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a b s t r a c t

Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the

complex and intriguing shapes of many biological systems, such as plant leaves and

organs. Similarly, inelastic strains induced by thermal effects or active materials in layered

plates are extensively used to control the curvature of thin engineering structures. Such

behaviour inspires us to distinguish and to compare two possible modes of differential

growth not normally compared to each other, in order to reveal the full range of out-of-

plane shapes of an initially flat disk. The first growth mode, frequently employed by

engineers, is characterised by direct bending strains through the thickness, and the second

mode, mainly apparent in biological systems, is driven by extensional strains of the

middle surface. When each mode is considered separately, it is shown that buckling is

common to both modes, leading to bistable shapes: growth from bending strains results in

a double-curvature limit at buckling, followed by almost developable deformation in

which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-

plane distortions occur only when the buckling condition is reached, and the Gaussian

curvature continues to increase. When both growth modes are present, it is shown that,

generally, larger displacements are obtained under in-plane growth when the disk is

relatively thick and growth strains are small, and vice versa. It is also shown that shapes

can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the

material properties: furthermore, it is shown that certain combinations of growth modes

result in a free, or natural, response in which the doubly curved shape of disk exactly

matches the imposed strains. Such diverse behaviour, in general, may help to realise more

effective actuation schemes for engineering structures.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Morphogenesis considers the evolution and governance of shape in biological structures, and recent studies have
identified the importance of mechanical effects and constraints on the origins of complex shapes under relatively simple
driving forces (Dumais and Steele, 2000). Many such structures have thin membranes or shells for reasons of geometrical
efficiency and biological expediency, and the mechanics of these components provides essential insight into how growth
proceeds. For example, instabilities such as local buckling of closed shells and membrane wrinkling simulate unique
features of developing cell and organ growth in vitro as well as skin deterioration (Goriely and Ben Amar, 2005; Cerda and
Mahadevan, 2003)—an excellent overall review is given by Chen and Yin (2010); the interplay between evolving shape and
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Nomenclature

Parameters

a, b major, minor semi-axes of elliptical planform
of disk

d displacement of disk edge
d1, d2, d3, d4 discriminant expressions
gA Gaussian curvature due to extensional growth

strains alone, Eq. (3)
E x-direction Young’s modulus
t uniform disk thickness
UB bending strain energy stored in disk
US stretching strain energy stored in disk
x, y in-plane coordinates associated with disk mid-

dle surface

Major symbols

a relative shear modulus, equal to ð1�nÞ=2 for
isotropic behaviour

b y-direction specific Young’s modulus, equal to
unity for isotropic behaviour

g bending growth effectiveness
(maximum value of 2)

E middle surface strain tensor
EA middle surface growth strain tensor
EE elastic components of strain, equal to E�EA

E maximum growth strain
k curvature tensor
kA curvature tensor due to bending growth strains
kE elastic components of curvature, equal to k�kA

n Poisson’s ratio
m linearising parameter for governing equations

of deformation, Eq. (7d)
f material and geometry parameter for disk
Z relative weighting between bending growth

(¼71) and extensional growth (¼0)

Other

det k Gaussian curvature due to bending, equal to
kxky�k2

xy

k dimensionless curvature, equal to ka2=t

gA dimensionless Gaussian curvature due to
extensional growth strains, equal to gAa4=t2

A, E subscripts for growth and elastic properties,
respectively
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residual stresses in open strips describes the bent and twisted profiles of long leaves, kelp and seed pods (Liang and
Mahadevan, 2009; Koehl et al., 2008; Forterre and Dumais, 2011; Armon et al., 2011); dynamical ‘‘snap-through’’ of a shell
cap can explain the rapid closure of the Venus Flytrap without muscular intervention (Forterre et al., 2005); and the
elongation of cell tips in pollen (Campas and Mahedvan, 2009; Aouar et al., 2010) behaves like a so-called propagating
instability (Kyriakides, 1994), which—we surmise—expedites the growth of highly deformed areas at much lower driving
forces than expected.

This paper focuses on recent studies concerning the complex shapes attained by an initially flat, unconstrained surface
when prescribing inelastic deformations that model growth phenomena in biological systems (Klein et al., 2007; Dervaux
and Ben-Amar, 2008; Dervaux et al., 2009). Despite its apparent simplicity, the problem encapsulates a fundamental
responsive mode in deforming shells, in which the actual deformations differ from the prescribed deformations because of
the interplay between bending and extensional effects. Often, and correctly, biologists and physicists assume that, because
the surface is relatively thin, growth produces extensional strains, which are uniform through the thickness. The strains
induced by growth may be unreachable in practice because of geometrical incompatibility and, as carefully described by
Klein et al. (2007), their non-uniform distribution within the middle surface of shell correspond to non-Euclidean metrics of
the surface, i.e. to metrics unattainable by surfaces embedded in a three-dimensional Euclidean space. In response, the
surface develops a state of self-stress whilst deforming elastically to accommodate the incompatible growth strains, and
this can lead to interesting buckling phenomena. Although the shape is controlled mainly by the mechanical properties,
there is some evidence that the degree of difference has a genetic component in practice (Nath et al., 2003).

At the same time, controlling the shape of a surface and conceiving ‘‘morphing’’ structures is an active research subject in
mechanical engineering, where active materials and multi-physical couplings (e.g. piezoelectric, thermoelastic, hygroscopic,
plasticity) provide the means to induce controllable inelastic strains analogous to growth. On the basis of linear theories,
engineers have long assumed that large displacements in thin shells are wrought most effectively by bending actuation
composed of differential through-thickness strains: a familiar example is a bimetallic plate that curves directly out-of-plane
under a rise in ambient temperature (Wittrick et al., 1953). However, large displacements in shells entail a coupling between
bending and in-plane extension, which ultimately limits the authority of bending actuation. For thin surfaces, there is
potentially a choice for engineers in the mode of actuation—the so-called ‘‘actuation paradigm’’ mentioned by Modes et al.
(2011)—if extensional actuation can provide an efficient alternative to bending. Thus, research on shape control of structures
may benefit from this study, for out-of-plane deformation of shells using in-plane actuation exclusively is only recently
garnering attention and may prove competitive compared to traditional bilayer (bending) methods. There are also
implications for processes involving plastically working thin-walled engineering materials where, like biological growth,
the deformation is irreversible and usually evolves incrementally: residual stresses confer the desired shape of shell—which
differs from the final shape because the imposed deformation cannot proceed without constraint.
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In this paper, growth and actuation are treated together as simple inelastic strain distributions simultaneously conferred
upon a flat, stress-free disk. Our primary aim is to establish the differences in the out-of-plane shapes arising from extensional
and bending modes—whether by growth or from actuation—when they act separately and when both are present. The latter
‘‘interaction’’ of modes is entirely novel because it has not been reported formally in the literature, and is essential for the
reasons described above. We consider this interaction in two ways, by prescribing modes that are independent and then
coupled by a common maximum growth strain. The first enables us to ascertain the general behaviour, e.g. the stability
complexion, and the second allows pertinent details to be found, such as the maximum shape change, etc.

