itself satisfies (47) at time tb gives An

tb
ð _χ � _χ n

tb
ÞrBn

tb
ð _χ � _χ n

tb
Þ, see (49)– (50). But since

Rs
tb
≔minC� _D tb

Rn

tb
¼ 1, one has also the converse inequality and hence the equality

An

tb
ð _χ � _χ n

tb
Þ ¼ Bn

tb
ð _χ � _χ n

tb
Þ:

Therefore, if _χ a _χ n

tb
, then _χ � _χ n

tb
must be a minimizer of Rn

tb
over C � _Dtb . Therefore, by virtue of the analysis of the previous

subsection and Proposition 8, _χ must take the form given by (64)–(69). Indeed, ðκb; V̂
b
; β̂

bÞ is a minimizer of ðκ;V; βÞ
↦Rκ

τb
ðV; βÞ over Rþ �H�H0 and 1¼Rκb

τb
ðκb; V̂

b
; β̂

bÞ. By virtue of the properties 4 and 5 of Proposition 9, 0oκboþ1 and
hence the wave length λb is non-zero and finite. By using (63) at time tb, one obtains (65) and (68). Since, at a given τ, ατ

depends only on θ, so does δτ . Therefore Rκ
τ depends only on ν and θ. Accordingly, κb and τb depend only on ν and θ.

Since λboþ1, the dependence of βb on x1 is really sinusoidal and hence βb does not belong to _Dþ
tb
. Accordingly ðvb; βbÞ

cannot be a minimizer ofRn

tb
over C � _Dþ

tb
. Therefore Rs

tb
41¼Rb

tb
and hence ts4tb. The fundamental branch is still stable at tb.

(iii) Existence of a bifurcation rate. It remains to prove that non trivial solutions for the rate problem really exist at time tb.

So, let ðκb; V̂
b
; β̂

bÞ be a minimizer of ðκ;V; βÞ↦Rκ
τb
ðV; βÞ over Rþ �H�H0. Since ðκb; cV̂

b
; cβ̂

bÞ is also a minimizer for any ca0

and since β̂
b
a0, one can normalize the minimizer for instance by

R 1
0 β̂

bðζÞ2 dζ¼ 1. Let us consider the rate _χ ¼ _χ n
tb
þcξb with

ξb ¼ ðvb; βbÞ given by (66) and (67) and ca0. Since ξb is a minimizer of Rn

tb
over C � _Dtb and since Rb

tb
¼ 1, ξb satisfies the

variational equality

E00
tb
ðχ n

tb
Þ〈ξb; ξ〉¼ 0; 8ξAC � _Dtb : ð70Þ

Since _χ n
tb
is solution of the rate problem, it satisfies (47) which reads at time tb as

E00
tb
ðχ n

tb
Þ〈 _χ n

tb
; ξ� _χ n

tb
〉þ _E 0

tb
ðχ n

tb
Þðξ� _χ n

tb
ÞZ0; 8ξAC � _Dþ

tb
: ð71Þ
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Using (21), (66) and (67), it turns out that _E 0
tb
ðχ n

tb
ÞðξbÞ ¼ 0. Indeed, by virtue of the independence of ϵtht and αn

t on x1, one gets

_E 0
tb
ðχ n

tb
ÞðξbÞ ¼

Z 1

0

Z L

0
ϕðζÞ cos kbπ

x1
L

	 

dx1 dζ¼ 0: ð72Þ

Therefore, after calculations based on (70)–(72), one obtains 8ξAC � _Dþ
tb
:

E00
tb
ðχ n

tb
Þ〈 _χ ; ξ� _χ 〉þ _E 0

tb
ðχ n

tb
Þðξ� _χ Þ ¼ E00

tb
ðχ n

tb
Þ〈 _χ n

tb
; ξ� _χ n

tb
〉þ _E 0

tb
ðχ n

tb
Þðξ� _χ n

tb
ÞZ0; ð73Þ

and hence _χ satisfies (47) at tb. In order that _χ be a solution of the rate problem, it remains to verify that _αn
tb
þcβbZ0. Since it

is true for sufficiently small jcj (one has to prove that _α′ is non zero and that β′ is finite. This proof is left to the reader), one
has constructed a family of non trivial solutions of the rate problem at time tb. The proof of the Proposition is complete. □
5. Numerical results

This section is devoted to the numerical exploration of the equations of the minimization problem. These results can be
classified in three families: illustration, hypothesis validation and quantification. Some results are illustrated by plotting the
solutions. The validation of hypothesis can be made numerically such as the irreversibility. The main interest is to quantify
the results especially those of Proposition 10 with the wavelength at the first bifurcation. This numerical implementation is
based on two aspects: solving (38) by a shoot method and minimizing (60). Before starting, let us recall that the loading
parameter reads θ¼ sc=ðaϑEÞ, and thus θ-0 correspond to a extremely severe thermal shock and θ-1 to a mild shock.

5.1. The fundamental branch

The fundamental branch is a solution with homogenous damage in the direction parallel to the surface of the thermal
shock. It exists for any positive time t40 and has non-zero damage in a strip within a positive distance Dn

t from the surface.
Using the time and space variables τ and y adapted to the thermal problem (Table 1), the value of the damage field in the
region 0oyoδτ ¼Dn

t =2
ffiffiffiffiffiffiffi
kct

p
is found by solving the second order non-autonomous linear differential equation (38) with the

boundary conditions (39). The existence and uniqueness of the solution of this boundary value problem is guaranteed by
Proposition 4. To solve it, for a given time τ and mildness of thermal shock θ, we apply a shooting method, which, after
solving the initial value problem for ατðδτÞ ¼ α 0

τðδτÞ ¼ 0, searches for the length of the damaged domain δτ such that α 0
τð0Þ ¼ 0.

The corresponding solution for δτ is checked against the asymptotic results for δ0 and δ1 obtained in Proposition 4 (Fig. 4).
For large values of τ, the numerical problem becomes ill-conditioned and differential solver and root finding algorithms
show convergence issues.

