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Under the effect of surface tension, a blob of liquid adopts a spherical shape when immersed in another

fluid. We demonstrate experimentally that soft, centimeter-size elastic solids can exhibit a similar

behavior: when immersed into a liquid, a gel having a low elastic modulus undergoes large, reversible

deformations. We analyze three fundamental types of deformations of a slender elastic solid driven by

surface stress, depending on the shape of its cross section: a circular elastic cylinder shortens in the

longitudinal direction and stretches transversally; the sharp edges of a square based prism get rounded off

as its cross sections tend to become circular; and a slender, triangular based prism bends. These

experimental results are compared to analysis and nonlinear simulations of neo-Hookean solids deformed

by surface tension and are found to be in good agreement with each other.
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We all know that liquids can be shaped by surface
tension: small droplets are spherical at equilibrium so as
to minimize their area, and liquids climb on wet surfaces
by making a smooth meniscus. The deformation of elastic
solids by surface stress has been studied in more limited
contexts. The macroscopic behavior of solids whose inter-
faces include features at the nanometer or micrometer
scale, such as porous materials, has long been known to
be influenced by the surface energy [1]. The smoothing
effect of surface stress on finely textured solid interfaces
has been pointed out [2,3]. The deformations of solids near
a triple line (solid-liquid-vapor) have been understood
recently [4–6]. Thin structures can be deformed by capil-
lary forces very effectively, and many examples have been
studied in the past few years [7–10].

In all these examples, the effect of surface stress is
amplified by the roughness of the solid or by the presence
of multiple interfaces—as happens near a triple line or
when an elastic structure is partially covered by a liquid
drop. Inspired by the canonical examples of spherical
drops and bubbles, we ask the following question: can
one change the shape of a smooth elastic solid just by
immersing it into a fluid? We demonstrate that this is
indeed possible using a centimeter-scale piece of elastic
gel. Neither surface roughness nor a triple line is required:
the solid is smooth and is immersed in a uniform fluid
environment. As with drops and bubbles, the deformation
is driven by the change in surface tension caused by
immersion. Being both soft and slender, our gels are very
flexible: their deformation can be measured by simple
experimental techniques and quantitatively compared to
model predictions.

To deform the gel, surface tension must work against the
restoring elastic forces. This competition is ruled by the

elastocapillary length ‘ ¼ �=�, where � is the surface
tension and � the shear modulus. In usual solids, both �
and� arise from phenomena at the atomic scale and ‘ is of
the order of a nanometer. Our gels are extremely soft,
having a shear modulus as low as � ¼ 35 Pa; with ��
0:04 N=m, the length scale ‘� 1 mm is large, making it
possible to observe capillary effects in solids at the macro-
scopic scale [11–13]. The elastocapillary length ‘ is also
relevant to instabilities deforming interfaces, such as the
Biot [13,14], Rayleigh-Plateau [15], and Asaro-Tiller-
Grinfeld instabilities [16].
In the experiments reported below, a prismatic mold

made of polystyrene is first prepared by heating a preform
supported by a rigid negative mold. A liquid is then intro-
duced into the mold, which can be a hot aqueous solution
of agar (from Alfa Aesar GmbH & Co) or a mixture of
acrylamid and bisacrylamid (from Merck) in an aqueous
solution. In both cases, a gel is formed after few hours at
room temperature. The loss and storage moduli [17], mea-
suring viscosity and elasticity, respectively, were measured
in independent experiments done in similar conditions:
after 3 h, the ratio of the loss modulus to the storage
modulus is below 10�2, indicating that the gel’s response
has become elastic. On the time scale of the experiment,
we ignore the diffusion of the solvent inside the gel and
towards the outer fluid: the gel is considered incompress-
ible. Varying the nature of the gel and the concentration of
its components, we can achieve shear moduli ranging from
� ¼ 35 to 350 Pa. Stress sweep tests reveal that the gel
remains elastic well beyond a strain of 15% for agar and up
to 500% for polyacrylamid gels, with a slight strain hard-
ening above 150%.
A fluid interface is present along the boundary of the gel:

the solvent, which remains trapped inside the gel, meets the
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outer fluid along this boundary. This interface is associated
with a surface energy ð�AÞ, where � denotes the surface
tension between the outer fluid and the solvent, and A is the
area of the boundary. The surface energy drives the defor-
mation of immersed gels, like that of drops and bubbles. It
is resisted by the elasticity of the gel, which we model as an
incompressible neo-Hookean material having a density of
elastic energy w ¼ ð�=2Þ trðFT � F� 1Þ, where F is the
deformation gradient, 1 the unit matrix. The equilibrium is
governed by the minimization of the free energy