The study of the interaction of growth modes is underpinned by their individual responses, and these have been
eschewed, in part, by others. For example, the first author reports on the bending actuation of a disk (Seffen and Guest,
2011), and the principle underlying extensional growth of a flat disk is confirmed in numerical simulations by Klein et al.
(2007). Inevitably, we repeat—and declare—this work as part the broader presentation of this paper, but the imperative
and, hence, novelty of this study lies with discussing the relative shape-control efficiency of the two growth modes by
describing all possible shapes of the disk in closed form. Most studies simulating morphogenesis extract meaningful trends
from exhaustive computations because the problem details are not amenable to a compact theoretical analysis without a
loss of accuracy. A flat disk is geometrically very simple but analysis of its growth response is non-trivial, resulting in a
virtual dearth of compact formulae describing key relationships. Adopting the same approach in Seffen and Guest (2011)
and Fernandes et al. (2010), we manage a theoretical approach by assuming that first-order (uniform) changes in shape
occur, and these reasonably follow if the growth strains themselves correlate to uniform imposed curvatures, even if the
current shape of disk does not match this ‘‘target’’ shape. To this end, we extend earlier work from the authors (Seffen and
Guest, 2011; Fernandes et al., 2010) to explicitly include and discuss the effect of extensional growth, and we complement
matters by performing a non-linear, large displacement finite element analysis, which makes no assumptions about the
uniformity of shape and the order of magnitude of the geometrical non-linearities. The comparison of numerical and
analytical results clearly proves the (surprisingly) moderate sacrifice in the accuracy of shape and the pertinence of our
strongly simplified model for the analysis of uniform bending and/or extensional growth. If instead the growth strains are
non-uniform, the shape of disk would be described by higher-order modes throughout, as observed by Klein et al. (2007) in
their experiments where practical arrangements do not confer a uniform change; their results would naturally extend the
results here but are the subject of further work.

Section 2 describes the geometrical definitions and assumptions in detail, in order to establish the meaning of
kinematical concepts not used by all researchers. In particular, we carefully discuss how the target shape of disk and its
actual shape differ in view of strict compatibility rules. This is not often clear to engineers, and importantly, it allows us to
incorporate the effect of extensional growth strains into earlier formulations on bending growth alone, developed
separately by both authors, with relative ease (Seffen, 2007; Vidoli and Maurini, 2008; Fernandes et al., 2010). This
formulation is sketched in Section 3 where the final governing equations of shape are presented and compared to
expressions in previous studies for the sake of clarity. Section 4 then considers ‘‘single’’ mode solutions, where extension
and bending growth are treated separately, and the predictions of shape are compared to a non-linear finite element
analysis using simple distributions of growth strains. The modes are then compared together by setting a common limit on
the maximal growth strain, as if they had the same constitutive growth capabilities. Section 5 formally presents ‘‘double’’
mode growth in which extensional and bending growth strains are both present. Their interaction is first plotted as a
regime map, which identifies regions with a particular degree of stability. From a design perspective, this map can be
interrogated quickly without calculating the exact shape of disk. The largest possible displacements arising from the
relative influence of each mode is then revealed as another map and, finally, we consider how the associated strain energy
varies. In Section 6, we refer briefly to the case of natural growth, where the shape induced by both modes is followed
exactly by the disk so that as the disk deforms, no strain energy is stored but it retains its stiffness, and this opens up
interesting possibilities for developing large-displacement actuators that are structurally robust. Section 7 concludes
this study.
2. Definitions of geometry and assumptions

The disk is initially flat, it is thin with a constant (uniform) thickness and has an elliptical planform of major- and minor
semi-axes, a and b. During growth or actuation, in-plane strains develop, leading to a change of the outwards shape,
mainly in the displacements normal to the disk surface when the disk is very thin. These displacements are assumed to be
shallow but finite so that equilibrium is related by the deformed configuration of disk. The underlying variation of strains
through the disk thickness can be condensed into properties of the middle surface alone, namely tensors of in-plane strain,
E, and of out-of-plane curvature, k. These tensors describe the current shape of the disk and, correspondingly, Gauss’s
Theorema Egregium suggests a connection between the variations of the strain tensor and the Gaussian curvature, denoted
by GðEÞ. Writing the strains in terms of direct components, Ex and Ey, and a shear strain, gxy, for orthogonal coordinates
x and y in the original plane of disk, the linearised form reads as (Calladine, 1983)

GðEÞ ¼� @
2Exx

@y2
�
@2Eyy

@x2
þ
@2gxy

@x@y
ð1Þ
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and, recognising that the Gaussian curvature is set by det k¼ kxky�k2
xy for ordinary curvatures, kx and ky, and twisting

curvature, kxy, the connection is succinctly written as

GðEÞ ¼ det k ð2Þ

The current shape depends on the response of the disk to so-called inelastic deformations conferred by growth or
actuation processes, denoted by subscript ‘‘A’’. These processes are assumed to produce planar strain distributions through
the thickness, which may be decoupled into components of middle surface strains, EA, and curvatures, kA. Here, the
subscript ‘‘A’’ collectively denotes growth or actuation but importantly, the distinction between extensional and bending
effects has been set—separately from the physical origin of each process that causes them. We do note that either of EA or
kA may be zero, or both may occur simultaneously and may be coupled to each other. For the sake of generality, we shall
assume that they are separately prescribed, which has implications for the elastic response of the disk. By definition, EA and
kA are connected to Gaussian curvature using the same linearised approximations as for the current shape before, i.e. they
produce components GðEAÞ and detðkAÞ; but we cannot say that GðEAÞ is equal to detðkAÞ since EA and kA are independent.
Alternatively, if the current shape follows from setting E¼ EA and k¼ kA, Eq. (2) is not satisfied and the target shape
defined by EA and kA cannot be reached. Elastic components of deformation must be induced and, again, there are two
middle surface quantities denoted by subscript ‘‘E’’, EE and kE, which define the difference between the current and target
shapes according to EE ¼ E�EA and kE ¼ k�kA. The degree of difference in both will depend on the final equilibrium
conditions, which are most simply addressed by considering the strain energy stored in the disk.

In order to enable an approach soluble in closed form, we further simplify the nature of the inelastic terms. Foremost,
we assume that det kA and GðEAÞ do not vary with x or y within the disk, thereby resulting in uniform Gaussian curvatures.
Recent studies (Freund, 2000; Guest and Pellegrino, 2006; Seffen and McMahon, 2007; Seffen, 2007; Vidoli and Maurini,
2008) have indicated that the disk responds in a similar manner by adopting uniform curvatures, which reduces the
calculations substantially. This is not, however, a restrictive assumption in view of common growth or actuation processes.
For example, a heated bimetallic disk attempts to curve equally and uniformly in all directions, and a rolled sheet can be
cylindrically curved into a circular arc, so we specify separate components of bending growth, kxA and kyA, in the x and y

directions, respectively, and a uniform twisting growth, kxyA, such that det kA ¼ kxAkyA�k2
xyA, a constant. In the case of

extensional growth, uniformity stems from a quadratic strain field since GðEAÞ has second-order derivatives of the
components of EA: indeed, if we assume that EA is isotropic and proportional to x2þy2, then a parallel form of Eq. (2) yields