Fig. 5 reports the damage field obtained for different times and thermal shock intensities. The left and right columns
show the results in the scaled ðy; τÞ and physical ðx; tÞ coordinates, respectively. This fundamental solution is independent of
the Poisson ratio ν, being characterized by null displacements in the x1-direction. At this stage nothing can be said on the
uniqueness and stability of these fundamental solutions.

The damage is non null for any positive time. For severe thermal shocks (see the plots at the top for θ¼ 0:01 in the
figure), the solution in the physical space is characterized by an almost fully damaged zone close to the boundary, which
propagates inside the domain with increasing time. For mild thermal shock (θ¼ 0:5;0:9) the solution is with smaller space
and time gradients. Note that δτ is decreasing with τ, whilst Dn

t is increasing with t. For any value of θ and τ, the solution is
monotonically decreasing in space, varying from a maximum value αn

t ð0Þ at the boundary to 0 at x¼Dn

t , as proven in
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Fig. 4. Asymptotic result for the scaled depth of the damage strip δτ as a function of the mildness thermal shock θ. The dashed lines are the results for τ-0,
δ0, and for τ-1, δ1 . The continuous lines are the results of the numerical root finding in the shooting method for short (τ¼ 0:1) and long (τ¼ 50) times.



Fig. 5. Fundamental solution in the physical space and in the spatial coordinates defined (35). The loading parameter takes the values θ¼ f:01; :5; :9g (top to
bottom). The list of rescaled times τ¼ f:5;1;10;20;40g are the same for all 3 loading corresponding to different dimensionless physical time

ffiffiffiffiffiffiffi
kct

p
=ℓ.
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Proposition 3. Hence, its behavior as a function of θ and t can be globally resumed by the contour-plots of the damage at the
surface, αn

t ð0Þ, and the length of the damaged domain, Dn

t , see Fig. 6. Both the maximal value of the damage field and the
damage penetration depth increase monotonically with the severity of the thermal shock and the time. The limit value of
the maximal value of the damage field for t; τ-1 is αn

1ð0Þ ¼ 1�θ2o1 (see Proposition 4, Eq. (44)). To check numerically
that the solution αn

t ðx2Þ respects the irreversibility condition for a fixed loading θ, we report in Fig. 7 _αn
t ðx2Þ as a function of x2

and t for θ¼ 0:2. Similar results are found for any other tested value of θ. In particular, for any value of θ, whenever the
numerical ODE solver converges, we get that the minimum value of _αn

t ðx2Þ over t40; x240 is 0. The numerical tests seem to
corroborate the validity of Hypothesis 2 on the irreversibility of the fundamental branch.

5.2. Bifurcation from the fundamental branch: critical times, critical damage penetration and optimal wavelength

The goal of this section is to quantify numerically the first possible bifurcation from the fundamental branch. Starting
from the result of Proposition 8, we solve the problem using the partial Fourier series in the x1-variable and the associated
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Fig. 6. Fundamental solution: damage at the surface αn
t ð0Þ and penetration of the damage Dn

t of the fundamental solution as a function of the thermal shock
mildness (θ) and time. The red dashed line indicates the bifurcation time as a function of θ and separates the parameter space in regions where the
fundamental solution is unique or not. (a) αn

t ð0Þ and (b) Dn

t =ℓ. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)

Fig. 7. Check of the irreversibility condition: total time derivative of the damage field of the fundamental branch αn
t with respect to time, _αn

t , for the loading
θ¼ 0:2.
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wave number κ introduced in Section 4.3, Eqs. (57) and (58). For the x2 direction, we use the dimensionless variables
ζ¼ x2=D

n

t , so that the support of the damaged strip of the fundamental solution is ½0;1Þ for any loading parameter θ. Hence,
we study numerically the sign of the second derivative of the energy E00

t ðχ n
t Þ, which below is referred to as E″

t for brevity, and
look for the critical bifurcation times τb, the critical wave numbers κb and the associated bifurcation modes as a function of
the thermal shock mildness θ.

In the numerical work, the study of the positive definiteness of E″
t is based on the following Proposition.

Proposition 11. Let

fμi; ðVðiÞ; βðiÞÞg1i ¼ 1; μirμiþ1

be the eigenvalues and the eigenvectors of the following quadratic form defined on the finite interval ½0;1�:

~E 00
τðV; βÞ ¼ ~Aκ

τ ðV; βÞþ
κ

1�ν2
CðVð1ÞÞ�BτðβÞ; ðV; βÞAH1ð0;1Þ2 �H0 ð74Þ



P. Sicsic et al. / J. Mech. Phys. Solids 63 (2014) 256–284274
where ~Aκ
τ is the restriction of Aκ

τ on ½0;1� and CðVð1ÞÞ ¼ ðc11=2ÞV1ð1Þ2þc12V1ð1ÞV2ð1Þþðc22=2ÞV2ð1Þ2 is defined by

CðVð1ÞÞ ¼ min
WAHVð1Þ

~~Aκ
τ ðWÞ; HVð1Þ ¼ fWAH1ð0;1Þ2 : Wð0Þ ¼Vð1Þg ð75Þ

with

~~Aκ
τ ðWÞ ¼

Z þ1

0
W1ð~ζÞ2þW ′

2ð~ζÞ2þ2νW1ð~ζÞW ′
2ð ~ζÞþ

1�ν

2
ðW ′

1ð ~ζÞþW2ð~ζÞÞ2Þd ~ζ
�

The study of the positivity of E″
t is equivalent to compare the smallest eigenvalue μ1 with zero and Rb

t 4ðresp:oÞ1 if and only if
μ14 ðresp:o Þ0. The possibility of bifurcation from the fundamental solution is given by

μ140 ⟹ no bifurcation

μ1r0 ⟹ bifurcation possible

(
ð76Þ

Moreover, ðVð1Þ; βð1ÞÞ is the restriction on ½0;1� of the first eigenvector of E″
t .