E ¼ �Aþ
ZZZ

�0

�

2
trðFT � F� 1ÞdV0; (1)

where dV0 is a volume element in reference configuration,
�0 is the reference volume occupied by the gel, and A is
the area of the deformed boundary. The incompressibility
constraint writes J ¼ detF ¼ 1.

In the general theory of surface stress in solids, the
surface stress is anisotropic and is a function of the surface
strain [18,19]. Our system is a special case: having a fluid
origin, the capillary term in Eq. (1) corresponds to a
surface stress that is both isotropic in the plane tangent to
the boundary and independent of the strain. The surface
tension � between the outer fluid and the solvent can be
measured independently; the comparison of experiments
and models involves no adjustable parameter, even in the
nonlinear regime.

We start with cross sections having the highest possible
symmetry, namely, circular cylinders. Cylindrical molds
with a radius ranging from �0 ¼ 0:45 to 2 mm and a length
L � 4 cm are prepared, and an agar gel is formed inside
the mold. Then, the polystyrene mold is immersed into
liquid toluene and gets dissolved within few minutes; see
the inset in Fig. 1. The gel is denser than toluene and sinks

until it reaches a horizontal grid placed at the bottom of the
container. The grid is hydrophobic to prevent adhesion
with the gel. The gel is imaged using a standard camera.
It is always found to be shorter and thicker when immersed
in toluene, compared to its initial shape set by the mold. Its
surface appears to be smooth, consistent with the fact that
the radius �0 is larger than the critical radius of the
Rayleigh-Taylor instability [15]. We measure the ratio
� � 1 of the final length to the initial length L, as a
function of � and �0. The values of � collapse on a curve
when plotted as a function of the dimensionless surface
energy �� ¼ �=�0� ¼ ‘=�0 (Fig. 1). We use the indepen-
dently measured water-toluene surface tension � ¼
36:5 mN=m, as the gel’s solvent is pure water. We have
checked that the transverse expansion is consistent with
our approximation of incompressibility. In view of the
measured values of � � 0:85, the agar gel remains below
the elastic limit ð1� �Þ � 15%. The same phenomenon
has been reproduced using polyacrylamid gels (data not
shown).
The measurements of the stretch � can be compared to a

prediction based on Eq. (1). Assuming that the cylinder is
long (L � �0) and ignoring any end effect (L � �=�),
we seek a solution in the form of a homogeneous and
biaxial deformation gradient F. We use Cartesian coordi-
nates ðx; y; zÞ, the coordinate axis z being aligned with the
cylinder’s axis. Owing to the cylindrical symmetry and

to the incompressibility, we write F ¼ �ez � ez þ
��1=2ðex � ex þ ey � eyÞ. The deformed lateral area is

A ¼ ð2��0=�
1=2Þð�LÞ, where the first factor is the

deformed perimeter proportional to the transverse contrac-

tion ��1=2, and the second is the length of the deformed
cylinder proportional to the axial stretch �. The area con-
tributions coming from the disks at the ends are neglected.
We insert these into Eq. (1) and use a thin disk dV0 ¼
��0

2dz0 as the undeformed volume element, with 0 �
z0 � L. The resulting expression of the energy Eð�Þ ¼
1
2��0

2L�ð4 ���1=2 þ �2 þ 2��1 � 1Þ is then minimized

with respect to �, which yields

� ¼
��

1þ ��2

4

�
1=2 � ��

2

�
2=3

; where �� ¼ �

��0

: (2)