GðEAÞ ¼ �
@2EA

@y2
�
@2EA

@x2
¼ gA, a constant ð3Þ

where gA replaces GðEAÞ for simplicity. Quadratic strain fields can arise often in Nature because of the way in which
nutrients for growth are absorbed through the surface. For example, long strips of kelp are more exposed on their outer
edges in fast-flowing rivers, resulting in a cross-wise variation of growth strain that is approximately parabolic (Koehl
et al., 2008); finding ways to actuate a quadratic strain field in an engineering structure remains to be realised, and efforts
may be garnered by the results of this study, in which we chose idealised strain fields for the simplest, quantitative
comparison between both modes.
3. Strain energy formulation and governing equations

The disk is thin and homogenous, and the material response is linear because strains remain small despite relatively
large displacements. The constitutive elastic behaviour is taken to be orthotropic following Seffen (2007), who considered
shells without growth strains but which can be adapted to include the definitions of EA and kA from Section 2 by replacing
the elastic deformations with EE ¼ E�EA and kE ¼ k�kA. Correspondingly, the strain energy stored in the disk can be found
by considering separate components of strain energy density in bending and in extension, which are integrated over the
entire middle surface. A conservative behaviour is also assumed so that the disk returns to being flat when the growth
strains are ‘‘switched off’’, and no external loads are applied to the disk, generally.

The bending strain energy bending density has a quadratic form equal to ð1=2ÞkT
EDTkE, where D is a 3�3 matrix

comprising elements of bending and torsional rigidities—see Vidoli and Maurini (2008) for example—and kE is the vector
of elastic curvatures, ½kxE kyE 2kxyE�

T, using Voight notation. Because the elastic curvatures are uniform throughout the
disk, the total bending component, denoted by UB, pre-multiplies the density by the elliptical planform area of the disk,
and the final form reads in terms of the current curvatures, k, and target curvatures, kA, as

UB ¼
pabEt3

24ð1�n2=bÞ
½ðkx-kxAÞ

2
þ2nðkx-kxAÞðky-kyAÞþbðky-kyAÞ

2
þ4aðkxy-kxyAÞ

2
� ð4Þ

E is the Young’s modulus in the x-direction and b is the relative modulus in the y-direction; a is the relative shear
modulus and n relates to the Poisson ratio. For the isotropic case, b¼ 1 and a¼ ð1�nÞ=2, otherwise, specifying general
values allows us to model a range of orthotropic materials. Mathematically, �1ono1 and b4n2 for positive definiteness
of the constitutive material matrix and, from a practical viewpoint, materials are generally not weaker in shear so a is only
ever equal to, or larger than, its isotropic value.
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The extensional strain energy density also has a quadratic form, which is first written in terms of EE, but which can be
expressed commensurately in terms of curvature by the following route. Recall that the assumption of uniform curvatures
implies a quadratic variation in the expected distribution of current strains, E, via Eqs. (1) and (2). To find the exact variation,
the components of E in Eq. (1) are replaced by EEþEA, and the differential operator turns EA into gA on the right-hand side. The
elastic strains, EE, are then replaced by elastic stresses, by inverting the constitutive elasticity matrix to find the required
relationships. The stresses are written in terms of an Airy stress function, F, as performed in Seffen (2007) so that Eq. (1) now
becomes a fourth-order differential equation with a constant ‘‘forcing’’ term equal to det k�gA. A polynomial for F can be
selected so that differential equation is satisfied whilst upholding the boundary conditions of zero normal force and shear force
on the periphery of the disk. The stresses and hence, strains are determined and substituted back into the strain energy density,
and this expression is integrated over the disk area to reveal a total component, US, equal to

US ¼
Etpa5b5

48ð1�n2=bÞ
aðb�n2Þ

3a4baþ3b4aþa2b2
½b�n2�2na�

ðdet k�gAÞ
2

ð5Þ

The total strain energy, U ¼USþUB, is made dimensionless by defining

U ¼U �
12a3ð1�n2=bÞ

Epbt5
, k ¼ k � a

2

t
, r¼ a

b
, f¼

aðb�n2Þ

6r4baþ6aþ2r2½b�n2�2na�

so that

U ¼
f
2
ðdet k�gAÞ

2
þ

1

2
½ðkx�kxAÞ

2
þ2nðkx�kxAÞðky�kyAÞþbðky�kyAÞ

2
þ4aðkxy�kxyAÞ

2
� ð6Þ

where det k ¼ kxky�k2
xy: note that f¼ ð1�n2Þ=16 for a circular isotropic disk. Since U is algebraic, statical equilibrium

configurations are obtained by setting @U=@k ¼ 0 for each of kx, ky and kxy. The resulting general governing equations are
non-linear coupled expressions of the current shape, which can be written in a slightly decoupled form as

kxþmky ¼ kxAþnkyA ðaÞ; mkxþbky ¼ nkxAþbkyA ðbÞ;

ð2a�mþnÞkxy ¼ 2akxyA ðcÞ; m¼ nþfðkxky�k2
xy�gAÞ ðdÞ ð7Þ

These are similar to the expressions furnished by Seffen and Guest (2011) for a pre-stressed disk in which growth is
analogous to plastic bending, but only because of how they are written above. Here, we now account for extensional
growth via gA in m everywhere, which results in new solutions both for extensional growth alone and when both modes
are present.

Despite their compactness, any solution to these expressions is generally formidable but which may be guided in the
following way. Eqs. (7)(a)–(c) are, first, explicitly soluble for kx, ky and kxy in terms of the Gaussian curvature parameter, m,
and the components of kA. Once found, these expressions are substituted back into m in Eq. (7d), which also includes gA, and
the following seven-order polynomial emerges after tidying up:

ff½ðbþm2ÞðkxAþnkyAÞðnkxAþbkyAÞ�mðnkxAþbkyAÞ
2
�mbðkxAþnkyAÞ

2
�ð2a�mþnÞ2

�4a2k2
xyAðb�m

2Þ
2
g�ðfgAþm�nÞð2a�mþnÞ2ðb�m2Þ

2
¼ 0 ð8Þ

The roots in m of this characteristic equation determine the curvatures for any value and combination of the growth
strains, as well as specified material and geometrical properties, and are typically found by numerical solution.
Importantly, the roots must be real for the resulting shape to be physically possible.

Some roots are admissible in closed form, as performed in Seffen (2007) for initially curved, stress-free disks, but only
after simplifying the characteristic equation for the sake of tractability. This entails a coupling of some of the independent
terms—the growth strains here, so not all possible solutions can be examined. However, the descriptions of shape are vital
in expounding the evolution of growth, and therefore we choose to seek out as many closed-form solutions. When
considering Eq. (8), note that it can be simplified immediately by setting the repeating terms, ðb�m2) and ð2a�mþnÞ, equal
to zero, which then sets conditions upon the remaining terms for overall satisfaction. These same conditions fortuitously
allow the original governing equations to be solved elegantly by inspection, to reveal another solution regime in which m
varies rather than being a constant root value. These cases are now treated in turn.

ða:iÞ m¼ 2aþn, ma7
ffiffiffi
b

p
This solution is only viable when kxyA is equal to zero, otherwise the characteristic equation and, ultimately, Eq. (7c) are

not satisfied. Correspondingly, the twisting curvature is not specified directly. Solutions for kx and ky must be obtained
first from solving Eq. (7a) and (b) together using m¼ 2aþn, before substituting back into Eq. (7d), in order to solve for kxy.
In this case, the combination of growth strain values must enable kxy to be real, and a separate study has shown that the
shear modulus must be less than its isotropic value for stable shapes; however, as noted before, practical materials do not
usually behave in this way, and we do not pay any further attention to these twisted solutions.