Proof. Being Aκ
τ and Bτ positive definite and Bτ defined on ½0;1�, the positive definiteness of the quadratic form E00

t is
equivalent to the positive definiteness of

~E 00
τðV; βÞ ¼ min

VAH1ð1;1Þ2
E″
τðV; βÞ:

The expression (74) is obtained by decomposing Aκ
τ in the contributions coming from the integral over ½0;1� and ½1;1�. The

latter contribution is given byZ 1

1

ð1�ατðδτζÞÞ2
1�ν2

κ2V1ðζÞ2þV ′
2ðζÞ2þ2νκV1ðζÞV ′

2ðζÞþ
1�ν

2
ðV ′

1ðζÞþκV2ðζÞÞ2
� �

dζ ð77Þ

which, using the change of variable ζ-1þ ~ζ=κ and that ατ ¼ 0 in ½1;1Þ, may be rewritten as ðκ=ð1�νÞ2Þ ~~Aκ
τ .

The criterion for assessing the positivity of the quadratic form ~E ″
t on the basis of the sign of its smallest eigenvalue is a

classical result of the spectral decomposition theorem for a continuous self-joint linear operator on a real Hilbert space and
is not discussed further here. &

The quadratic form (74) is a reduced version of the second derivative of the potential energy defined on the finite interval
½0;1�, instead of on the semi-infinite space ½0;1Þ. The formulation above is more convenient for the numerical analysis than
the Rayleigh ratio bifurcation criterion of Proposition 6 for two main reasons: (i) the availability of efficient numerical
methods for the calculation of the smallest eigenvalue of a symmetric matrix; (ii) the formulation of the eigenvalue problem
on a finite interval is better suited for the discretization. The effect of the subdomain ½1;1� is accounted for by an equivalent
stiffness localized in ζ¼ 1 (CðVð1Þ), which implies a boundary condition of the Robin type in ζ¼ 1. The coefficients of the
quadratic form C are evaluated by solving the linear differential equations obtained as Euler–Lagrange equations for (75).
An easy analytical solution is possible for the case ν¼ 0, giving

c11 ¼ 2=3 c12 ¼ �1=3 c22 ¼ 2=3:

For νa0 the analytical solution becomes cumbersome and the coefficients must be computed numerically, once for all. The
corresponding results obtained through a finite element solver are reported in Fig. 8. They are obtained on a domain long
enough to obtain a result almost independent of its length (the solutions of (75) are decaying exponentially with ζ). Note
that c11 ¼ c22.
Fig. 8. Dependence of the coefficients c11, c12, c22 defined by (75) with respect to the Poisson ratio ν.
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For the numerical analysis of the sign of (74), we discretize the problem using linear 1d Lagrange finite elements and a
uniform mesh. Hence, for given values of the parameters τ; θ; ν and the wave number κ in the x1-direction, we calculate the
smallest eigenvalue μ1ðτ; κ; θ; νÞ of the matrix corresponding to the discrete version of (74). The numerical code for this
purpose is based on the use of the finite element library FEniCS (Logg et al., 2012) and the eigensolvers provided in SLEPc
(Hernandez et al., 2005).

To find the shortest bifurcation time τb for which μ1 ¼ 0 and the associated wave number κb we proceed with the
following steps:
1.
Fig
valu
Initialization. Set the values of ðν; θÞ.

2.
 Define the critical curve. Given κ, find τðκÞ such that μ1ðτ; κ; θ; νÞ ¼ 0, using a bisection algorithm on τ. This gives the critical

curve in the τ�κ space.

3.
 Find the bifurcation point given by κb ¼ arg minκμ1ðτðκÞ; κ; θ; νÞ and τb ¼ τðκbÞ. To this end we use a numerical minimization

routine using the downhill simplex algorithm (fmin function provided in the optimization toolbox of SciPy (Jones et al.,
2001)).

For step 2 we are not able to show neither existence nor uniqueness of a solution for the critical τ for a given κ. We found
numerically that the μ1ðτ; κ; θ; νÞ is a monotonically decreasing function of τ (Fig. 9), which gives us the convergence of the
bisection algorithm if a solution exists in the selected initial interval. However, for small values of κ a solution may not exist
at all, in agreement with the Property 4 of Proposition 9.

Fig. 10 illustrates the critical curves obtained for ν¼ 0 and different θ. For a given loading θ the critical curve partitions
the space (κ; τ) in the region below the curve, where the fundamental solution is the unique solution of the rate problem,
and in the region above the curve, where other solutions may exist. During the evolution problem, the first time for which
another solution may exist (and indeed it does exist, as stated in Proposition 10), is the minimum point on the critical curve
κ↦τðκÞ. This point is the bifurcation point corresponding to the critical time τb and the wave number κb (see Proposition 10).
Fig. 9. Decreasing of the first eigenvalue μ1 of the quadratic form (74) with respect to τ for θ¼ 0:4, ν¼ 0 for κ¼ f1;2;5;10g.

. 10. Critical curves separating the states ðκτ ; τÞ where the solution of the rate problem is unique and those where bifurcation can occur for different
es of the loading parameter θ.



P. Sicsic et al. / J. Mech. Phys. Solids 63 (2014) 256–284276
The numerical solution provided in Fig. 10 may be checked against the qualitative properties of the Rayleigh ratio proved in
Proposition 9. Namely, we observe that (i) the fundamental solution is unique for τ sufficiently small (Properties 1–2);
Fig. 11. Wave number and rescaled time at the first bifurcation point κb , τb defined by (57) and (63) for a vanishing Poisson ratio ν¼ 0.

Fig. 12. Characterization of damage rate at bifurcation through the eigenvector β̂
b
(67).

Fig. 13. Wavelength λb , time tb and penetration of the damage zone Db at the first possible bifurcation (given by (65), (68)) for a vanishing Poisson ratio
ν¼ 0 as a function of the loading parameter θ.



Fig. 14. Influence of the Poisson ratio on the characteristic of the first bifurcation point as a function of the loading parameter θ¼ :4.
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(ii) the fundamental solution is unique for sufficiently small wave numbers even for very long times (Property 4); and (iii)
for κ-1, τðκÞ is approximately linear in κ (Property 5).

For the case ν¼ 0, the critical time τb and wave number κb at the bifurcation as a function of θ are reported in Fig. 11.
Fig. 12 shows the shape of the damage rate βb as a function of ζ for the eigenvector associated to the eigenvalue μ1 ¼ 0.