In Fig. 1, this prediction is shown to yield very good
agreement with the experimental data with no adjustable
parameter.
We now consider prismatic rods having an initially

square cross section. After dissolution of the mold by
toluene, the gel is transferred into silicon oil. Compared
to toluene, silicone oils offers the advantage of having a
much lower density mismatch �� with water: �� <
0:01 g=cm�3. This warrants that the ratio of the elastoca-
pillary length ‘ to the gravity length �=ðg��Þ is smaller
than 5	 10�3 so that gravity can be neglected. We com-
pared the deformed shapes of square based prisms having
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FIG. 1 (color online). Shortening of an initially circular cylin-
der made of agar gel when immersed in toluene. The axial
stretch � � 1 of a circular elastic cylinder is plotted for different
values for the shear modulus� and of the initial radius �0 (in the
range 0.45 to 2 mm), as a function of the dimensionless surface
energy ��. It is compared to the analytical formula in Eq. (2)
(solid curve). Inset: Experimental pictures for � ¼ 200 Pa and
�0 ¼ 0:8 mm. The agar cylinder is formed inside a translucent
mold (top); after dissolution of the mold, it lays on a hydro-
phobic grid and shortens as the result of surface stress (bottom).
To aid visualization, the boundaries of the agar cylinder are
highlighted using a dashed brown overlay.
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the same dimensions and shear moduli: the agar gel was
significantly more deformed than the polyacrylamid gel.
This can be explained by the fact that the agar gel is
deformed beyond its elastic limit (15%) in the neighbor-
hood of sharp edges; there, the strain concentrates and has
been argued to exceed 100% [2]. Therefore, we used
polyacrylamid gels to study the deformation of sharp
edges, as it has a very large elastic limit (� 500%).

Experiments are carried out for different sizes of the
initial cross section (a0 ¼ 3 to 6 mm) and for various
values for the shear modulus (� ¼ 35, 60, 88, and
125 Pa). A longitudinal contraction was again observed.
However, the most striking effect is that the initially square
cross sections get rounded by surface tension; see Fig. 2(b).
The rounding of an elastic wedge by surface tension has
been simulated in earlier work [2], which focused on the
neighborhood of the tip. The stress is large there, making
the neo-Hookean law unreliable and the results of the
simulation sensitive to the mesh (having tried to reproduce
the simulation, we suspect that the finite tip curvature
reported in Ref. [2] is due to the finite mesh size). This
may explain why the quantitative predictions of this simu-
lation have not been confirmed in experiments so far. We
consider a global measure of the rounding of the cross
sections instead, namely, the difference �A between the
area of the deformed cross sections and the area b2 of the
smallest square enclosing it, as sketched in Fig. 2(a). When
the relative difference �A=b2 is plotted as a function of
the dimensionless surface stress �� ¼ �=a0� ¼ ‘=a0, as in
Fig. 2(c), experimental points are found to collapse on a
master curve. The rounding effect is more pronounced as

the ratio �� ¼ ‘=a0 is smaller. Transferring the gel from oil
into water, thereby suppressing the surface tension, we
recover the original square cross sections: the deformation
of the gel is elastic and reversible, and is driven by surface
tension.
For square cross sections, the minimization of the en-

ergy (1) defines a nonlinear elasticity problem that has no
analytical solutions. We carried out numerical simulations
of a neo-Hookean solid deformed by surface tension, using
the finite-element method (FEM) [20]. Assuming reflec-
tional symmetry, we considered a domain of size a0=2	
a0=2	 L=2 and implemented the corresponding symmet-
ric boundary conditions. An incompressible neo-Hookean
model was used, including the effect of the surface energy.
We adopted a set of units such that a0 ¼ 1 and � ¼ 1 and
varied the dimensionless surface tension ��. The dimen-
sionless measure of rounding �A=b2 was implemented
numerically as described earlier. The agreement between
simulation [solid curve in Fig. 2(c)] and experiments is
very good in the entire range of values of �� accessible in
the experiments. Note that deformations are large: the
rounding parameter �A=b2 varies nonlinearly with sur-
face tension, both in the simulation and in the experiments.
A detailed comparison of the shapes of the lateral bounda-
ries yields an excellent agreement, too [compare the solid
red and dotted light blue curves in Fig. 2(b)]. To the best of
our knowledge, these comparisons are the first quantitative
test of the rounding of elastic solids by surface tension
without any adjustable parameter.
We now consider the even less symmetric case of a