ða:iiÞ m¼ 7
ffiffiffi
b

p
, ma2aþn

In this case, there are two root values of m, either
ffiffiffi
b

p
or �

ffiffiffi
b

p
, and these predicate separate relationships upon the

growth strains, which are represented together via the ‘‘7 ’’ sign. Consider first when kxyA is set equal to zero so that there
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is no twisting curvature from Eq. (7c). Satisfaction of the characteristic equation is now obtained by setting the term inside
square brackets equal to zero. After some manipulation, this produces the rather compact requirement

7
ffiffiffi
b

p
ðnkxAþbkyAÞ ¼ kxAþnkyA ) kyA ¼

kxA

7
ffiffiffi
b

p ð9Þ

which is practicable and enables a wide range of solution shapes. Using either of Eq. (7a) or (b) and the definition of m,
it may be shown that

kx7
ffiffiffi
b

p
ky ¼ 18

nffiffiffi
b

p
 !

kxA,
7

ffiffiffi
b

p
�n

f
¼ kxky�gA ð10Þ

These are two soluble equations in kx and ky, which can be re-stated in terms of either parameter: we choose kx and
eliminate ky, to reveal

m¼ 7
ffiffiffi
b

p
, kyakx : kyA ¼

kxA

7
ffiffiffi
b

p ) fk2
x�f 17

nffiffiffi
b

p
" #

kxAkxþ
ffiffiffi
b

p
½
ffiffiffi
b

p
8n7fgA� ¼ 0 ð11Þ

The final quadratic equation is to be read as two equations, depending on whether kyA ¼ kxA=
ffiffiffi
b

p
or kyA ¼�kxA=

ffiffiffi
b

p
.

The roots of either equation produce explicit expressions for kx, which can be substituted back in to Eq. (10) to find the
same for ky, and this is presented momentarily.

For the case of kxyAa0, then kxy is uniquely defined by 2akxyA=ð2aþn8
ffiffiffi
b

p
Þ. Setting kyA ¼ kxA=7

ffiffiffi
b

p
gives similar

soluble expressions to Eq. (10) but where the product kxky is replaced by kxky�k2
xy. These can be solved in the same way

but are considered no further: there is also little evidence of this type of growth strain in practice.

ða:iiiÞ ma7
ffiffiffi
b

p
, ma2aþn

In this case, there are no obvious roots of the characteristic equation. However, if the twisting terms are zero and we retain
kyA ¼ kxA=7

ffiffiffi
b

p
, then Eq. (7) may be solved in a very simple way. Specifically, kxy is zero via Eq. (7)(c), and we note that

Eq. (7a) and (b) are multiples of each other when ky is set equal to kx=7
ffiffiffi
b

p
. Correspondingly, m can be eliminated between

these expressions, so that the curvature solutions do not depend on m, rather, they prescribe its value separately in Eq. (7d)
quite unlike the previous cases of constant roots. Using either of Eq. (7a) or (b) and (d), the intermediate step produces

kx ¼
kxAð

ffiffiffi
b

p
7nÞffiffiffi

b
p

7m
, m¼ nþf k2

x

7
ffiffiffi
b

p �gA

 !
ð12Þ

and, after substituting for m into the first expression, another solution regime is found, which reads as the following cubic
equation in kx:

ky ¼
kx

7
ffiffiffi
b

p : kyA ¼
kxA

7
ffiffiffi
b

p ) fk3
xþ

ffiffiffi
b

p
½
ffiffiffi
b

p
7n8fgA� kx�

ffiffiffi
b

p
½
ffiffiffi
b

p
7n�kxA ¼ 0 ð13Þ

Eqs. (11) and (13) are specific governing equations because they describe one of the curvatures explicitly. They also

depend on the same growth strain condition, namely kyA ¼ kxA=
ffiffiffi
b

p
, and so they apply equally to the disk. Obviously, the

choice of internal sign declares the form of bending growth, but the prevailing solution regime offers the most stable
shapes, and these are treated in detail in Sections 5 and 6.

ða:ivÞ m¼ 7
ffiffiffi
b

p
, m¼ 2aþn

This case is similar to (a.i) merged with (a.ii), with the proviso on material properties that
ffiffiffi
b

p
¼ 2aþn for positive

values of constants: m¼�
ffiffiffi
b

p
cannot apply. Thus, kx and ky are governed by Eq. (10), and kxy follows from Eq. (7d) and,

once again, stable shapes occur only when the shear modulus is less than its isotropic value. Although we have noted that
these twisted solutions are not of interest in general, the single case involving isotropic parameters presents a special case
in which kxy ¼ 0, and this emerges later in the detailed solutions.

3.1. Shape stability

The stability of shape is assessed by substituting the expressions for kx and ky (and kxy ¼ 0) into the following generalised
stiffness matrix of the disk, whose elements comprise @2U=@k2

x , @2U=@kxky, etc. beforehand:

1þfk2
y mþfkykx �2fkykxy

mþfkxky bþfk2
x �2fkxkxy

�2fkxyky �2fkxykx 4a�2ðm�nÞþ4fk2
xy

2
6664

3
7775 ð14Þ

Shapes are stable only if this matrix is positive definite—when its three eigenvalues are positive; if any is zero, the disk
is neutrally stable in that mode; a negative eigenvalue produces an unstable equilibria. Note that gA features directly in
this matrix via m, and the contribution of kxA or kyA is implied through the solution curvatures.
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3.2. Summary of analysis

We can determine the out-of-plane shape of a uniform elliptical disk subjected to growth strains, which foist a change
in its Gaussian curvature by extensional and/or bending growth (or actuation processes), by focussing on the roots of a
characteristic equation. These can be found numerically for any combination of growth strains but we choose, instead, to
prescribe specific relationships between the bending components according to kyA ¼ kxA=7

ffiffiffi
b

p
and ky ¼ kx=7

ffiffiffi
b

p
, but

not at the same time, for solutions in closed-form. Because they are formulaic in nature, the character and stability
becomes apparent despite the reduced range of possible growth strains, but this is more instructive and is the focus of the
rest of this paper. We make one more restriction by setting b¼ 1 for marginal convenience henceforth: this stipulates
direct isotropy but it does not detract from the generality of results, for example, see Fernandes et al. (2010). We do retain
an independent shear modulus, for its value does affect the stability of shapes as is now discussed, first, for single mode
growth and then for interacting, or double mode, growth.

4. Single mode growth

4.1. Extensional growth gAa0, ðkxA,kyAÞ ¼ 0

When the bending components, kxA and kyA, are set equal to zero in Eqs. (11) and (13), three sets of closed-form
solutions are found. The first has ðkx,kyÞ ¼ 0, and this is valid in either direction as gA increases or decreases, until gA

reaches a critical value denoted as gn

A such that

gn

A ¼
81þn

f
ð15Þ

Since the magnitude of the Poisson ratio is never larger than unity, gn

A ¼ ð1þnÞ=f is positive and gn

A ¼�ð1�nÞ=f is
negative. When 9gA9o9gn

A9, the stability matrix can be verified as being positive definite for ðkx,kyÞ ¼ 0.
When gA reaches positive gn

A, the disk now buckles into an out-of-plane mode of equal curvatures defined by

kx ¼ ky ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gA�
ð1þnÞ
f

s
ð16Þ

The 7 sign in this second set indicates that the disk can deflect upwards or downwards—it is able to occupy both in a
bistable manner, which is confirmed after substituting these expressions into Eq. (14) provided gAZð1þnÞ=f.

