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a b s t r a c t

We consider a wide class of gradient damage models which are characterized by
two constitutive functions after a normalization of the scalar damage parameter. The
evolution problem is formulated following a variational approach based on the principles
of irreversibility, stability and energy balance. Applied to a monotonically increasing traction
test of a one-dimensional bar, we consider the homogeneous response where both the strain
and the damage fields are uniform in space. In the case of a softening behavior, we show that
the homogeneous state of the bar at a given time is stable provided that the length of the bar
is less than a state dependent critical value and unstable otherwise. However, we also show
that bifurcations can appear even if the homogeneous state is stable. All these results are
obtained in a closed form. Finally, we propose a practical method to identify the two
constitutive functions. This method is based on the measure of the homogeneous response in
a situation where this response is stable without possibility of bifurcation, and on a
procedure which gives the opportunity to detect its loss of stability. All the theoretical
analyses are illustrated by examples.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Which credit to grant to the global response of a uniaxial test in presence of softening? The generally admitted answer
is none! The advanced argument is that the experimental curve is not really representative of the intrinsic material
behavior but a mixture of structural and material effects. The reason should be that the fields cannot be homogeneous in
the sample because of the inevitable presence of localizations of the deformation in softening materials. For quasi-brittle
materials, this empirical conclusion is reinforced by theoretical arguments based on local damage models, i.e. on models
where the evolution of the damage at a point merely depends on the history of the strain at this point (Bažant, 1976).
Indeed, whatever the method used, as well that based on the loss of ellipticity (Hill, 1958), as that based on the loss of
stability (Nguyen, 2000; Marigo, 2000), the conclusion is the same: the homogeneous response is not observable. But a
careful study (Marigo, 2000) shows that all the (infinite number of) responses predicted by such a local model are not
observable. The reason is that a further localization of the deformation is always preferable from an energetic viewpoint.

Accordingly, if one assumes that in reality the localization is necessarily bounded from below and that a limit curve does
exist, then one must change the model and introduce some characteristic length in order to penalize the too localized
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deformations. That leads to the concept of non-local damage models which may be classified on the basis of the regularization
technique. One can distinguish: (i) the integral procedure which makes use of a weight function and integrates the state variables
over a typical domain whose size is related to the characteristic length (Pijaudier-Cabot and Bazant, 1987); (ii) the gradient
scheme which introduces higher order terms with respect to spatial derivatives in the governing equations (Frémond and
Nedjar, 1996; Comi and Perego, 2001; Pham and Marigo, 2010b). In both cases, the non-local terms may involve the displace-
ment field, the damage variable, or both (Lorentz and Andrieux, 2003).

Once this non-local approach was introduced, almost all theoretical studies, mainly developed in a one-dimensional
context, have focussed on the role of the non-local terms for controlling the size of the localization zone. Some of them
investigate the loss of ellipticity of the governing equations by means of a wave propagation analysis (Hill, 1962; Benallal
et al., 1993; Pijaudier-Cabot and Benallal, 1993). They show that the smallest wavelength that can propagate in an infinite
softening homogeneous medium is proportional to the characteristic length. They assimilate this wavelength to the width
of the localization zone in a generic boundary value problem for a structure with a finite dimension. Other works were
devoted to the direct construction of the localization in a finite structure under specific boundary conditions, studying its
evolution up to failure. Bažant and Zubelewicz (1988) and Benallal and Marigo (2007), for instance, have proposed,
respectively, in a non-local setting and a gradient damage context, a complete study of the localizations for particular
damage laws, exhibiting explicit solutions for the localization profile. In both cases it was shown that the size of the
localization is proportional to the internal length.

In the same time, the issue of the pertinence of the global response and the question whether the homogeneous states are
observable became a secondary interest. Only few papers focus on these aspects and its relevance for the identification of the
damage law (see e.g. Mazars et al., 1988; Bažant and Pijaudier-Cabot, 1989). Our paper is devoted to these two questions and,
even more, we will use the properties of stability of the homogeneous states to identify the constitutive parameters and
functions of the gradient damage model. The present work extends the previous (published or unpublished) results established
in a more restrictive context (Marigo, 2000; Benallal and Marigo, 2007; Pham et al., 2010). Here, we make a precise effort to
keep the discussion as general as possible, and to restrict to the minimum the arbitrariness of the assumptions on the
constitutive laws. Considering a wide class of models, we classify them on the basis on the qualitative properties of their
response in a one-dimensional traction test. To this end, we perform a detailed analytical study of the homogenous response,
including a complete discussion of the possible loss of stability and bifurcation toward localized solutions.

All the analyses relie on the very fecund variational approach which gives a sound theoretical framework for constructing
and analyzing rate independent behaviors (Mielke, 2005; Bourdin et al., 2008; Pham and Marigo, 2010a,b). The basic
ingredients of the variational approach are as follows: first, one defines the state variables of the model which can be of local or
global nature; then, one defines the total energy of the system associated with its current state. This total energy includes the
potential as well as the dissipated energy; finally, one formulates the evolution problem on the basis of three fundamental
physical principles: (i) the irreversibility of some state variables (here the damage parameter), (ii) a stability condition and (iii) an
energy balance. The irreversibility allows us to discriminate between the potential and the dissipated energy in the total energy,
and to define the concept of accessible states; the stability condition requires that the current state realizes, at each time, a local
minimum of the total energy among all accessible close states; the energy balance takes a form which permits to handle time
discontinuous evolutions. The origin of such an approach in damage mechanics can be found in the standard evolution law
postulated by Marigo (1981) and then justified by Marigo (1989) by energetic arguments. The next step was to formulate the
concepts of stability and bifurcation in terms of energetic variational principles (Nguyen, 1987, 2000). The last step which leads
to the present formulation can be found in Pham and Marigo (2010a,b) and is based on the work of Mielke (2005). A great
amount of works devoted to fracture mechanics and based on this approach have been achieved in the last decade (see Bourdin
et al., 2008, for a general survey). The main advantages of the variational approach are to give a unified setting for the analysis
of existence, uniqueness and stability of quasi-static solutions and their numerical treatment (Bourdin, 2007; Amor et al., 2009).
Indeed, while in the classical approaches the concept of stability is an extra assumption which can be seen as a post-treatment,
in the variational approach the stability is one of the components of the evolution problem. In particular, what is generally
considered as separate assumptions like the equilibrium equations, the boundary conditions and the laws governing the
evolution of the internal variables become here a consequence of the three physical principles and of the choice of the energy
functional. Thus, in the context of gradient damage models, the non-local damage criterion and the natural damage boundary
conditions are automatically deduced from the variational formulation. The ‘‘classical’’ Kuhn–Tucker conditions, see for
example (Comi, 2001; Geers et al., 2000; Lorentz and Andrieux, 1999; Lorentz and Benallal, 2005; Peerlings et al., 2001), are
derived from the first order stability condition and the energy balance, while the main results of stability and bifurcation come
from the second order stability conditions and some properties of the second derivative of the total energy.