prism whose base is an isosceles triangle: this leads to an
entirely different type of deformation. We analyze the case
of an infinitely long triangular prism subjected to small
surface stress first: according to the theory of linear elas-
ticity, the stress can be analyzed in the undeformed con-
figuration. The surface tension is uniformly distributed
along the triangular boundary; its component parallel to
the axis of the prism is equivalent to a pointlike force
applied at the centroid G of this boundary—G is called
the Spieker center of the triangle; see Fig. 3(a). According
to the theory of thin elastic rods, stretching and bending
arise from the resultant force and moment of the applied
load with respect to the centroid H of a cross section,
respectively. In an isosceles but nonequilateral triangle,
this point is distinct from the Spieker center G. As a result,
the force equivalent to the surface tension, which is applied
at G, induces both a compressive resultant force and a
bending moment. The compressive force induces a con-
traction effect similar to that discussed earlier for circular
cross sections. The bending effect is novel, however, and
leads to large and easily measurable displacements.
Calculating the position of the points G and H and using
the linear beam theory, one finds the curvature � of the
centerline as a function of the height h of the cross section
and of the apex angle � as
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FIG. 2 (color online). Rounding of the edges of an initially
square based prism made of polyacrylamid gel, immersed in
silicone oil. (a) The amount of rounding is measured based on
the surface area �A defined in the text (yellow region).
(b) Experimental shape of the cross section (solid red curve)
for a shear modulus � ¼ 35 Pa, surface stress � ¼ 42:6 mN=m,
and initial edge length a0 ¼ 5 mm, and comparison to the
simulation ( �� ¼ 0:26, light blue dots). (c) The dimensionless
measure of rounding �A=a2 in the experiments is plotted as a
function of the dimensionless surface stress �� for various initial
cross-sectional widths a0 and shear moduli �, and compared to
simulations (solid line).
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� ¼ ��

h

�
1

sin�2
� 2

�
; where �� ¼ �

�h
: (3)

By symmetry, this bending effect disappears in the equi-
lateral case (� ¼ 0 when � ¼ �=3), as well as for circular
and square cross sections.

This bending effect has been confirmed in experiments
using agar gel immersed in silicone oil; see the inset in
Fig. 3(d). The choice of parameters is severely constrained
by the applicability of the neo-Hookean model (requiring
moderate strain), the accuracy in measuring curvature
(requiring large surface tension and a good separation
between the points H and G), and the need to keep the
fabrication robust to imperfections: we used a length L ¼
2:5 cm, height h ¼ 4:5 mm, and apex angle � ¼ 20
. The
effect of surface tension is magnified by the slenderness of
the rod and is visible to the naked eye: the measured radius
of curvature is rexp ¼ 9:5� 1:5 cm, corresponding to a

dimensionless curvature ��exp ¼ h=rexp ¼ 0:049� 0:008.

The experiment has been reproduced 3 times, yielding
identical values of rexp within 3%. Given the small surface

energy �� ¼ 0:0172 (� ¼ 42:6 mN=m and � ¼ 550 Pa),
we would expect the linear theory (3) to be accurate, but it
predicts a significantly larger curvature ��lin ¼ 0:065.
To explain this discrepancy, we set up FEM simulations
that account both for the finite length and for nonlinear
elasticity; see Fig. 3(c). The linear theory appears to be

accurate in a very narrow range �� ¼ ‘=h & 0:005. Beyond
this, the cross sections become round and the curvature is
overestimated. The nonlinear simulation predicts ��simul ¼
0:040 for �� ¼ 0:0172; see point (B) in Fig. 3(b), which
matches the experimental value ��exp ¼ 0:049� 0:008 up

to the experimental error bounds.
Although solids are often believed to deform in a fun-

damentally different way to fluids, we have shown that
elastic rods made of soft gels can become rounded by
surface tension when immersed into a liquid, much like
bubbles. This rounding has been demonstrated at the cen-
timeter scale and involves large, easily measurable defor-
mation. Three specific modes of deformation have been
identified—they can appear concurrently, as long as the
symmetry of the cross sections allows it. A twisting mode
is expected in the absence of a particular symmetry and
could be investigated in future work. The phenomenon
reported here gives a way to generate large, reversible
deformations simply by changing the chemical properties
of a liquid bathing a solid. This effect is stronger in
filamentous structures which have a large area to volume
ratio and are ubiquitous in biology. This opens up the
possibility of tuning the texture of a hairy interface or
actuating fibrous materials using surface tension.
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