The third set arises when gA is less than the critical negative value, gn

A ¼�ð1�nÞ=f. The disk has buckled again but its
shape has equal and opposite curvatures

kx ¼�ky ¼7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ð1�nÞ
f
�gA

s
ð17Þ

Again, there are two sets of shapes but this time, their stability depends on the shear modulus, a; in particular, upon the
eigenvalue associated with twist—the final element in the stability matrix, which can be shown to be equal to
4a�2fðkxky�gAÞ. After substituting for kx and ky above, this term is positive when a4 ð1�nÞ=2, and the above are valid
bistable shapes. Otherwise, it is zero for material isotropy, indicating that there is no stiffness in this direction: the disk is
neutrally stable in a torsional manner with principal shapes according to the above expressions. We may think of any
intermediate shapes being described by the above but where the coordinate axes have been rotated by some nominal
angle about a vertical axes. Recall that we are not considering ao ð1�nÞ=2 suffice to say that all solutions would be
unstable in this case—a different solution regime governs.

Fig. 1 compares these predictions to a finite element analysis using the software package ABAQUS (Hibbitt et al., 2011).
The disk is circular and comprises triangular shell elements, and a small initial out-of-plane displacement is imposed upon
the flat shape, in order to seed the potential for buckling. The growth strain is specified using an inelastic strain field,
EA ¼ EAðx,yÞ, with the elementary distribution

EAðx,yÞ ¼�E ðx
2þy2Þ

a2
) gA ¼ 4E a2

t2
ð18Þ

using Eq. (3). The maximum value, E, would be defined by the growth or actuation strain capabilities of the actual material,
and we use it here to control the degree of positive and negative growth by increasing or decreasing its value from zero,
respectively. A geometrically non-linear, large-displacement analysis incorporating a linearly elastic, isotropic material
response is specified, and the disk is centrally fixed against rigid body movement, being free from externally applied forces
and moments everywhere else. No restrictions are imposed upon the expected profile of curvatures, and Fig. 1 records the
highest displacements availed by the edge of the disk. The discrepancy between theory and computation diverges slightly
as growth proceeds but the trends are encouragingly similar despite the ratio of displacement to disk thickness being well
above unity—the notional limit of shallow displacements, and despite our assumption of linearity via Eq. (1): for
non-shallow displacements overall, the agreement is unexpectedly good. Additional pictures of the post-buckled shape
indicate that there is constant Gaussian curvature throughout most of the disk except for a boundary layer on the



d\
t

Fig. 1. Comparison of the largest out-of-plane displacements, d, on the edge of a circular disk subjected to extensional growth. The disk has radius

a¼ 0:1 m, thickness t¼ 0:001 m, and the material is isotropic with Poisson’s ratio n¼ 0:3. The parameter, E , is the maximum growth strain given by Eq. (18),

and is a growth control parameter: when E40, the disk grows into a cap of positive Gaussian curvature with all edge points at maximum displacement;

Eo0 produces a saddle shape with only two points maximally displaced upwards and downwards; close to the origin, there is no displacement before

buckling at E � 0:6� 10�3. Solid lines are theoretical predictions from Section 2 and dots are from a non-linear finite element analysis (FEA). The indicated

shapes are also taken from the FEA after the disk buckles for growth in either direction. The legend shows the degree of Gaussian curvature in both cases,

and over the bulk of the disk it is constant, which affirms the assumption of uniform curvatures. Near the periphery, it attenuates to zero because the real

boundary condition enforces zero moment there.
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periphery, where the internal bending moments fall away to zero non-uniformly in accordance with an exact solution.
Thus, our assumption of uniform shape is not valid close to the edge but this local absence of correctness has minimal
influence on the edge displacements because of the small width of the boundary layer. Note that it is difficult to see the
equivalent strain at buckling owing to the large range of growth overall.

4.2. Bending growth, gA ¼ 0, ðkxA,kyAÞa0

Recall that kyA ¼ þkyA or kyA ¼�kxA for Eqs. (11) and (13) to apply and, in order to distinguish formally this application,
we denote the former as a case of equal-sense growth and the latter as opposite-sense: in the previous case of gAa0, there is no
commensurate distinction in the governing equations although we may think of similar behaviour depending on the sign of gA.
Each of these cases is now treated separately for the sake of clarity and completeness—the solution curvatures are non-trivial
expressions, and they are also similar to the solutions found by Seffen and Guest (2011), as noted before.

4.2.1. Equal-sense bending growth

The disk curvatures are the same with respect to using Eq. (13) but different in Eq. (11) and, since the growth strains are
always the same (kxA ¼ kyA), it is reasonable to expect that the disk deflects with equal curvatures initially as the growth
increases from zero. Thus, Eq. (13) is considered first with the term gA ¼ 0. The final form and conditions for its application
may be written as

kyA ¼ kxA : ky ¼ kx; 0rkxAokn

xA ) kxþ
f
ð1þnÞ

k3
x ¼ kxA ð19Þ

It is possible to solve for kx explicitly in terms of kxA but this is not a compact expression and, therefore, is not presented.
The growth limit for this mode is defined as kn

xA, which is quantified momentarily, and is the limit of stable behaviour
when considering the eigenvalues of Eq. (14). Thereafter, the disk curvatures cannot be the same, and Eq. (11) now
governs. It can be solved explicitly under the following conditions to reveal the exact disk curvatures as:

m¼ 1, kyA ¼ kxA : kyakx, kxA4kn

xA ) fk2
x�fð1þnÞkxkxAþð1�nÞ ¼ 0

) kx ¼
kxAð1þnÞ

2
17 1�

kn

xA

kxA

� �2
" #0:5

2
4

3
5, ky ¼

kxAð1þnÞ
2

18 1�
kn

xA

kxA

� �2
" #0:5

2
4

3
5 ð20Þ

The term kn

xA (and kn

yA) defines the growth strain at which the real roots of the governing equation become available and is

found to be equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1�nÞ=fð1þnÞ2

q
. A formal stability investigation also confirms that there is a switch from one stable

solution to the other at kn

xA.
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Compared to the effects of gA, the disk distorts out-of-plane with equal curvatures from the outset as it attempts to
reach kxA and kyA under Eq. (19). It then buckles when the imposed Gaussian curvature reaches a value of kn

xAk
n

yA. At this
point, the Gaussian curvature of the disk is kxky ¼ ð1�nÞ=f, and this remains fixed during post-buckling since m¼ 1
irrespective of the value of kxA and kyA. The individual curvatures, kx and ky, increase or decrease according to their
closed-form solutions in Eq. (20) as growth increases, to form an open cylindrical shape in the limit: but their product
remains conserved and the post-buckling growth mode is almost developable. Furthermore, when a4 ð1�nÞ=2, it also has
two stable configurations, depending on the internal signs of Eq. (20). For material isotropy, post-buckling is neutrally
stable and the disk can swap shapes without a change in the stored energy; when ao ð1�nÞ=2, a different regime of stable
twisted shapes replaces the current set, but these are not being considered as noted before.