Specifically, the paper is structured as follows. Section 2 is devoted to the construction of the gradient damage model
and to the setting of the evolution problem. First, we introduce two general families of gradient damage models, the
so-called strongly brittle materials and weakly brittle materials. After a normalization of the scalar damage parameter,
each family is characterized by two functions of this parameter. Then, the evolution problem is formulated in terms of the
three physical principles of irreversibility, stability and energy balance. Even if these principles have a more general scope,
they are written here in a unidimensional setting only. In Section 3, we study the evolution problem of a bar submitted to a
monotonically increasing traction at one end and we consider the particular solution where the strain and the damage
fields are uniform in space. This particular evolution is called the homogeneous response. We discuss the properties of
the resulting stress–strain curve and we analyze the stability of the homogeneous state associated with each value of the
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prescribed overall strain. That allows us to highlight size effects and to introduce the fundamental function giving the
critical length of the bar beyond which the homogeneous state is no more stable. In Section 4, we study the possibility of
bifurcation from the homogeneous branch by setting first the bifurcation problem. Then we show that a bifurcation to a
stable branch is possible for a bar length smaller than the critical length associated to the loss of stability of the
homogeneous state. Section 5 presents a possible method for the identification of the two state functions which
characterize the behavior of the material. Since the homogeneous response is the unique possible response if the length of
the bar is sufficiently small, we explain first how one function can be obtained from the associated stress–strain curve.
Then, we propose a procedure for detecting the loss of stability of the homogeneous state which gives access to the second
state function. Two (long) appendices are devoted to the solution of generic variational problems which are related to the
stability and the uniqueness of the homogeneous response.

The following notations are used: the dependence on the time parameter t is indicated by a subscript whereas the
dependence on the spatial coordinate x is indicated classically by parentheses, e.g. x/utðxÞ stands for the displacement
field at time t. In general, the functions of the damage parameter are represented by sans serif letters, like EðaÞ, SðaÞ or LðaÞ.
The prime denotes either the derivative with respect to x or the derivative with respect to the damage parameter, the dot
stands for the time derivative, e.g. u0tðxÞ ¼ @utðxÞ=@x, E0ðaÞ ¼ dEðaÞ=da, _utðxÞ ¼ @utðxÞ=@t. An intensive use of variational
methods is made and the most classical results are given without details. The reader not familiar with these tools is invited
to refer to relevant textbooks, e.g. Dacorogna (1992).

2. Setting of the damage evolution problem

2.1. Construction of the gradient damage model

Since we will only consider uniaxial tests, the construction of the model is simply made in a one-dimensional
framework, but the procedure can easily be extended in a full three-dimensional setting, see Pham and Marigo (2010a,b).
Accordingly, we consider a one-dimensional body made of an elastic damaging material whose behavior is defined as
follows:

% The damage state of the body at point x is characterized by a scalar parameter which is temporarily denoted by D(x)
(a change of variable will be made later so that the damage variable be finally denoted by a). Without loss of generality,
we can assume that D(x)¼0 corresponds to the undamaged state of the point. The fully damaged state of the point, that
is when the point cannot sustain any stress any more, corresponds to Dm, with Dm possibly infinite.
% Let us denote by eðxÞ the strain at x and by D0ðxÞ ¼ dD=dxðxÞ the gradient of damage at x. The triplet ðeðxÞ,DðxÞ,D0ðxÞÞ

constitutes the state of point x.
% In order that the state of a point goes from the natural undamaged state (0,0,0) to the state ðe,D,D0Þ 2 R& ½0,Dm( &R,

the exterior must supply an energy (by unit of length) Wðe,D,D0Þ. This supplied energy is independent of the path
followed to reach ðe,D,D0Þ.

As we will see later, once the choice of the damage parameter is made, the knowledge of its maximal value Dm and of the
state function ðe,D,D0Þ/Wðe,D,D0Þ is sufficient to characterize the behavior of the material. In particular the stress sðxÞ at
point x is given by

sðxÞ ¼ @W
@e ðeðxÞ,DðxÞ,D

0ðxÞÞ:

In order to restrict the generality let us progressively introduce some additional assumptions on the state function W.

H1 The body is homogeneous. Hence, the constant Dm and the state function W do not depend explicitly on x.
H2 The material is isotropic. Hence, since the symmetry x/)x changes D0 into )D0, W must satisfy Wðe,D,)D0Þ ¼

Wðe,D,D0Þ.
H3 No residual stress exists in any unstrained state. Hence @W=@eð0,D,D0Þ ¼ 0.
H4 The model is developed in the framework of small perturbations in terms of the strain and the gradient of damage.

Accordingly, assuming that e and D0 remain sufficiently close to (0,0), the energy density function W is expanded up to
the second order with respect to e and D0. Specifically, W can read as

Wðe,D,D0Þ ¼w0ðDÞþs0ðDÞeþw1ðDÞD0þ1
2 w2ðDÞD02þs1ðDÞeD0þ1

2EðDÞe2:

But H2 implies that w1ðDÞ ¼ s1ðDÞ ¼ 0 and H3 implies that s0ðDÞ ¼ s1ðDÞ ¼ 0. Therefore, in the present context W is
reduced to

Wðe,D,D0Þ ¼w0ðDÞþ1
2 w2ðDÞD02þ1

2EðDÞe2: ð1Þ

The stress is then given by s¼ EðDÞe which allows us to interpret E(D) as the Young modulus of the material in the
damaged state D.
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H5 The function D/w0ðDÞ is continuously differentiable, strictly increasing and w0(0)¼0. (This assumption is natural
since w0(D) represents the energy dissipated by the material during a damage process where D0 is always equal to 0,
see Section 3.2.)

H6 The function D/w2ðDÞ is positive. (This assumption is essential in order that the gradient damage term plays a
regularizing role.)

Remark 1. We only consider uniaxial tests where the material is always either in tension or in compression. Therefore, it
is not necessary to discriminate the behavior according to the sign of e. But, of course, the constitutive functions D/EðDÞ,
D/w0ðDÞ and even D/w2ðDÞ are (in general) different in tension and in compression. We could also make the damage
variable dependent on the sign of e like in Mazars (1986). In a general way, a careful modeling of the asymmetric behavior
in tension and compression is outside the scope of the present paper and is reserved for future works.

At this stage of the construction, the damage parameter D has a purely phenomenological role. It is quite licit to change the
parameter without modifying the intrinsic behavior of the material. Accordingly, it is possible to reduce the number of
constitutive functions to be determined from three to two with the help of a change of the damage variable. Many choices
are possible, cf. Pham and Marigo (2010a,b). For example, a way consists in transforming the function D/w2ðDÞ into a
constant. We make here another choice which consists in choosing the ‘‘homogeneously’’ dissipated energy as the damage
variable (except for a multiplicative factor). This choice makes easier the interpretation and the identification of the
constitutive functions. Specifically, one proceeds as follows.

First, since D/w0ðDÞ is strictly increasing by virtue of H5, we can consider its inverse function. Then we distinguish
two cases according to whether w0(Dm) is finite or infinite.

Case w0ðDmÞoþ1. Let us set w1¼w0(Dm) and choose as the new damage variable a¼w0ðDÞ=w1. Then, a grows from 0
to 1 when D grows from 0 to Dm and the second order term w2ðDÞD02 becomes

w2ðDÞD02 ¼w2ðD)1ðaÞÞ w2
1a02

w00ðD)1ðaÞÞ2
:

Since w240 by virtue of H6, the coefficient of a02 is also positive and can read as w1LðaÞ2 where LðaÞ40 has the dimension
of a length. Accordingly, the energy density can finally read as the function W defined on R& ½0,1( &R by

Wðe,a,a0Þ ¼w1aþ1
2 w1LðaÞ2a02þ1

2EðaÞe
2, ð2Þ

where EðaÞ denotes now the function giving the Young modulus in terms of a. This type of model will be called strongly
brittle material.

Case w0ðDmÞ ¼ þ1. Then we choose arbitrarily D1 2 ð0,DmÞ, set w1 ¼w0ðD1Þ and take as the new damage variable

a¼w0ðDÞ=w1. Then, a grows from 0 to 1 when D grows from 0 to Dm. The second order term w2ðDÞD02 can be written

w1LðaÞ2a02 again. Finally, the energy density W can still read as in (2) but is now defined on R& ½0,þ1Þ &R. This type of
model will be called weakly brittle material.