The key numerical results of this paper are condensed in Fig. 13. It shows as a function of θ (and ν¼ 0) the plots of the
critical bifurcation time tb, wave length λb ¼ 2πðθδτbτb=κbÞℓ and penetration of the damage Db in the physical space and time
variables, x2 and t. The critical time at the bifurcation is reported also as dashed lines in Fig. 6, which partitions the θ�t
space in the regions where the fundamental solution is unique or not.

Fig. 14 shows the influence of the Poisson ratio on the results for a fixed value of θ, showing that the critical wavelength,
time and damage depth have a relevant dependence on the Poisson ratio only for ν close to �1. Recall that in plane stress
elasticity thermodynamically admissible values of the Poisson ratio are in the interval ð�1;1Þ.
6. Comments

6.1. Main results

The analysis of gradient damage models of the previous sections quantitatively predicts the establishment of a
fundamental solution with diffuse damage and its bifurcation at a finite time tb towards a periodic solution. We resume
and comment below the main results, coming from our analytical and numerical approaches on a semi-infinite slab.
�
 Loading parameter. The solution of the problem depends on a single dimensionless parameter, the mildness of the
thermal shock θ¼ sc=aEϑ, defined as the ratio between the critical stress of the material and the thermal stresses
induced by the temperature drop ϑ at the surface, and the Poisson ratio ν. The dependence on the internal length of the
damage model ℓ is almost trivial and given explicitly (see below).
�
 Existence of a critical severity of the thermal shock. For mild shocks with θZ1 the solution remains purely elastic at any
time and there is not damage at all.
�
 Fundamental solution. If θo1 there exists, for any t40 a solution with diffused damage in a strip, varying monotonically
from a maximum damage value αn

t ð0Þ at the surface to zero at a depth Dn

t . The values of αn
t ð0Þ and Dn

t as a function of time
and themildness of the thermal shock can be read in Fig. 6, where the dashed red line critical time tb for the first bifurcation
toward the periodic solution. This fundamental solution becomes unstable at a finite time ts4tb (Proposition 10).
�
 Bifurcated solution. At a finite time tb there exists a bifurcation from the fundamental solution toward a periodic solution
with a wavelength λb in the x1 variable. This bifurcated branch is stable for t sufficiently close to tb (Proposition 7).
�
 Bifurcation time. The bifurcation time tb is monotonically increasing with the mildness of the thermal shock. The
numerical results of Fig. 13 for ν¼ 0 indicate that it varies from very small values for θ-0 to very large values for θ-1.
Proposition 10 states that tb is always a strictly positive time.
�
 Bifurcation wavelength. The wavelength of the bifurcated solution is increasing with the mildness of the thermal shock θ.
The numerical results of Fig. 13 for ν¼ 0 indicate that it goes to zero for θ-0þ . For θ-1, it has a finite limit which is of
about eight times the internal length (numerical result for θ¼ 0:96Þ.
�
 Damage penetration. The damage penetration at the bifurcation, Db, is almost independent of the loading (it varies only
between ℓ and 1:5ℓ), as evident also from Fig. 6(b), where the dashed line corresponding to the bifurcation almost
coincides with an iso-depth line. Unlike the bifurcation time and wavelength the penetration is non-monotonic with
respect to the loading parameter θ. The penetration of the damage band seems to be the parameter triggering the
bifurcation and not the maximal value of damage or time which vary with the loading.
�
 Influence of the internal length. The damage penetration in the homogeneous solution Dt and the wavelength λb of the
bifurcated solution are simply proportional to the internal length ℓ of the damage model. This fact does not really come



Table 2
Relevant material parameters and corresponding dimensionless thermal shock mildness parameter θ for ceramics, geomaterials and concrete. The values
are purely orientative, giving an indication only of the order of magnitude of the material parameters. The internal length is calculated through Eq. (78) by
using the data available for the critical stress sc and the fracture toughness Gc .

Material E [GPa] sc [MPa] ℓ að�10�6Þ [K�1] ϑ θ

Ceramics 370 270 50 μm 8.4 300–600 1C 0.15–0.3
Gas storage caverns 20 1 0.5–2 m 40 30–60 1C 0.02–0.04
Drying of concrete 40 2–3 30–100 mm 5–15 40–80 l/m3 0.05–0.25
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as surprise, because ℓ is the only characteristic length of the problem for a semi-infinite slab (the characteristic length of
the diffusion process associated to the material constant kc can be eliminated by a trivial rescaling of the time variable).
The bifurcation time tb is proportional to ℓ2.
�
 Influence of the Poisson ratio. The fundamental solution is independent of the Poisson ratio. The numerical results of
Fig. 14 show a weak dependence of the key properties of the bifurcated solution of the Poisson ratio ν, except for ν-�1.
6.2. From diffuse damage to periodic cracks

The bifurcation toward a periodic solution is the onset of the localization process leading to the formation of periodic
crack patterns. The fundamental solution and its bifurcation correspond to steps 1 and 2 observed in the numerical
simulations described in the Introduction (see Fig. 2). Although the study of the rest of the evolution is outside the scope of
the present paper, the numerical experiments show that the oscillations in the damage field further develop by localizing in
completely damaged bands. These bands are the regularized representation, typical of gradient damage models, of the
periodic array of parallel cracks observed in the experiments. From previous studies in 1d setting (Pham and Marigo, 2013),
we know the damage profile in a cross section of each fully developed localization band. In particular, their width Lc and
energy dissipated per unit line Gc (corresponding to the fracture toughness of the cracks) are given by

Lc ¼ 2
ffiffiffi
2

p
ℓ; Gc ¼

4
ffiffiffi
2

p

3
s2cℓ
E

: ð78Þ

Most probably, the wavelength λb found by the bifurcation analysis is a lower bound on the minimal spacing of the crack at
the initiation. Indeed, if the bifurcation is the first step of the localization process into cracks, we have no guarantee that a
crack will develop in each period.