The maximum and minimum displacements on the edge of the disk are compared in Fig. 2 for both theory and a finite
element analysis of the same computational scheme as before, but where the imposed curvatures are specified by another
strain field, EA ¼ EAðzÞ, which only varies through the thickness, and linearly, such that (dimensional)

EAðzÞ ¼
2zE

t
) kxA ¼ kyA ¼

2E
t

ð21Þ

where, again, E is a maximum material strain.
At buckling, there is a clear divergence, or bifurcation, in displacements, with rapid and disparate changes in values over

a short increment in growth strains. The computation also captures this feature and, as with extensional growth, the
overall trends are exceptionally close even for large displacements. It is also clear that the larger curvature tends towards a
linear variation with increasing growth strain and, again, the shapes of disk closely match the assumption of uniformity.
4.2.2. Opposite-sense bending growth

When kxA ¼�kyA, it may be verified that the shape of the disk is defined by the following solution sets:

kyA ¼�kxA : ky ¼�kx; 0rkxAokn

xA ) kxþ
f
ð1�nÞ

k3
x ¼ kxA ð22Þ

and

kyA ¼�kxA : kyakx, m¼�1; kxA4kn

xA ) fk2
x�fð1�nÞkxkxAþð1þnÞ ¼ 0

) kx ¼
kxAð1�nÞ

2
17 1�

kn

xA

kxA

� �2
" #0:5

2
4

3
5, ky ¼�

kxAð1�nÞ
2

18 1�
kn

xA

kxA

� �2
" #0:5

2
4

3
5 ð23Þ

with kn

xA (¼�kn

yA) equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þnÞ=fð1�nÞ2

q
. Initially, the disk deflects into a saddle shape before buckling into an

almost developable mode at kn

xA. As with the previous case, the Gaussian curvature is conserved in this mode but post-
buckling is always bistable. A finite element analysis was not performed for the sake of brevity.
d\
t

Fig. 2. Maximum and minimum edge displacements for equal-sense bending growth of a circular disk with the same properties as in Fig. 1. The load-

control parameter, E , is defined within the growth strain profile of Eq. (21). The solid lines are theoretical predictions derived from Eqs. (19) and (20)

before and after buckling, respectively, with the upper curve referring to displacements under kx , and the lower to ky: the bifurcation around E ¼ 0:3�

10�3 signifies buckling, which is also present in the finite element results, given by the dots. The bistable shapes are taken from a point in the post-

buckling simulation, and show a considerably reduced degree of Gaussian curvature compared to Fig. 1. Again, there are boundary condition edge effects.
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4.3. Summary and comparison of modes

Both growth modes attempt to induce a change in the Gaussian curvature of the disk, which can be prescribed as a
positive or negative change. The disk responds differently but buckling is common to both modes: during extensional
growth, buckling precedes an uptake of Gaussian curvature by the disk whereas buckling during bending growth signifies
that the disk has acquired maximum Gaussian curvature. If our descriptor of shape-change is taken to be some measure of
the current Gaussian curvature, then extensional growth always dominates bending, at least beyond buckling. But if we
are interested in maximising displacements—if, for example as engineers, we are designing an actuator of shape, Gaussian
curvature is no longer important; rather, it is the performance of a single curvature because displacements are largest on
the edge and given by kt=2 under the assumption of uniformity. The previous closed-form curvature expressions provide
some compact insight when there are large, post-buckled growth strains, when gAbgn

A and kxAbkn

xA. For positive growth
strains, the asymptotic limits describing one of the bistable shapes can be shown to be

extensional : kxky-gA; kx=
ffiffiffiffiffiffi
gA

p
-1, ky=

ffiffiffiffiffiffi
gA

p
-1

bending : kxky ¼ ð1�nÞ=f, kx=kxA-1þn, ky=kxA-0

As noted before, the Gaussian curvature arising from bending growth does not depend on kxA but has a constant finite
value: each of its constituent curvatures tends towards a very large number and zero but their product is always fixed and
independent of kxA. For the other bistable mode, kx and ky simply swap values.

When there are negative growth strains, then

extensional : kxky-�gA; kx=
ffiffiffiffiffiffi
gA

p
-1, ky=

ffiffiffiffiffiffi
gA

p
-�1

bending : kxky ¼�ð1þnÞ=f, kx=kxA-1�n, ky=kxA-0

In either set of expressions, the curvatures are not correlated across modes unless the growth strains are related to each
other, and usefully so. In the above, there is little difference between the largest displacements if we assume that

ffiffiffiffiffiffi
gA

p
is

the same size as kxA, but this is an arbitrary statement. Furthermore, the above limits are simply expressed but unlikely to
be reached in practice—at least, for engineering materials, where actuation strains are typically no more than 1% (Huber
et al., 1997), and understanding the performance at lower growth strains close to, and around, buckling is imperative.

The most straightforward scheme is led by the finite element approach, in which the distributions of growth strains are
the simplest they can be so that GðEAÞ and det kA from Section 2 are constant but which are now tied together by the
fundamental material limit, E. Eqs. (18) and (21) are employed but with a slight modification to the bending growth strain
so that both equal- and opposite-sense growth are specified. The final dimensionless expressions read as

gA ¼ 4E a2

t2
; kxA ¼ g9E9

a2

t2
, kyA ¼ gE

a2

t2
ð24Þ

The sign of E determines when there is positive or negative extensional growth, as well as the sign of kyA: when E40, the
sign is positive and there is equal-sense growth, and vice versa; the absolute sign in kxA above ensures that it always takes
a positive value. The constant term, g, accounts for the effectiveness of bending relative to the maximum growth strain, and
has an upper value of two when the strains are equal to 7E on the disk upper and lower surfaces, which is the absolute
range in view of the limit of linear elastic behaviour. When g is less than two, then bending growth strains are not
optimally distributed through the disk thickness, as might arise when not all of the material is capable of furnishing
growth strains.

Notwithstanding, a comparison of the largest displacements between growth modes is shown in Fig. 3 after substituting gA

and kxA back into the specific governing equations. On the abscissa, we retain the control parameter, Eða=tÞ2, so that
geometrical, as well as material properties can be compared, and on the ordinate, the ratio of maximum displacements, dS=dB,
where superscripts S and B refer to extension and bending, respectively. We also consider positive and negative growth, and
specify three values of g equal to 1/3, 1 and 2.

Initially, each displacement ratio is zero and then rises steeply after buckling. It is larger than unity when g is smaller
and closer to zero and, more so, when growth is negative. The discontinuity of slope and subsequent downturn in the ratio
are due to the sharp increase in one of the bending curvatures after bifurcating. Thereafter, the trend is generally
downwards since the largest bending displacement approximately varies with growth in a linear fashion, as displayed in

Fig. 2, whilst the extensional displacements grow in accordance with
ffiffiffi
E
p

. Conditions on the ratio cross-over can be

calculated if desired, but Fig. 3 testifies that generally, extensional displacements are higher only when Eða=tÞ2 is much less
than 100—when disks tend to be thick or when growth strains tend to be small. Also plotted are the asymptotic

displacement ratios for each value of g, which can be verified as being 2t=ðgð17nÞ
ffiffiffiffiffiffiffi
9E9

q
aÞ. These approximations very

quickly match predictions and may be used as an informative measure of performance.
There are of course, other ways to compare shape performance without focussing on displacements, for example, by

comparing the strain energy stored in the disk, and one such case is reported later. Beforehand, we consider the complementary
effects of both growth modes.