Thus, in both cases the energy density takes the same form, the range of damage parameter only differs from one case
to the other. Accordingly, in order to determine the behavior of the material, one must identify the two functions LðaÞ and
EðaÞ, the constant w1 and whether am :¼ supa¼ 1 or 1.

The qualitative properties of the damage model, in particular its softening or hardening character, strongly depend on
some properties of the stiffness function a/EðaÞ, the compliance function a/SðaÞ ¼ 1=EðaÞ and their derivatives. From
now on, we adopt the following hypotheses:

Hypothesis 1 (Constitutive assumptions). For given am 2 f1,þ1g, the functions a/EðaÞ, a/SðaÞ and a/LðaÞ enjoy the
following properties on their domain of definition D¼ ½0,amÞ:

(i) The stiffness function a/EðaÞ is positive, decreasing from E0 to 0 and twice continuously differentiable. Its derivative
a/E0ðaÞ is negative, increasing from )E00 to 0:

Eð0Þ ¼ E040, EðamÞ ¼ 0, E0ðamÞ ¼ 0

8a 2 ½0,amÞ, EðaÞ40, E0ðaÞo0, E00ðaÞ40:

(ii) Therefore, the compliance function a/SðaÞ is positive, increasing from S0¼1/E0 to 1 and twice continuously
differentiable:

Sð0Þ ¼ 1=E0, SðamÞ ¼ þ1; 8a 2 ½0,amÞ, SðaÞ40, S0ðaÞ40:
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Moreover, according to the sign of the second derivative S00, the behavior is either softening or hardening, see Section 3.
Specifically, we will distinguish

hardening behavior when S00o0,

softening behavior when S0040:

(

As we will show in Section 3.1 (see cases 1 and 2 page 14), these definitions of hardening and softening behaviors lead to
the same concepts of hardening and softening as those which are usually introduced in terms of the monotonicity of the
stress–strain response.

(iii) a/LðaÞ is positive and twice continuously differentiable.

Let us illustrate the different types of models with the two following families:

Example 1. A family of models which satisfies the assumptions above with am ¼ 1 and then corresponds to strongly brittle
materials is the following one when q41:

EðaÞ ¼E0ð1)aÞq, w1 ¼
qs2

c

2E0
, LðaÞ ¼ ð1)aÞp‘c: ð3Þ

It contains five material parameters: the sound Young modulus E040, the dimensionless parameters p 2 R and q41, the
critical stress sc40 and the internal length ‘c40 (see their interpretation in Section 3). Moreover, since S00ðaÞ ¼ qðqþ1Þ
ð1)aÞ)q)2S040, all these models lead to a softening behavior.

Example 2. Another family of models which satisfies the assumptions above with am ¼1 and then corresponds to weakly
brittle materials is the following one when q40:

EðaÞ ¼ E0

ð1þaÞq , w1 ¼
qs2

c

2E0
, LðaÞ ¼ ‘c

ð1þaÞp : ð4Þ

It also contains five material parameters: the sound Young modulus E040, the dimensionless parameters p 2 R
and q40, the critical stress sc40 and the internal length ‘c40 (see their interpretation in Section 3). Moreover, since
S00ðaÞ ¼ qðq)1Þð1þaÞq)2S0, the models with 0oqo1 lead to a hardening behavior while those with q41 to a softening
behavior.

2.2. The evolution problem

2.2.1. Formulation
Let (0,L) be the natural reference configuration of a homogeneous one-dimensional bar. The bar is made of the

damaging material characterized by the energy density function W given by (2). The end x¼0 of the bar is fixed, whereas
the displacement of the end x¼L is prescribed to a value Ut depending on an increasing parameter tZ0 which plays the
role of the ‘‘time’’:

utð0Þ ¼ 0, utðLÞ ¼Ut , tZ0: ð5Þ

All the analyses are made in a quasi-static setting. The equilibrium state of the bar at time t is characterized by the pair
ðut ,atÞ of the displacement and damage fields. Assuming that the bar is undamaged at t¼0, the evolution problem consists
in finding t/ðut ,atÞ for t 2 ½0,trÞ where tr denotes the time at which the bar breaks, i.e. when the damage field takes the
critical value am somewhere in the interior or at the ends of the bar:

tr ¼ sup tZ0 : sup
x2½0,L(

atðxÞoam

( )

: ð6Þ

The time tr is not known in advance and must be determined. The evolution of the displacement and the damage in the bar
is obtained via a variational formulation, the main ingredients of which are recalled hereafter, see Pham and Marigo
(2010a,b) for details.

I. First, we associate with any pair ðu,aÞ of displacement and damage fields the total energy Eðu,aÞ of the bar

Eðu,aÞ ¼
Z L

0

1
2
w1LðaðxÞÞ2a0ðxÞ2þ

1
2
EðaðxÞÞu0ðxÞ2þw1aðxÞ

! "
dx, ð7Þ

where the prime denotes the derivative with respect to x.
II. Then, we define the set of admissible fields. If we consider only damage fields without failure, i.e. a such that

supx2½0,L(aðxÞoam, then the energy is finite provided that both u and a belong to H1(0,L), the Sobolev space of functions
which are square integrable and the weak derivative of which is also square integrable (Brezis, 1983). Accordingly,
the affine space of kinematically admissible displacement fields at time t, say Ct , and its associated linear space C0 are
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given by

Ct ¼ fv 2 H1ð0,LÞ : vð0Þ ¼ 0,vðLÞ ¼Utg, ð8Þ

C0 ¼H1
0ð0,LÞ ¼ fv 2 H1ð0,LÞ : vð0Þ ¼ vðLÞ ¼ 0g: ð9Þ

The convex set of admissible damage fields without failure D and the convex cone of admissible damage evolution
fields Dþ are defined by

D¼ a 2 H1ð0,LÞ : aZ0,sup
½0,L(

aoam

( )
, Dþ ¼ fb 2 H1ð0,LÞ : bZ0g: ð10Þ

Let us note that for each a in D, a is continuous on [0,L] and hence maxx2½0,L(aðxÞoam.

Remark 2. We do not introduce any constraint on the damage at the ends of the bar. The consequence will be that
natural boundary conditions will appear by virtue of the stability and energy balance principles. This absence of
constraint is essential for obtaining homogeneous evolutions.

III. Finally, the evolution problem consists in finding tr and, for t 2 ½0,trÞ, the displacement and damage fields ðut ,atÞ 2
Ct &D which have to satisfy the three following items:
(IR) Irreversibility of the damage evolution: the damage t/at starts from 0 at t¼0 and must be a non-decreasing

function of t.
(ST) Stability of the state with respect to perturbations in the direction of accessible states: at every t, the state ðut ,atÞmust

be directionally stable in the following sense:

8ðv,bÞ 2 C0 &Dþ , (h40 : 8h 2 ½0,h(,

ðutþhv,atþhbÞ 2 Ct &D, Eðutþhv,atþhbÞZEðut ,atÞ: ðSTÞ

That means that, to perturb the bar in any way compatible with the boundary conditions and the irreversibility of
damage, the exterior must supply an amount of energy (at least for sufficiently small perturbations).