The damage model has been introduced using the Young modulus E, the critical stress in a uniaxial tensile test sc and the
internal length ℓ as material parameters (see Eqs. (1) and (10)). Instead of the couple ðsc;ℓÞ, one can equivalently adopt as
independent material constants of the damage model ðGc;scÞ or ðGc;ℓÞ and use (78) for the conversions.
6.3. Domain of applications

In the present paper we made explicit reference to the geometry and loading of the experimental setups for thermal
shock on glass or ceramics of Shao et al. (2010, 2011), Bahr et al. (2010) and Jiang et al. (2012), where thin specimens of the
typical size 50� 10� 1 mm are heated (300 1C–600 1C) before being dipped into a water bath (20 1C). Thermal shock cracks
may appear also in cementitious materials during the exothermic hydration process, where for massive structures the
associated temperature drop may reach 40 1C. Cracking of the rocks at the wall of gas storage caverns is another example,
which is an unwanted consequence of the aggressive operational modes introduced to answer new market regulations. Salt
caverns, being initially designed for seasonal storage, i.e. a small number of yearly pressure cycles and moderate gas-
production rates, are often converted to high-frequency cycling. The rapid release of the gas on a short period of time
implies a drop in temperature and a thermal shock for the rocks at the walls of the cavern, where cracks may appear (Berest
et al., 2012). The results for thermal loading may be extended by analogy to all the other phenomena governed by a diffusion
process which induces a linear shrinkage. The analogy with drying process of cementitious (Colina and Acker, 2000) or
geological (Morris et al., 1992; Chertkov, 2002; Goehring et al., 2009) materials is of particular interest. In this case the
temperature field is replaced by the water content or the relative humidity of the material and the thermal shock by a
sudden change of the humidity of the environment.

In Table 2 we report examples for the relevant material constants for these different situations, giving the corresponding
values of the dimensionless parameter appearing in our analysis. The typical order of magnitude of the mildness of the
thermal shock θ lies in the range from 0.1 to 0.5. Close settings such as damage induced by solid–solid transformation
(Penmecha and Bhattacharya, 2013) are interesting perspectives which could be addressed in the same framework.
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7. Conclusion and perspectives

We have studied the initiation of a periodic solution in a gradient damage model under a thermal shock loading. The
quasi-static evolution problem for a semi-infinite slab has been formulated in the framework of the variational theory of
rate-independent processes. From the first order stability conditions and energy balance, we have proven that, for
sufficiently severe thermal shocks, damage initiates at t¼0 with non-zero damage diffused in a strip parallel to the surface
of the shock. The analysis of the rate problem about this fundamental solution shows the existence of a bifurcation at a finite
time tb towards a stable solution with periodic damage. The fundamental solution becomes unstable at a later time ts4tb.
The bifurcation and stability analysis is based on the study of the sign of the second derivative of the energy in an infinite
dimensional setting. The analytical results are obtained by the minimization of a Rayleigh ratio and the decomposition of
the solution with a partial Fourier series. Further quantitative results about the time, damage penetration and wavelength at
the bifurcation are obtained numerically by solving a one-dimensional eigenvalue problem.

Our work relies on many simplifying hypotheses, which allow us to reach an almost complete analytical treatment of the
initiation problem. First, the geometry and the loading are highly idealized. More realistic settings will include the effect of
the finite dimension of the slab and a full two-dimensional solution of the thermal problem, eventually accounting for
boundary condition of the Robin type on the temperature (Newtonian cooling) and the localized changes in the thermal
conductivity due to cracks. The heat boundary condition leads to a maximal value of the stress at the surface at t¼0.
Boundary conditions on the heat flux could lead to a damage criteria which is not violated at t¼0 but would be at a latter
time. Three dimensional effects may play a crucial role as soon as the thickness of the slab increases. Further generalization
should consider the effect of choice of the damage law, as done in a 1d setting by Pham and Marigo (2013). Here we made a
specific choice (see Eqs. (2) and (5)), which assures the existence of a purely elastic response and an easy numerical
treatment. An other choice in (5) (e.g. wðαÞ ¼wα2 as in Bourdin et al. (2000) with vanishing stress threshold) would lead to
damage nucleation for any loading however small ϑ. We expect that the fundamental mechanism of the creation of the
periodic crack pattern as a bifurcation from an x1-homogenous solution will still apply to a large class softening damage
models as those of Pham and Marigo (2013), obviously the numerical results would be different.

The present work is a first attempt to rigorously study the morphogenesis of complex crack patterns in regularized
fracture mechanics models. The study of the further localization of the bifurcated solution with periodic damage and of the
selective crack propagation typical of the thermal shock problem will be the subject of a further work, currently under
preparation. The next step is to compare the semi-analytical results of this paper to the full scale two-dimensional
numerical simulations of Fig. 2. The comparison with the experimental results is a further ambitious goal. A key problem is
that the distinction between homogeneous damage and periodic fracture is somehow arbitrary, both theoretically and
experimentally.
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Appendix A. Proof of Proposition 3
Proof. The proof is divided into 8 steps. Throughout the proof τ is a given positive number, D1
0≔fβAH1ð0;1Þ : 0rβr1g and

D0≔fβAH1ð0;1Þ : 0rβg.
(i) Existence and uniqueness of the minimizer. Since E τ is positive and lower semi-continuous and since D1

0 is closed in
H1ð0;1Þ, a minimizer exists. Since E τ is strictly convex, the minimizer is unique and is denoted by ατ .
(ii) ατ is also the unique minimizer of E τ over D0. By the same arguments as for the minimization over D1

0, the minimizer
exists and is unique, say α̂τ . Let us set �ατ ¼minfα̂τ;1gAD1

0 �D0. One easily checks that E τð �ατÞrE τðα̂τÞ. Therefore α̂τ ¼ �ατAD1
0

and hence α̂τ ¼ ατ .
(iii) 0 is not the minimizer. Since θo1¼ fcð0Þ, there exists h40 such that θo fcðyÞ in ½0;h�. Since

E 0
τð0ÞðβÞ ¼

Z 1

0
ðθ2� fcðyÞ2ÞβðyÞ dy;

if one chooses βAD0 with its support included in ½0;h�, then E 0
τð0ÞðβÞo0 and hence 0 cannot be the minimizer. The (open)

support of ατ is denoted by Iτ , i.e. Iτ ¼ fyZ0 : ατðyÞ40g.
(iv) ατ is indefinitely continuously differentiable in Iτ and satisfies