Fig. 3. Ratio of maximum displacements of a circular disk during growth, where dS is the displacement due to extensional growth alone, and dB is due to

bending alone. The specific growth strain distributions are given by Eq. (24) in which E is a common maximum growth strain. The disk has the same

properties as in the previous figures, and the solid lines are for different values of g, which measures the effectiveness of bending growth: the green

highest lines occur when g takes its largest theoretical value of 2, which is assumed in the finite element analysis of Fig. 2; the blue intermediate lines

have g¼ 1; and the red lower lines have g¼ 1=3. The dashed lines are derived from simpler asymptotic conditions, and close to the origin displacements

are zero before buckling. Portions of any curve which lie above the horizontal line of unity ratio, signify higher displacements during extensional growth,

and vice versa. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5. Double mode growth

The obvious differences in shape performance between the previous single modes of growth suggest a possible richness
of behaviour when they act together. Along with the variation in shape, there is the degree of stability and its connection to
buckling; specifically, that bistable or neutrally stable configurations are wrought during post-buckling. Analytically, the
governing equations of deformation produce two real roots, which happen to be stable. Given the algebraic nature of
solution, it is possible to establish regions of interest for multistable behaviour from the properties alone of the specific
governing equations, Eqs. (11) and (13). In this regard, the discriminant of each of the polynomial expressions is key (Seffen,
2007) for when the discriminant is negative, there are at least two real roots and thus, potentially, bistable behaviour. The
boundaries between regions of different stabilities are therefore established by setting the discriminants equal to zero and
plotting the corresponding loci in ‘‘growth’’ space, ðgA,kAÞ, before assessing stability, which is confirmed separately by
solving explicitly for some—not all—equilibria within the regions of interest and testing their eigenvalue performance
using Eq. (14). Recall that we only consider the shear modulus, a, to be isotropic or larger in value.

Consider, first, the full governing equations for equal-sense bending growth (kxA ¼ kyA), which are repeated below with
b¼ 1, in order to underline their discriminant expressions

fk3
xþ½ð1þnÞ�fgA�kx�kxAð1þnÞ ¼ 0; fk2

x�fkxkxAð1þnÞþð1�nÞþfgA ¼ 0 ð25Þ

The discriminants are found straightforwardly (Weisstein, 2006) and are denoted as d1 and d2

4½fgA�ð1þnÞ�3�27fk2
xAð1þnÞ

2
¼ d1; f2k2

xAð1þnÞ
2
�4f½ð1�nÞþfgA� ¼ d2 ð26Þ

These are then set equal to zero and plotted in Fig. 4 with coordinates (gA,kxA), where kxA ¼ kyA in the first two quadrants.
It is then straightforward to verify that those coordinate points which lie above the locus of d1 ¼ 0 as drawn ensure that
this discriminant is negative, and that this region has possibly more than one stable equilibria. The corresponding
behaviour for the second discriminant has any point lying below the curve of d2 ¼ 0. In fact, the former is a bistable region
only when a is larger than ð1�nÞ=2, otherwise, it refers to neutrally stable disks when isotropy is upheld: the latter region
always conforms to bistability. Interestingly, the loci can cross over in the upper portion of the first quadrant so that each
bistable region overlaps. This produces a region of tristable shapes, and this overlapping, in physical terms, can be thought
of as two sets of bistable shapes ‘‘mixing’’ but where two of the equilibria—originally very similar in shape—have now
converged into a single stable shape; the other two shapes are sufficiently different to remain distinct. For isotropic disks,
stability is lost in this region because the lower bistable region overlaps the neutrally stable region, and the disk equilibria
are a mixture of these modes. Finally, there is a monostable region, which encloses the origin, where the discriminants,
d1 and d2 are greater than zero.



Fig. 4. Stability performance according to independent extensional (abscissa) and bending (ordinate) growth modes for a circular disk of the same

properties as in the previous figures. The ordinate shows the magnitude of kxA when there is equal-sense bending growth (kxA ¼ kyA), which is plotted

upwards, and when there is opposite-sense bending growth (kxA ¼�kyA), which is plotted downwards. In the top half, the discriminants, d1 (red) and d2

(green) from Eq. (26), apply and are set equal to zero to reveal the solid loci, and in the bottom half, the same is performed for d4 (blue) from Eq. (27):

a final boundary (black) separates opposite- and equal-regions behind the intercept of d1 ¼ 0. Four regions are then identified around these loci, and

labelled I to IV, with further labels, a and b, for equal- and opposite-sense bending growth, respectively. Region I conforms to monostable disk shapes;

region III is always bistable; region II is either bistable if the shear modulus is larger than the isotropic value, otherwise it is neutrally stable for

a¼ ð1�nÞ=2; region IV always has shapes that combine the properties of regions II and III. The four single-mode buckling parameters are identified as A to D,

and correspond to the formulae for kn

xA and gn

A of Section 4. Note that when a is less than its isotropic value, different solution regimes emerge, which are

not treated here. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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For opposite-sense bending growth (kxA ¼�kyA), the corresponding discriminants of the specific governing equations
may be verified as

4½�fgA�ð1�nÞ�3�27fk2
xAð1�nÞ

2
¼ d3; f2k2

xAð1�nÞ
2
�4f½ð1þnÞ�fgA� ¼ d4 ð27Þ

The third and fourth quadrants in Fig. 4 are now created by plotting the ordinate, kxA (¼�kyA), downwards. The stability
complexion is, however, very different because one of the roots afforded by d3 being negative is never stable, as confirmed
separately. Only d4o0 produces bistable solutions, which are not affected by the shear modulus and, hence, opposite-
sense bending growth is simply divided into two regions by the curve, d4 ¼ 0, as shown. There is an additional horizontal
boundary extending outwards from gn

A ¼�ð1�nÞ=f along the gA axis, in order to distinguish the bistability in the equal-
sense region above from monostability beneath.

In the complete picture, each region can be labelled as follows: I, monostable; II, bistable when a4 ð1�nÞ=2 otherwise
neutrally stable; III, bistable; IV, tristable for orthotropy or mono- and neutrally stable for isotropy. Equal- and opposite-
sense bending growth regions are demarcated by extra labels of ‘‘a’’ and ’’b’’, and the four intercepts on the axes, labelled
A–D, confirm the four single-mode buckling values (kn

xA,gn

A) from Section 4. Some sense of the shapes of disk in each region
is given in Fig. 5.