(EB) Energy balance during the evolution: at every t, the total energy Eðut ,atÞ must satisfy the following balance of
energy:

Eðut ,atÞ)Eðu0,a0Þ ¼
Z t

0
stðLÞ _Ut dt, ðEBÞ

where st denotes the stress field at time t, i.e.

stðxÞ ¼ EðatðxÞÞu0tðxÞ: ð11Þ

In the present context, the energy balance simply requires that the variation of the total energy be equal to the
work done by the external force. The interested reader must refer to Pham and Marigo (2010a,b) for a general
discussion on the formulation of the energy balance in the context of damage mechanics, to Mielke (2005) for
general rate independent behaviors and to Bourdin et al. (2008) for its use in the variational approach to fracture.

2.2.2. The first order stability condition
A necessary condition for the stability of a state in the sense (ST) is the non-negativeness of the first variation of the

total energy for the admissible evolutions of the state variables. We will refer to this first order stability condition as (st).
Its consequences are illustrated in the following proposition.

Proposition 2.1. Let ðut ,atÞ be a solution of the evolution problem. Then, at each time, the so-called first order stability condition
(st) is satisfied

8ðv,bÞ 2 C0 &Dþ , E0ðut ,atÞðv,bÞZ0 ðstÞ

where E0 denotes the directional derivative of E, i.e.

E0ðu,aÞðv,bÞ ¼
Z L

0
EðaÞu0v0þ 1

2
E0ðaÞu02þw1þw1LðaÞL0ðaÞa02

! "
bþw1LðaÞ2a0b0

! "
dx: ð12Þ

In turn, (st) is equivalent to the two following items

(i) Mechanical equilibrium: The stress st is constant along the bar and related to the damage field by

st ¼
UtR L

0 SðatðxÞÞ dx
: ð13Þ
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(ii) Non-local damage criterion: The damage field at satisfies the weak form of the damage criterion
Z L

0
w1LðatÞ2a0tb

0 dxþ
Z L

0
)

1
2
S0ðatÞs2

t þw1þw1LðatÞL0ðatÞa02t
! "

b dxZ0, 8b 2 Dþ , ð14Þ

which can take the following strong form when at belongs to H2(0,L):

@
@x

w1LðatÞ2
@at

@x

! "
þ

1
2
S0ðatÞs2

t rw1þw1LðatÞL0ðatÞa02t a:e: in ð0,LÞ,

a0tð0Þr0, a0tðLÞZ0:

8
><

>:
ð15Þ

Proof. Dividing (ST) by h and passing to the limit when h goes to 0 lead to (st). Choosing b¼ 0 in (st), we obtain the weak
form of the equilibrium of the bar

Z L

0
stðxÞv0ðxÞ dx¼ 0, 8v 2 C0, ð16Þ

from which we immediately deduce that the stress is constant along the bar and hence

st ¼ EðatðxÞÞu0tðxÞ, 8x 2 ð0,LÞ: ð17Þ

Dividing (17) by EðatðxÞÞ, integrating over (0, L) and using the boundary conditions (5), we get (13). Inserting (13) into (st)
leads to (14). This latter inequality can be read in the sense of distribution

@
@x

w1LðatÞ2
@at

@x

! "
þ

1
2
S0ðatÞs2

t rw1þw1LðatÞL0ðatÞa0
2

t :

When at is smooth enough, say in H2(0,L), then the inequality reads in the classical sense almost everywhere. Moreover, in
such a case, a0t is continuous over [0,L].

Taking h40 small enough, bðxÞ ¼ ð1)x=hÞþ where aþ¼max{a,0} and inserting into (14) gives

)
1
h

Z h

0
w1LðatÞ2a0t dxþ

Z h

0
w1þw1LðatÞL0ðatÞa02t )

1
2
S0ðatÞs2

t

! "
1)

x
h

# $
dxZ0:

Passing to the limit when h goes to 0, we get a0tð0Þr0. By the same procedure we get also a0tðLÞZ0.
Conversely, it is easy to check that if at 2 H2ð0,LÞ and (15) hold then (14) is satisfied and hence (st) holds. &

2.2.3. The energy balance for smooth evolutions
Let us suppose that the fields evolve smoothly in time in such a way that the rates _ut and _at belong to H1(0,L).

Differentiating (EB) with respect to t leads to 0¼ E0ðut ,atÞð _ut , _atÞ)st
_Ut . Since _uð0Þ ¼ 0 and _uðLÞ ¼ _Ut , we haveR L

0 EðatÞu0t _u
0
t dx¼ st

_Ut and we finally obtain the new form of the energy balance:

0¼
Z L

0
)

1
2
S0ðatÞs2

t þw1þw1LðatÞL0ðatÞa0
2

t

! "
_atþw1LðatÞ2a0t _a 0t

! "
dx: ðebÞ

When the solution is also smooth in space, after an integration by parts the equality above becomes

0¼
Z L

0
)

1
2
S0ðatÞs2

t þw1þw1LðatÞL0ðatÞa0
2

t )
@
@x

w1LðatÞ2
@at

@x

! "! "
_at dxþw1LðatðLÞÞ2a0tðLÞ _atðLÞ)w1Lðatð0ÞÞ2a0tð0Þ _atð0Þ:

Using the strong non-local damage criterion (15) and the irreversibility condition _at Z0, we finally obtain the conditions of
coherency:

_at )
1
2
S0ðatÞs2

t þw1þw1LðatÞL0ðatÞa0
2

t )
@
@x

w1LðatÞ2
@at

@x

! "! "
¼ 0 a:e: in ð0,LÞ

_atð0Þa0tð0Þ ¼ 0, _atðLÞa0tðLÞ ¼ 0:

8
><

>:
ð18Þ

Remark 3. The set of Eqs. (15)–(18) make sense and hence can be used only when the evolution is smooth both in space
and time. Unfortunately, discontinuous in time evolutions due to snap-back phenomena are common in softening
materials. In such a case, the energy balance principle (EB) is still meaningful and it implies that the total energy of the
body is a absolutely continuous function of time even if the damage evolution is not continuous.

When LðaÞ is a constant independent of a, then (15)–(18) are the ‘‘classical’’ equations found in the literature, see
Comi (1999) or Lorentz and Andrieux (2003). Let us note, however, that our variational approach gives a rational,
unambiguous, systematic method for constructing in a general way the full set of equations including the often debated
damage boundary conditions.
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3. The spatially homogeneous evolution and the issue of its stability

We assume in this section and the next one that the prescribed displacement at the end x¼L of the bar is monotonically
increasing and we set

Ut ¼ tL, tZ0 ð19Þ

so that the dimensionless parameter t represents the overall stretching of the bar.

3.1. The spatially homogeneous evolution

A natural candidate to be a solution of the evolution problem is the response where both the damage and the strain
fields are constant in space and evolve smoothly in time. Indeed, it is easy to check that, under Hypothesis 1, there exits a
(unique) continuous in time and uniform in space evolution which satisfies the irreversibility condition, the first order
stability condition and the balance of energy. Specifically, we have

Proposition 3.1. By virtue of the hypothesis that E0o0 and E0040 on D (see Hypothesis 1), the evolution ðu*t ,a*t Þ given by

u*t ¼ tx, a*t ¼
0 if toec

)
w1

E0

# $)1
ðt2=2Þ if tZec

8
<

: with ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2w1

)E0ð0Þ

s

ð20Þ

is the unique one such that the damage is uniform in space, absolutely continuous in time and satisfies (IR), (st) and (EB). In (20),
ð)w1=E

0Þ)1ðt2=2Þ denotes the value of the inverse function of a/)w1=E
0ðaÞ at t2=2.