1
τ2
α″
τðyÞþ fcðyÞ2ð1�ατðyÞÞ ¼ θ2 8yA Iτ: ðA:1Þ

Since ατ minimizes E τ over D0, by standard arguments one gets that it satisfiesZ 1

0

1
τ2
α ′
τðyÞβ′ðyÞþðθ2� fcðyÞ2ð1�ατðyÞÞÞβðyÞ

� �
dyZ0; 8βAD0; ðA:2Þ
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and the equality holds when β¼ ατ . Let φAC1
0 ðIτÞ (where C1

0 ðIτÞ is the set of indefinitely differentiable functions with
compact support in Iτ). For h small enough, β≔ατþhφAD0 and one gets from (A.2)Z

Iτ

1
τ2
α 0
τðyÞφ′ðyÞþðθ2� fcðyÞ2ð1�ατðyÞÞÞφðyÞ

� �
dyZ0:

Changing φ in �φ gives the opposite sign and the equality for every φAC1
0 ðIτÞ. Therefore ατ satisfies (A.1) in Iτ . Since ατ is

continuous and since fc is indefinitely continuously differentiable, one deduces by induction that ατ is also indefinitely
continuously differentiable in Iτ .
(v) The support Iτ is an interval of the form ½0; δτÞ with 0oδτr1. Let us prove by contradiction that there does not exist a

connected component (a,b) of Iτ such that 0oaobr1. If such a component exists, then ατðaÞ ¼ ατðbÞ ¼ 0 (even if b¼1
because ατ must tend to 0 at infinity in order to belong to H1ð0;1Þ). Let us prove that α 0

τðaÞ ¼ 0 by using (A.2). For h40 and
small enough, let us consider the family of test functions βh defined by βhðyÞ ¼ 1�jy�aj=h when jy�ajrh and βhðyÞ ¼ 0
otherwise. Then (A.2) gives

0rατða�hÞ
h

þατðaþhÞ
h

rτ2
Z aþh

a�h
ðθ2� fcðyÞ2ð1�ατðyÞÞÞβhðyÞ dy:

Passing to the limit when h goes to 0 gives α 0
τða�Þ¼ α 0

τðaþÞ and hence ατ is differentiable at a. But since ατZ0 and ατðaÞ ¼ 0,
this is possible if and only if α 0

τðaÞ ¼ 0. Therefore α 00
τðaþÞ must be non negative so that ατ be positive in a neighborhood of a.

Since α 00
τðaþÞ¼ τ2ðθ2� fcðaÞ2Þ by (A.1), since fc is decreasing and since 0oατr1 in (a,b), one gets

α00τðyÞ ¼ τ2ðθ2� fcðyÞ2ð1�ατðyÞÞ4τ2ðθ2� fcðaÞ2ÞZ0; 8yA Iτ:

Consequently α ′
τ is increasing and hence positive in Iτ . Hence ατ must be increasing in Iτ which is incompatible with

ατðbÞ ¼ 0. This is the contradiction and therefore a¼0. Consequently, there exists a unique connected component and Iτ is an
interval of the form ½0; δτÞ.
(vi) ατ satisfies the boundary conditions α ′

τð0Þ ¼ ατðδτÞ ¼ α 0
τðδτÞ ¼ 0 and δτ is finite. Taking β¼ ατ in (A.2) which is then an

equality, integrating by parts the first term in the integral and using (A.1) give α 0
τð0Þατð0Þ ¼ 0. Since ατð0Þ40, one

obtains α 0
τð0Þ ¼ 0. If δτ ¼1, then the boundary conditions at δτ are a consequence of ατ belongs to H1ð0;1Þ and is

indefinitely continuously differentiable. If δτo1, integrating by parts the first term in the integral of (A.2) and using (A.1)
leads to

α 0
τðδτ�ÞβðδτÞþτ2

Z 1

δτ

ðθ2� fcðyÞ2ÞβðyÞ dyZ0; 8βAD0:

This is possible if and only if α 0
τðδτ�ÞZ0 and θZ fcðyÞ for all yZδτ . But since ατðδτÞ ¼ 0 and ατZ0, one also has α 0

τðδτ�Þr0.
Hence α 0

τðδτ�Þ¼ 0 and since α 0
τðδτþÞ¼ 0 one finally has α 0

τðδτÞ ¼ 0.
From the inequality θZ fcðyÞ for all yZδτ one deduces that δτZ f�1

c ðθÞ. Integrating (A.1) over Iτ gives

θ2δτ ¼
Z δτ

0
fcðyÞ2ð1�ατðyÞÞ dyr

Z 1

0
fcðyÞ2 dyo1

and hence δτ is finite.
(vii) ατðyÞ is monotonically decreasing from ατð0Þo1 to 0 when y goes from 0 to δτ . If ατð0Þ ¼ 1, then we should have

both α ′
τð0Þ ¼ 0 and α″

τð0Þ ¼ θ240. Hence ατðyÞ should be greater than 1 for small positive y which is impossible. So, ατð0Þo1.
Let us show that there does not exist a point y where α 0

τðyÞ40, by contradiction. If such a point exists, then by
continuity there should exist a connected component (a,b) where α 0

τ40. Since α 0
τð0Þ ¼ α 0

τðδτÞ ¼ 0, one should have
α 0
τðaÞ ¼ α 0

τðbÞ ¼ 0. Consequently α 00
τðaÞZ0. But, by (A.1), α 00

τ should be increasing in (a,b) (because fc and 1�ατ are de-
creasing). Therefore α 00

τ should be positive and hence α 0
τ should be increasing in (a,b). That is impossible, hence α 0

τr0
everywhere.
There exists a unique pairðατ; δτÞ in D0 � ð0; þ1Þ which satisfies (38)–(40). Let us first remark that (40) with ατ ¼ 0 in ðδτ;1Þ

implies that

1
τ2
α 00
τðyÞþ fcðyÞ2ð1�ατðyÞÞrθ2 8yAðδτ ;1Þ: ðA:3Þ

Multiplying ((38) and A.3) by βAD0, integrating over ð0; δτÞ [ ðδτ ;1Þ, integrating by parts and using (39) leads to (A.2).
Moreover the equality holds when β¼ ατ . Therefore ατAD0 is such that E ′