The corresponding degree of shape-change in the disk can be tackled in several ways but we take our lead from Fig. 3 by
wishing to incorporate the influence of the fundamental material strain limit, E. This is important for actuator design but
the corresponding definitions of gA and kxA in Eq. (24) are tied by E, so we need to introduce an additional parameter, in order
to separate their effects meaningfully. This is achieved most simply by specifying a weighted sum of each contribution in
Eq. (24)

gA ¼ ð1�9Z9Þ4E
a2

t2
; kxA ¼ 9ZE9 a2

t2
, kyA ¼ Z9E9

a2

t2
ð28Þ

The parameter, Z, ranges from �1 to 1 such that when Z¼ 0, there can be only extensional growth; when Z¼ 71, there is only
bending growth but the sign of Z determines the sign of kyA, which is equal in magnitude to kxA: for Z40, there is equal-sense
bending growth, and for Zo0, opposite-sense behaviour. The sign of E only determines whether there is positive or negative
extensional growth and does not affect the direction of bending growth. Note that g is set equal to unity in the above compared
to Eq. (24), merely to set the maximum strain range anywhere in the disk equal to E.

Fig. 6 indicates the maximum possible displacement of the disk under these conditions, which is plotted as a series of
contours of the ratio of displacement to disk thickness. It is clear that these are largest when confined to corners of the
plot—when E is high and when bending growth dominates—and the abrupt changes in the direction of contours arises
when there is a change in the responsible equilibrium shape of largest displacement. The strain energy stored in the disk



Fig. 5. Bistable disk shapes associated with each of the buckling points, A–D, in Fig. 4. The corresponding values of extensional and bending growth

strains, ðgn

A ,kn

xAÞ, from Section 4 are: A ð0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1�nÞ=fð1þnÞ2

q
Þ; B ð½1þn�=f,0Þ; C ð0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þnÞ=fð1�nÞ2

q
Þ; D ð�½1�n�=f,0Þ. In region IV.a, there can be tristable

behaviour in which the disk is nearly cylindrically curved in orthogonal directions, or cap-like and inverted. When there is material isotropy, bistability is

lost in some regions, and the shapes in A and D are neutrally stable, along with the two cylindrical forms from IV.a.

Fig. 6. Contours of the ratio of the largest possible displacement to disk thickness during mixed-mode growth. The largest material strain, E , has the same

physical meaning as in earlier figures: here, a positive value corresponds to positive extensional growth and vice versa. The degree of contribution from

either mode is specified as a linear weighted sum through Z such that Z¼ 0 implies only extensional growth and Z¼ 71 gives purely bending growth

with equal-sense behaviour governed by the range, 0oZo1 and opposite-sense growth belonging to �1oZo0. Displacements are largest in the

corners, when the growth mode is dominated by bending strains, and for small values of Ea2=t2, the displacement ratio is not very sensitive to Z.

The dotted lines are defined in Fig. 7.
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for each responsible equilibrium shape in Fig. 6 is then calculated via Eq. (6) and plotted in Fig. 7 with the same coordinate
axes. The landscape rises as we move towards the corners, suggesting that the disk acquires more strain energy during
bending growth, but otherwise, it is generally featureless except, to note, that it dips towards zero in places. Careful
examination shows that, in fact, these are exactly zero-value contours, which are indicated as the pair of dotted lines in the
first and third quadrants. By overlaying the same lines onto Fig. 6, we see that the corresponding maximum displacement
along them is non-zero, which presents a peculiarity: that some growth-induced displacements are permissible but store
no strain energy. This is resolved in the following section as we note that the continuous nature of these zero-energy
contours must indicate some special relationship between extensional and bending growth modes.

6. Natural growth

The specific governing equation, Eq. (13), can be factorised when gA is set equal to k2
xA (ky ¼ kx) or �k2

xA (ky ¼�kx),
leading to the solution set kx ¼ kxA ¼ 7ky, depending on the choice of sign. In these cases, m¼ n follows, and the
eigenvalues of the stability matrix can be verified as being 17nþfk2

xA and 4a, which are always positive and give rise to a
stable performance in either case. At the same time, this factorisation produces no strain energy in the disk when the
solution curvatures and growth strains are substituted back into Eq. (6). Interestingly, as gA (and kxA) increase, or decrease,
there is no increase in U as growth proceeds; but the positive eigenvalues stipulate that any perturbation away from these
equilibrium states always produces a restorative rise in strain energy. This is quite different from the neutral stability
reported earlier, where the disk is stiff in the direction of the imposed growth strains but has zero torsional stiffness



Fig. 7. Contours of the lowest amount of strain energy stored in the disk during mixed-mode growth. The coordinate axes are the same as in Fig. 6. The

strain energy generally rises with increasing E and in favour of bending growth. The dotted lines are contours of zero stored energy and conform to

natural growth shapes.
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orthogonal to them. Here, the structure is stiff in the sense of departures from the growth mode, but it has effectively zero
stiffness in the sense or growth proceeding. This is similar in performance to a recently discovered class of pin-jointed,
tensegrity structures, where special pre-stressing elements allows for joint displacements without energy penalty (Schenk
et al., 2007).

The fundamental reason for this behaviour can be gleaned from thinking about the conditions of shape alone. Recall
from Section 2 that the current shape must obey the compatibility requirement, det k¼ GðEÞ, but that the imposed strains
are not obliged to; however, it is clear that det kA ¼ GðEAÞ ¼ gA in the present case, and that det k¼ det kA. In other words,
both compatibility equations are satisfied, thereby precluding the self-stresses that lead to a build-up of strain energy. The
coupled growth mode here is a natural mode since the disk exactly follows the target shape. In an overall sense, energy
must be invested in the disk so that kxA and gA are wrought in the first place, but there is no extra component due to
elastic stresses, and the complete performance of the system is limited only by the thermodynamical capabilities of
practical growth and actuation processes.
7. Conclusions

The distinct topics of growth and of actuation of shape in thin shells have been treated together and compared in this
paper. We have distinguished between them in a simple way, by assuming that they confer, respectively, extensional and
bending strains upon an initially flat disk, and we have considered this as our ‘‘growth’’ scenario of two growth modes, but
which can be applied to both natural and artificial systems. The distribution of strains have been deliberately selected so
that growth ultimately imposes uniform changes in the Gaussian curvature. The disk responds elastically by trying to
match the change insofar as compatibility demands but generally lags behind it because of the build-up in stored strain
energy. Both growth modes produce different characteristics of shape but buckling is an inherent property: bending
growth buckles into an almost developable mode of constant Gaussian curvature whereas extensional growth increases
the Gaussian curvature only after buckling. The displacement performance is different because it is controlled by the
largest curvature, not the Gaussian, and we have shown that extensional growth produces larger displacements when the
product of maximum material growth strain, E, and ða=tÞ2 is typically less than 100 and usually less than 25, and vice versa.
In general, more than one post-buckling equilibrium configuration can exist for given levels of growth, either singly or in
combination and, in practice, the disk grows into one of these shapes and only ‘‘moves’’ into the others under externally
applied forces. There are neutrally stable shapes in which the disk has no torsional stiffness although it remains stiff in
bending, otherwise, bistability, and sometimes tristability, prevails in the post-buckling regimes. Where possible, closed-
form expressions of shape have been determined, and a convenient map of regimes with well-defined boundaries has been
used to convey the overall stability, displacement- and strain energy performances. Finally, we note that natural growth is
possible when the shape of the disk exactly matches the imposed growth strains, but only when the latter are related by
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the condition, gA ¼7k2
xA: it is possible to create both positive and negative Gaussian curvature from a flat disk without

storing any extensional and bending strain energy.
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