Proof. Let us first check that ðu*t ,a*t Þ given in the statement is continuously differentiable in time and satisfies (IR), (st) and
(EB). By Hypothesis 1, E0o0, E0040 and hence a/)w1=E

0ðaÞ is a positive, continuously differentiable increasing function,
growing from e2

c=2 to þ1 when a grows from 0 to am. Therefore, t/a*t is continuous everywhere, continuously
differentiable at every taec, monotonically increasing and hence satisfies (IR). Moreover, a*t satisfies

1
2E
0ða*t Þt2þw140 if toec,

1
2E
0ða*t Þt2þw1 ¼ 0 if tZec:

(

Then, setting s*t ¼ Eða*t Þt, we have at every tZ0

ðs*t Þ2S
0ða*t Þ)2w1 ¼)E0ða*t Þt2)2w1r0,

and hence (st) is satisfied, see (13) and (14). Finally, by construction, we have

Eðu*t ,a*t Þ ¼
1
2
Eða*t Þt2Lþw1a*t L, Eðu*0,a*0Þ ¼ 0,

Z t

0
st _Ut dt¼ L

Z t

0
Eða*tÞt dt,

and (EB) is satisfied when trec. When t4ec, we have E0ða*t Þt2þ2w1 ¼ 0 and hence

d
dt
Eðu*t ,a*t Þ ¼Eða*t ÞtLþ

1
2
E0ða*t Þt2þw1

! "
L _a*t ¼ s*t L:

Integrating in time, we obtain (EB). Therefore ðu*t ,a*t Þ satisfies all the requirements.
Let us now prove that ðu*t ,a*t Þ is the unique smooth uniform evolution which satisfies (IR), (st) and (EB). If at is uniform in

space, then by the equilibrium equation (13) the strain is also uniform in space and therefore ut¼tx¼ut
n
. Inserting this

relation into (15) and (EB) leads to

)
1
2
E0ðatÞt2rw1,

1
2
EðatÞt2þw1at ¼

Z t

0
EðatÞt dt: ð21Þ

By (IR), t/at is monotonic and hence differentiable almost everywhere. Differentiating the equality in (21) with respect
to t, we obtain for almost all t

ð12E
0ðatÞt2þw1Þ _at ¼ 0: ð22Þ

Since a0 ¼ 0, we deduce from (22) and the inequality in (21) that at ¼ a*t ¼ 0 as long as t2E00þ2w140, i.e. as long as toec.
By continuity, at ¼ 0 and t2E00þ2w1 ¼ 0 at t¼ ec. Let us prove that t2E0ðatÞþ2w1 ¼ 0 when tZec. It is true at t¼ ec. If it was
not true at some t4ec, then t2E0ðatÞþ2w140. By continuity, this inequality should hold in an interval ðs,tÞ. Taking the
infimum of such a s, we should have s2E0ðasÞþ2w1 ¼ 0 (because the equality holds at ec and sZec). But almost everywhere
in the interval ðs,tÞ we must also have _at ¼ 0 by (22) and hence (because of the assumed absolute continuity of t/at)
as ¼ at. Therefore, we should have

0¼ s2E0ðasÞþ2w1ot2E0ðatÞþ2w1 ¼ t2E0ðasÞþ2w1 ¼ ðt2)s2ÞE0ðasÞ,

but it is impossible because t4s and E0ðasÞo0. Hence t2E0ðatÞþ2w1 ¼ 0 when tZec and so at ¼ a*t . That proves the
uniqueness. &

K. Pham et al. / J. Mech. Phys. Solids 59 (2011) 1163–11901170



Let us set

sc :¼

ffiffiffiffiffiffiffiffiffiffiffi
2w1

S0ð0Þ

s

¼E0ec, ð23Þ

sc corresponds to the yield stress. During the damaging phase (tZec), the stress s*t satisfies

1
2S
0ða*t Þs*t 2¼w1 ð24Þ

and is given by

s*t ¼ FðtÞ with FðtÞ ¼ tE )
w1

E0

# $)1
ðt2=2Þ

! "
: ð25Þ

Let us discuss the monotonicity properties of t/s*t according to those of S0.

1. Case of softening materials ðS0040Þ: Then a/S0 is increasing from )E2
0=E

0
0 to a limit, say S0ðamÞ, when a grows from 0 to

am. Since t/a*t is increasing when tZec, we deduce from (24) that t/s*t is decreasing from sc to sm,

sm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w1

S0ðamÞ

s

, ð26Þ

when t grows from ec to 1. This property reflects the softening character of the damage model. Note that under
Hypothesis 1, the stress s*t tends only asymptotically to sm (which is not necessarily equal to 0). In other words, an
infinite displacement is necessary to break the bar in the case of a homogeneous response.

2. Case of hardening materials (S00o0): Then a/S0 is decreasing from )E2
0=E

0
0 to S0ðamÞZ0, when a grows from 0 to am.

Since t/a*t is increasing when tZec, we deduce from (24) that t/s*t is increasing from sc to sm (still given by (26))
when t grows from ec to 1. This property reflects the hardening character of the damage model. The limit stress sm is
finite if and only if S0ðamÞa0.

Example 3. In the case of the family of damage laws of Example 1, the homogeneous evolution reads as

u*t ¼ tx, a*t ¼
0 if toec

1)
t
ec

! "2=ð1)qÞ

if tZec

8
><

>:
with ec ¼

sc

E0
: ð27Þ

In a stress–strain diagram, the response of (any point of) the bar is given by

s¼
E0e if eoec,

FðeÞ if eZec,

(
FðeÞ ¼ e

ec

! "ð1þqÞ=ð1)qÞ

sc: ð28Þ

So, e/FðeÞ is a power law whose exponent r, r¼(1þq)/(1)q), only depends on the parameter q41, see Fig. 1(i). That
means that all the models of this family with the same ratio q lead to the same homogeneous response and hence are
indistinguishable by such a test. However, the models with the same q differ by the stability properties of the

!c

" "

!

"c

"cr = −1

r =
 −

∞

!
!c

r = −1

r = 0

r =
 1

hardening

softening

Fig. 1. The stress–strain responses associated with generic models of the families of Examples 1 and 2: (i) one example of a strongly brittle material for
which the energy necessary to break the material is finite; (ii) two examples of weakly brittle materials for which the energy necessary to break the
material is infinite, one with hardening and the other with softening. The gray lines correspond to the limit cases of the exponent r of the power law.
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homogeneous response as it is shown in the next subsection. The exponent r goes from )1 to )1: r¼)1 corresponds to
the limit case where q¼ þ1 and where the dissipated energy up to failure is still infinite; r¼)1 corresponds to the limit
case where q¼1 and where the strain remains equal to ec during the damage process (limit of a snap-back behavior).

Example 4. In the case of the family of damage laws of Example 2, the homogeneous evolution reads as

u*t ¼ tx, a*t ¼
0 if toec

t
ec

! "2=ð1þqÞ

)1 if tZec

8
><

>:
with ec ¼

sc

E0
: ð29Þ

In a stress–strain diagram, the response of (any point of) the bar is given by

s¼
E0e if eoec,

FðeÞ if eZec,

(

FðeÞ ¼ e
ec

! "ð1)qÞ=ð1þqÞ

sc: ð30Þ

So, e/FðeÞ is a power law whose exponent r¼(1)q)/(1þq) only depends on the parameter q40, see Fig. 1(ii). As in the
previous example, all the models of this family with the same q give place to the same homogeneous response and hence
are indistinguishable by such a test. But again, the models with the same q differ by the stability properties of the
homogeneous response. The exponent r goes from 1 to )1: r¼1 corresponds to the limit case where q¼0 and where the
behavior is purely elastic, while r¼)1 corresponds to the limit case where q¼ þ1 and where the dissipated energy up to
failure is infinite. The behavior is with hardening if 0oqo1 and with softening if q41.