τðατÞðβ�ατÞZ0 for all βAD0 which is a
characterization of the unique minimizer of E τ over D0. □

Appendix B. Proof of Proposition 7
Proof. J � J denotes indiscriminately the natural norm on H1ðΩÞ and H1ðΩÞ2. Let sAðt; tþηÞ, ðv; βÞAC � _Dþ
s ; ðv; βÞa ð0;0Þ and

let h be a small positive real number. Expanding with respect to h up to the second order gives

Etðusþhv; αsþhβÞ ¼ Esðus;αsÞþE0
sðus; αsÞðv; βÞþ

1
2
E00
sðus;αsÞðv; βÞþ ʅðhÞ
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Since the evolution is stationary we have E0
tðus; αsÞðv; βÞZ0. Thus it is sufficient to prove E00

t ðus; αsÞðv; βÞ40 for proving the
stability of ðus; αsÞ in the direction ðv; βÞ. By continuity the quadratic form E00

t ðus; αsÞ converges to the quadratic form E00
t ðut ; αtÞ

when s tends to t and

8ðv; βÞAC � H1ðΩÞ jðE00
sðus; αsÞ�E00

t ðun

t ; α
n

t ÞÞðv; βÞjrOðs�tÞð‖v‖2þ‖β‖2Þ
where Oð�Þ is bounded on ½0; ηÞ and limς-0OðςÞ ¼ 0. Therefore it is sufficient to prove that there exist Ct such that

8ðv; βÞAC � _Dþ
t E00

t ðun

t ; α
n

t Þðv; βÞZCtð‖v‖2þ‖β‖2Þ ðB:1Þ
Indeed, in such a case for η sufficiently small we will have for all sAðt; tþηÞ

E00
sðus; αsÞðv; βÞZðCt�Oðs�tÞÞð‖v‖2þ‖β‖2Þ40

Since tots the state ðun
t ; α

n
t Þ is stable and Rs

t ¼minC� _D þ
t
Rn

t 41. By definition of see (53) we have

8ðv; βÞAC � _Dþ
t E00

t ðun

t ;α
n

t Þðv; βÞZ 1� 1
Rs

t

� �
An

t ðv; βÞZ0

with the equality to 0 if and only if ðv; βÞ ¼ ð0;0Þ. Thus we obtain (B.1). &

Appendix C. Proof of Proposition 5
Proof. The three items ðIRÞ, ðSTÞ and ðEBÞ give the following necessary conditions for ð _u; _αÞ:
1.
3.
By ðIRÞ, we get _αZ0 and hence ð _u; _αÞAC �Dþ .

2.
 The stability condition ðSTÞ implies the first order stability conditions which at time tþh read as

8ðv; βÞAC �Dþ ; E0
tþhðutþh; αtþhÞðv; βÞZ0: ðC:1Þ

Let us discriminate between two types of direction:

(a) For the directions ðv; βÞ such that E00
t ðun

t ; α
n
t Þðv; βÞ40, by continuity the inequality (C.1) holds for h small enough and

hence ðSTÞ is satisfied.
(b) Considering the directions ðv; βÞ such that E0

tðun
t ; α

n
t Þðv; βÞ ¼ 0. By virtue of (26) and (27) they correspond to the

directions such that β¼ 0 in the undamaged domain at time t Ωe
t ¼Ω\Ωd

t . Dividing the inequality (C.1) by h and
passing to the limit when h goes to 0 give the following inequality that the ð _u; _αÞ rate must satisfy

8ðv; βÞAC �Dþ E00
t ðun

t ; α
n

t Þ〈ð _u; _αÞ; ðv; βÞ〉þ _E 0
tðun

t ; α
n

t Þðv; βÞZ0: ðC:2Þ
In (C.2), E00

t ðun
t ;α

n
t Þ represents the symmetric bilinear form associated with the quadratic form defined in (20), while

_E 0
tðun

t ; α
n
t Þ is the linear form given by (21).
We deduce from the Kuhn–Tucker conditions in the bulk at time t, see Proposition 2, that _α ¼ 0 in Ωe
t . The energy

balance ðEBÞ reads at time tþh

0¼ Etþhðχ tþhÞ�Etðχ n

t Þþ
Z tþh

t

Z
Ω
rs � _ϵths dx ds

¼ Etþhðχ tþhÞ�Etþhðχ n

t ÞþEtþhðχ n

t Þ�Etðχ n

t Þþ
Z tþh

t

Z
Ω
rs � _ϵths dx ds ðC:3Þ

where rs ¼ ð1�αsÞ2AðϵðusÞ�ϵths Þ, χ tþh ¼ ðutþh; αtþhÞ and χ n
t ¼ ðun

t ; α
n
t Þ. A first expansion of (C.3) gives

0¼ E0
tþhðχ n

t Þðχ tþh�χ n

t Þþ
1
2
E″
tþhðχ n

t Þðχ tþh�χ n

t ÞþEtþhðχ n

t Þ�Etðχ n

t Þþ
Z tþh

t

Z
Ω
rs � _ϵths dx dsþoð‖χ tþh�χ n

t ‖
2Þ ðC:4Þ

where E00
t ðχ n

t Þ is the quadratic form defined in (20), J � J denotes the natural norm on C �D. A second expansion leads to

0¼ E0
tðχ n

t Þðχ tþh�χ n

t Þþh2 _E ′
tðχ n

t Þð _χ Þþ
h2

2
E″
t ðχ n

t Þð _χ Þþh _E tðχ n

t Þþ
h2

2
€E tðχ n

t Þþh
Z
Ω
rn

t � _ϵtht dx

þh2

2

Z
Ω
ðrn

t � €ϵtht þ _rn

t � _ϵtht Þ dxþoðh2Þ ðC:5Þ

where _χ ¼ ð _u; _αÞ and _r is the right derivative of t↦rt at t. Let us examine the different terms of (C.5):

(a) Using (6), (25), (26), (35)–(39), one gets

E0
tðχ n

t Þðχ tþh�χ n

t Þ ¼
Z
Ωd

tþ h\Ω
d
t

w�Ea2ϑ2 f2c
x2

2
ffiffiffiffiffiffiffi
kct

p
� �� �

αtþhðxÞ dx:
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By virtue of Hypotheses 1 and 3, αtþh is continuously differentiable and vanishes outside Ωd
t . Therefore

maxΩd
tþ h\Ω

d
t
jαtþhj ¼ oðhÞ since Ωd

tþh\Ω
d
t is included in a strip of width Ch. Hence E0

tðχ n
t Þðχ tþh�χ n

t Þ ¼ oðh2Þ (in the case
of the fundamental branch, this term is of the order of h3).