3.2. Energetic interpretations

Let us interpret the homogeneous evolution in energetic terms. Let Wt be the work done by the external forces during
the evolution up to time t and let Pt be the elastic energy stored in the bar at time t. By definition, we have

Wt ¼
Z t

0
s*t _Ut dt¼ L

Z t

0
s*t dt, ð31Þ

Pt ¼
Z L

0

1
2
Eða*t Þ

@u*t
@x

! "2

dx¼
1
2
Eða*t Þt2L: ð32Þ

Let Dt be the dissipated energy during the evolution up to time t, Dt is defined by

Dt ¼Wt)Pt : ð33Þ

Let us prove that

Dt ¼w1a*t L: ð34Þ

Indeed, it is true at t¼0. Then, differentiating (33) and using the definition of s*t , (22) and (31) lead to

_Dt ¼ s*t L)Eða*t ÞtL)1
2E
0ða*t Þt2 _a*t L¼w1 _a*t L:

Integrating in time gives the desired result. (The reader is invited to verify that the property (34) holds true even if the
loading is not monotonically increasing.) That allows us to interpret the material parameter w1 as the dissipated energy (by
unit length) during a process where the damage of the ‘‘volume element’’ grows from 0 to 1. In particular, in the case of a
strongly brittle material, i.e. when am ¼ 1, w1 is the total energy dissipated to break the ‘‘volume element’’. This property
gives a method to identify the material parameter w1 as well as the constitutive function a/EðaÞ from experimental
results based on the stress–strain response. It is one of the ingredients that we will use in Section 5 to identify the model
from uniaxial tests. Let us note, however, that the constitutive function a/LðaÞ has no influence on the stress–strain
response associated with the homogeneous evolution. As detailed in Section 5, additional measurements are necessary to
identify a/LðaÞ. Since Wt ¼Wðt,a*t ,0ÞL, W can be interpreted as the state function giving the strain work by unit length.

Remark 4. In the case of weakly brittle damage models, by definition, the (density of) energy necessary to break a volume
element is infinite. It is also the case to break a body (in our case, a bar) of finite size by a homogeneous damage process.
But, when the size of the body is large enough, such a homogeneous damage process is no more stable (see the next
subsection) and the body will break after a localized damage process. In such a case the corresponding fracture energy is
not necessarily infinite, that depends on the parameters of the models. This question is not addressed in the paper because
that requires to make a careful analysis of localized solutions, see, however, Pham et al. (2010).

Notation 1. From now on, we will use the following simplified notation for quantities referring to the homogeneous evolution:

Et ¼Eða*t Þ, E0t ¼ E0ða*t Þ, Et
00 ¼ E00ða*t Þ, St ¼ Sða*t Þ, St

0 ¼S0ða*t Þ, St
00 ¼ S00ða*t Þ, ð35Þ

St ¼ s*t ¼ Eða*t Þt, Lt ¼ Lða*t Þ: ð36Þ
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3.3. Analysis of the stability of a homogeneous state

By construction, at each time of the evolution, the homogeneous state satisfies the first order stability condition (st). It
remains to see whether it satisfies the full stability condition (ST). To this end, at given t40, let us develop the total
energy of the perturbing state ðu*t þhv,a*t þhbÞ with respect to h up to the second order for a given admissible direction
ðv,bÞ 2 C0 &Dþ :

Eðu*t þhv,a*t þhbÞ ¼ Eðu*t ,a*t ÞþhE0ðu*t ,a*t Þðv,bÞþ
h2

2
E00ðu*t ,a*t Þðv,bÞþoðh2Þ: ð37Þ

In (37), E00ðu*t ,a*t Þ denotes the second derivative of E at ðu*t ,a*t Þ, i.e. the quadratic form defined on H1(0,L)2 by

E00ðu*t ,a*t Þðv,bÞ ¼
Z L

0
w1L

2
t b
02þ

1
2
Et
00t2b2þ2Et

0tv0bþEtv
02

! "
dx: ð38Þ

By virtue of the equilibrium equation, the first order term is given by

E0ðu*t ,a*t Þðv,bÞ ¼
1
2
E
0

tt
2þw1

! " Z L

0
b dx

and using (20) we get

E0ðu*t ,a*t Þðv,bÞ ¼
)

1
2
E00ðe2

c)t2Þ
R L

0 b dxZ0 if toec,

0 if tZec:

8
<

: ð39Þ

Let us discuss the stability of the homogeneous state by discriminating the elastic phase and the damaging phase.

1. Elastic phase: toec. The homogeneous state is then (tx,0). The first order term in (37) is positive in all directions ðv,bÞ
such that ba0. Accordingly, the homogeneous state is stable in such directions. In the other admissible directions (v,0),
va0, the first order term of (37) vanishes and the second order term is given by

E00ðtx,0Þðv,0Þ ¼E0

Z L

0
v02 dx

and hence is positive. Therefore the homogeneous state is also stable in those directions and hence in all admissible
directions. Thus (ST) holds and we have proved the

Proposition 3.2. As long as toec, the homogeneous (undamaged) response (tx,0) is solution of the evolution problem.
2. Damaging phase: tZec. The homogeneous state is then ðtx,a*t Þ and the first order term in (37) vanishes. Therefore, the

stability of the homogeneous state depends on the sign of the second derivative. Specifically, the homogeneous
damaged state is stable if (resp. only if) E00ðu*t ,a*t Þðv,bÞ40 (resp. Z0) for every (non-null) admissible direction.
Introducing the stress St ¼Ett, recalling that S0tS

2
t ¼ 2w1 and using the equality Et

00t2 ¼ 2EtS
02
t S

2
t)St

00S2
t , the second

order term becomes

E00ðu*t ,a*t Þðv,bÞ ¼w1L
2
t

Z L

0
b02 dxþEt

Z L

0
ðv0)S0tStbÞ2 dx)

1
2
St
00S2

t

Z L

0
b2 dx: ð40Þ

Let us discriminate now between hardening and softening behaviors.
(a) Case of hardening behavior: Then St

00o0 and we deduce from (40) that

E00ðu*t ,a*t Þðv,bÞZ0, 8ðv,bÞ 2 C0 &Dþ

with the equality to 0 if and only if v¼0 and b¼ 0. Therefore, the state ðu*t ,a*t Þ is stable and we have proved the
following property

Proposition 3.3. In the case of a hardening behavior, the homogeneous evolution is solution of the evolution problem,
i.e. satisfies (IR), (ST) and (EB) at all t.

(b) Case of softening behavior: Then S
00

t 40. Let us note in (40) that the second order term is positive in any admissible
direction of the form (v,0) with va0. It remains to study its sign for the other admissible directions, i.e. when
ðv,bÞ 2 C0 &Dþ , ba0. For such directions, the second directional derivative is the difference between the first two
positive terms and the third positive term on the right hand side of (40). Then, the study of its sign is equivalent to
compare the following Rayleigh ratio with 1:

Rtðv,bÞ ¼
w1L

2
t

R L
0 b
02 dxþEt

R L
0 ðv
0)St

0StbÞ2 dx

1
2St
00S2

t

R L
0 b

2 dx
: ð41Þ
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Specifically, the stability of the homogeneous state is given by

min
C0&ðDþ \f0gÞ

Rt 41¼)ðtx,a*t Þ satisfies ðSTÞ,

min
C0&ðDþ \f0gÞ

Rt o1¼)ðtx,a*t Þ does not satisfy ðSTÞ:
:

8
><

>:
ð42Þ

The minimum of the Rayleigh ratio is obtained in a closed form in A.2 (after the change of variable x/x=L) and
we get

min
C0&ðDþ \f0gÞ

Rt ¼

2EtS
02
t

St
00 if p2w1L

2
t ZEtS

02
t S

2
t L2,

ðp2w1Þ1=3ðEtS
02
t S

2
t Þ

2=3

1
2St
00S2

t

Lt

L

! "2=3

if p2w1L
2
t oEtS

02
t S

2
t L2:

8
>>>><

>>>>:

ð43Þ

Let us note that 2EtS
02
t 4St

00. Indeed, 2EtS
02
t )St

00 ¼Et
00=E2

t and the inequality holds since Et
0040 by virtue of Hypothesis 1.

Therefore, the homogeneous state is stable when p2w1L
2
t ZEtS

02
t S

2
t L2. On the other hand, when p2w1L

2
t oEtS

02
t S

2
t L2, the

homogeneous state is stable provided that p2w1ðEtS
02
t S

2
t Þ

2L2
t 4 ð

1
2St
00S2

t Þ
3L2. We have thus proved:

Proposition 3.4. For tZec, the homogeneous state ðtx,a*t Þ is stable if and only if the length of the bar is sufficiently small.
Specifically, we have

LoLsðtÞ¼)ðtx,a*t Þ satisfies ðSTÞ,
L4LsðtÞ¼)ðtx,a*t Þ does not satisfy ðSTÞ,

(

with

LsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2S04t w1

St
003t2

s

Lt : ð44Þ

Accordingly, each homogeneous state is stable when the length of the bar is less than a critical value and unstable
otherwise. (Note, however, that the case L¼Ls(t) needs a refinement of the proof to determine whether the homogeneous
state is stable. Indeed, in such a case the minimum of the Rayleigh ratio is equal to 1 and the stability will depend on the
higher order derivatives of the constitutive functions. This study is outside the scope of our paper.) The critical value of the
bar length is proportional to the internal length of the material and the coefficient of proportionality depends on the state.
This dependence is a characteristic of the material and is a byproduct of the two constitutive functions a/EðaÞ and
a/LðaÞ. The example below illustrates this dependence for the families of models of Examples 1 and 2.

Example 5. In the case of the family of models of Example 1, after some straightforward calculations which use (27) and
(28), we get that the critical length of the bar beyond which the homogeneous state ðex,a*e Þ is no more stable is given by

LsðeÞ ¼
e
ec

! "ð2pþ1Þ=ð1)qÞ

‘s
c , ‘s

c ¼
2pq

ðqþ1Þ3=2
‘c: ð45Þ

Thus, contrarily to the stress–strain response, the loss of stability of the homogeneous state depends on both coefficients
p 2 R and q41. When pa)1

2, Ls is monotonic and its inverse es is given by

esðLÞ ¼
L
‘s

c

! "ð1)qÞ=ð2pþ1Þ

ec, pa)
1
2
: ð46Þ

The dependence of Ls on the strain e leads to the following types of responses according to the length of the bar and the
value of p:

1. When p4)1
2, Ls is a decreasing function of e. Therefore, all homogeneous states beyond the critical strain ec are

unstable when L4‘s
c , while only the homogeneous states such that ecreoesðLÞ are stable when Lo‘s

c . Accordingly, if
we assume that the evolution will follow the homogeneous branch as long as the state is stable, we will observe the
following type of response during a test where e is increasing (e¼ t), see Fig. 2(i):
(a) If Lo‘s

c , then the evolution of the bar follows the homogeneous branch as long as eoesðLÞ, but will bifurcate
(or jump) to a non-homogeneous branch when e¼ esðLÞ.

(b) If L4‘s
c , then the state of the bar is no more homogeneous as soon as e becomes greater than the critical strain ec.

2. When p¼)1
2, Ls is the constant ‘s

c. All homogeneous states are stable if Lo‘s
c and all states beyond the critical strain ec

are unstable if L4‘s
c , see Fig. 2(ii).

3. When po)1
2, Ls is an increasing function of e. All homogeneous states are stable when Lo‘s

c , while only the
homogeneous states such that eoec or e4esðLÞ are stable when L4‘s

c . That leads to the following type of response
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during a test where e is increasing (e¼ t), see Fig. 2(iii):
(a) If Lo‘s

c , then the evolution of the bar follows the homogeneous branch for all e.
(b) If L4‘s

c , then the evolution of the bar will bifurcate or jump to a non-homogeneous branch as soon as e4ec. But, the
evolution of the bar could recover the homogeneous branch when e4esðLÞ since the homogeneous states become
stable again.

Example 6. In the case of weakly brittle materials with softening ðq41Þ of Example 2, using (29) and (30), we get that the
critical length of the bar beyond which the homogeneous state ðex,a*e Þ is no more stable is given by

LsðeÞ ¼
e
ec

! "ð1)2pÞ=ðqþ1Þ

‘s
c , ‘s

c ¼
2pq

ðq)1Þ3=2
‘c: ð47Þ

Thus, the loss of stability of the homogeneous state depends on both coefficients p 2 R and q41. When pa1
2, Ls is

monotonic and its inverse es is given by

esðLÞ ¼
L
‘s

c

! "ðqþ1Þ=ð1)2pÞ

ec, pa
1
2
: ð48Þ

The dependence of Ls on the strain e leads to the same types of responses according to the length of the bar as for
Example 5, see Fig. 2.

4. Bifurcation of the evolution from the homogeneous response

The response of the bar can follow the homogeneous branch as long as the associated homogeneous state is stable. We
have just seen that this is possible provided that the length of the bar and/or the strain are sufficiently small. But, the fact
that the homogeneous branch is stable does not guarantee that the evolution will follow this branch up to its loss of
stability. It can happen that the evolution bifurcates on another branch (necessarily associated with non-homogeneous
states), whenever such a branch exists and is itself stable (at least in a neighborhood of the bifurcation point). (It could
even happen that the evolution jumps from a stable homogeneous state to another stable state; it is allowed in our
formulation of the evolution problem, but we do not consider here such a case.) Accordingly, it is important to identify the
possible points of bifurcation on the homogeneous branch. It is the aim of this section.

4.1. Setting of the bifurcation problem

Let t40 be a given stretching and ðu*t ,a*t Þ be the associated state of the homogeneous branch, ðu*t ,a*t Þ is given by (20). Let
us study the evolution problem in the time interval ½t,tþZÞ, with Z40 and small enough, assuming that the state of the bar
is the homogeneous one ðu*t ,a*t Þ at time t. Let fðut,atÞgt2½t,tþZÞ be a possible solution of the evolution problem during the
time interval ½t,tþZÞ. The evolution has to satisfy (IR), (ST) (hence (st)) and (EB). Let us assume that the evolution is
sufficiently smooth so that the right derivative exists at t. This derivative is denoted ð _u, _aÞ and is defined by

_u ¼ lim
tkt

ut)u*t
t)t

, _a ¼ lim
tkt

at)a*t
t)t

: ð49Þ

c

L

!c !c !c

!

Ls (!)

s
c

(i) Family 1: p> −1
2

, q > 1

Family 2: p> +1
2

, q > 1

L

!

Ls (!)

(ii)

L

!

(iii)

c

s
c

c

s
c

Ls (!)

Family 1: p= −1
2

, q > 1

Family 2: p= +1
2

, q > 1

Family 1: p< −1
2

, q > 1

Family 2: p< +1
2

, q > 1

Fig. 2. Domains of stable and unstable homogeneous states in a diagram L–e (L¼ length of the bar, e¼ homogeneous strain) for a given q and different
values of p for the families of strongly brittle materials of Example 1 or weakly brittle materials with softening of Example 2.
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Of course, ð _u, _aÞ ¼ ðx, _a*t Þ if the evolution follows the homogeneous branch. Our purpose is to find whether another
evolution rate is possible. Let us deduce from the three items of the evolution problem a set of necessary conditions that
ð _u, _aÞ must satisfy. We discriminate the case toec and the case tZec.