(b) By virtue of (17), _E tðχ n
t Þ ¼ �RΩrn

t � _ϵtht dx.
(c) By virtue of (18), €E tðχ n

t Þ ¼
R
Ωðð1�αn

t Þ2A _ϵtht � _ϵtht �rn
t � €ϵtht Þ dx.
Using all these calculations, dividing (C.5) by h2 and passing to the limit when h goes to 0, one finally obtains

E00
t ðχ n

t Þð _χ Þþ _E 0
tðχ n

t Þð _χ Þ ¼ 0: ðC:6Þ
where by virtue of (21), _E 0

tðχ n
t Þð _χ Þ ¼ �RΩð _r � _ϵtht þð1�αn

t Þ2A _ϵtht � _ϵtht Þ dx.
Eq. (47) is a direct consequence of (C.2) and (C.6). &

Appendix D. Proof of Proposition 9
Proof. Throughout the proof we use the notations of Section 4.3.
1.
 By virtue of the positivity of the sum of the first two terms on the right hand side of (61) and since fcr1 everywhere, one
gets

Rκ
τ ðV; βÞZ

1
3δ2τ τ2

R 1
0 β′2 dζR 1
0 β2 dζ

; 8VAH; 8βAH0\ 0f g

and hence

min
H�H0

Rκ
τZ

1
3δ2τ τ2

min
βAH0\f0g

R 1
0 β02 dζR 1
0 β2 dζ

¼ π2

12δ2τ τ2
:

Since, by Proposition 4, δτ varies continuously from δ0 to δ1, maxτδτo1 and the result follows.

2.
 It is a direct consequence of the previous estimate, of the definition (63) of τ and of the definition (60) of Rb

t .

3.
 Let us consider the following pair ðv; βÞ in C � _Dþ

t :

βðxÞ ¼ �βðζÞ 1þ cos ðkπx1
L
Þ

	 

; vðxÞ ¼ 2aϑδτ

ffiffiffiffiffiffiffi
kct

p
�V ðζÞ sin ðkπx1

L
Þe1;

where �βAH0 \ fβZ0g, �V AH1ð0;1Þ and kANn. Inserting into (53) and using (61) and (62) give

Rs
trRn

t ðv; βÞ ¼
2A0

τ ð0; �βÞþAκ
τ ð �Ve1; �βÞ

3Bτð �βÞ
:

After some calculations, one gets 3Bτð �βÞ ¼ 9
R 1
0 fcðδτζÞ2 �βðζÞ2 dζ and

2A0
τ ð0; �βÞþAκ

τð �Ve1; �βÞ ¼
Z 1

0
ð1�ατðδτζÞÞ2 κ2 �V ðζÞ2

1�ν2
þ

�V ′ðζÞ2
2ð1þνÞ

 !
dζ

þ
Z 1

0
ð�4ð1�ατðδτζÞÞfcðδτζÞκ �V ðζÞ �βðζÞþ12fcðδτζÞ2 �βðζÞ2Þdζþ

1
δ2τ τ

2

Z 1

0
ðκ2 �βðζÞ2þ3 �β′ðζÞ2Þdζ:

Taking

�V ðζÞ ¼ 1�ν2

κ

fcðδτζÞ
1�ατðδτζÞ

�βðζÞ

and passing to the limit when t-1 yields

lim
t-1

Rs
tr

8�4ν2

9
þCð �βÞ

κ2
;

where Cð �βÞ depends on �β but not on κ. Passing to the limit when κ goes to 1 gives the desired inequality for Rs
t . Since

Rb
t rRs

t (Remark 1) the result follows.

4.
 When κ¼ 0, the crossed term of β with V vanishes in Rκ

τðV; βÞ. Therefore, V¼ 0 is the minimizer of R0
τ at every τ40.

Accordingly, one gets

min
H�H0

R0
τ ¼

4
3
þ 1
3δ2τ τ2

min
βAH0\f0g

R 1
0 β′ðζÞ2 dζR 1

0 fcðδτζÞ2βðζÞ2 dζ
;

from which one easily deduces the announced property.



P. Sicsic et al. / J. Mech. Phys. Solids 63 (2014) 256–284 283
5.
 The behavior of minH�H0R
κ
τ when κ goes to infinity is a problem of singular perturbation in which the sequence of

minimizers degenerates. So, this asymptotic behavior is obtained by a direct approach. First, one deduces from (61) and
(62) the following estimate:

Rκ
τðV; βÞZ

κ2

3δ2τ τ2

R 1
0 βðζÞ2 dζR 1

0 fcðδτζÞ2βðζÞ2 dζ
4

κ2

3δ2τ τ2
; 8ðV; βÞAH� ðH0\ 0f gÞ;

where the second inequality is due to fco1 in ð0;1Þ. Therefore one obtains the following lower bound for the limit of the
minimum when κ-1:

lim
κ-1

min
H�H0

Rκ
τ

κ2
Z

1
3δ2τ τ2

:

It remains to construct a minimizing sequence such that the equality holds at the limit. Let βκ be the sequence defined by
βκðζÞ ¼maxf1�κζ;0g. Hence βκAH0 and Rκ

τ ð0; βκÞ=κ2 is given by

Rκ
τð0; βκÞ
κ2

¼ 1
3δ2τ τ2

R 1=κ
0 ð1�κζÞ2 dζþ1=κR 1=κ
0 fcðδτζÞð1�κζÞ2 dζ

þ 4
3κ2

and passing to the limit yields

lim
κ-1

Rκ
τð0; βκÞ
κ2

¼ 1
3δ2τ τ2

:

The proof is complete. &
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