1. Case toec: Then the bar is undamaged and ðu*t ,a*t Þ ¼ ðtx,0Þ. The three items (IR), (st) and (EB) give the following
necessary conditions for ð _u, _aÞ:
(a) By (IR), we get _aZ0;
(b) The energy balance (EB) leads to ðebÞ which at time t reads as

0¼ )
1
2
S00S

2
t þw1

! " Z L

0

_a dx:

Since toec, w141
2S
0
0S

2
t and hence

R L
0
_a dx¼ 0. By virtue of (IR), this last equality is possible if and only if

_aðxÞ ¼ 0¼ _a*t .
(c) The stability condition (ST) implies the first order stability condition (st) which, in turn, implies (13). Taking the

right derivative of (13) at time t and using _a ¼ 0 give _s ¼ E0, _s denoting the right derivative of st at t. Since
u0tðxÞ ¼SðatðxÞÞst, we obtain _u 0ðxÞ ¼ 1 and hence _uðxÞ ¼ x¼ _u*t ðxÞ.

We have thus proved:

Proposition 4.1. When toec, the unique possible evolution rate is that of the homogeneous response: ð _u, _aÞ ¼ ðx,0Þ. That
means that there is no possibility of bifurcation from the homogeneous branch as long as the bar is undamaged.

2. Case tZec: Then the homogeneous state is ðtx,a*t Þ with a*t 2 ½0,amÞ given by )E0ða*t Þt2 ¼ 2w1. The three items (IR), (st)
and (EB) give the following necessary conditions for ð _u, _aÞ:
(a) By (IR), we get _aZ0 again and hence ð _u, _aÞ 2 C1 &Dþ .
(b) The stability condition (ST) implies the first order stability condition (st) which at time tþh reads as

8ðv,bÞ 2 C0 &Dþ , E0ðutþh,atþhÞðv,bÞZ0:

But since E0ðu*t ,a*t Þðv,bÞ ¼ 0 (see (39)), dividing the inequality above by h and passing to the limit when h goes to 0
give the following inequality that the evolution rate must satisfy

8ðv,bÞ 2 C0 &Dþ , E 00t ðð _u, _aÞ,ðv,bÞÞZ0: ð50Þ

In (50), E 00t denotes the second directional derivative of E at ðu*t ,a*t Þ considered as the symmetric bilinear form
defined on H1(0,L)2 by

E 00t ðð _u, _aÞ,ðv,bÞÞ ¼
Z L

0
w1L

2
t _a
0b0þEtð _u

0)S0tSt _aÞðv0)S0tStbÞ)
1
2
St
00S2

t _ab
! "

dx ð51Þ

Considering first (50) with b¼ 0 and using the fact that C0 is a linear space, we get
Z L

0
Etð _u

0)S0tSt _aÞv0 dx¼ 0, 8v 2 C0: ð52Þ

That leads to _u 0ðxÞ ¼S0tSt _aðxÞþ _C where _C is a constant. The constant is given by the boundary conditions _uð0Þ ¼ 0
and _uðLÞ ¼ L. Finally, we obtain

_uðxÞ ¼ ð1)S0tSt/ _aSÞxþS0tSt

Z x

0

_aðyÞ dy, / _aS :¼
1
L

Z L

0

_aðyÞ dy: ð53Þ

Inserting (53) into (50) leads to the following variational inequality for _a:

w1L
2
t

Z L

0

_a 0b0 dxþEtS
0
t
2S2

t / _aS
Z L

0
b dx)

1
2
St
00S2

t

Z L

0

_ab dxZEtS
0
tSt

Z L

0
b dx, ð54Þ

which must hold for all b 2 Dþ .
(c) The energy balance (EB) reads at time tþh

Eðutþh,atþhÞ ¼ Eðu*t ,a*t ÞþL
Z tþh

t
st dt, st ¼

tL
R L

0 SðatðxÞÞ dx
, ð55Þ

where we have taken into account that the stress is necessarily uniform in the bar at each time of a real evolution,
see (13). Expanding Eðutþh,atþhÞ up to the second order and inserting into (55) give

0¼ E0ðu*t ,a*t Þðwtþh)w*t Þþ
1
2
E00ðu*t ,a*t Þðwtþh)w*t Þ)L

Z tþh

t
st dtþoðJwtþh)w*t J2Þ, ð56Þ
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where wtþh ¼ ðutþh,atþhÞ, w*t ¼ ðu*t ,a*t Þ and J + J denotes the natural norm on H1(0,L)2. Since ðutþh)u*tþhÞ 2 C
0 and

ðatþh)a*t Þ 2 Dþ , we have

E0ðu*t ,a*t Þðutþh)u*tþh,atþh)a*t Þ ¼ 0

by virtue of (39). Therefore, using the definition (12) of E0, the boundary conditions un
tþh(0))ut

n
(0)¼0 and

un
tþh(L))ut

n
(L)¼hL, the ‘‘initial’’ condition st ¼St and the equality )E0ða*t Þt2 ¼ 2w1, we eventually get

E0ðu*t ,a*t Þðwtþh)w*t Þ ¼ E0ðu*t ,a*t Þðu*tþh)u*t ,0Þ ¼ hstL:

Then, (56) can read as

0¼
1
2
E00ðu*t ,a*t Þðwtþh)w*t Þ)L

Z tþh

t
ðst)stÞ dtþoðJwtþh)w*t J2Þ: ð57Þ

Dividing (57) by h2 and passing to the limit when h goes to 0, we finally obtain that the evolution rate must satisfy
E00ðu*t ,a*t Þð _u, _aÞ ¼ _sL where _s denotes the right derivative of the stress at t. The second derivative of the energy can be
calculated either with (38) or (51) while _s is obtained from (13). After elementary calculations using (53) we obtain

E00ðu*t ,a*t Þð _u, _aÞ ¼w1L
2
t

Z L

0

_a2 dxþEtð1)S0tSt/ _aSÞ2L)
1
2
St
00S2

t

Z L

0

_a2 dx,

_sL¼Etð1)S0tSt/ _aSÞL: ð58Þ

Therefore, _a must satisfy

w1L
2
t

Z L

0

_a2 dxþEtS
0
t
2S2

t / _aS2L)
1
2
St
00S2

t

Z L

0

_a2 dx¼ EtS
0
tSt/ _aSL: ð59Þ

We are in a position to set the bifurcation problem.

Proposition 4.2. At tZec, the evolution rate ð _u, _aÞ of any branch which is solution of the evolution problem and passes
through the homogeneous state ðu*t ,a*t Þ at t, is such that

_uðxÞ ¼ ð1)S0tSt/ _aSÞxþS0tSt

Z x

0

_aðyÞ dy, ð60Þ

_a 2 Dþ , Atð _a,b) _aÞZLtðb) _aÞ 8b 2 Dþ : ð61Þ

In (61), At and Lt are, respectively, the symmetric bilinear form and the linear form defined on H1(0,L) by

Atða,bÞ ¼w1L
2
t

Z L

0
a0b0 dxþEtS

0
t
2S2

t
1
L

Z L

0
a dx

Z L

0
b dx)

1
2
St
00S2

t

Z L

0
ab dx, ð62Þ

LtðbÞ ¼ EtS
0
tSt

Z L

0
b dx: ð63Þ

Proof. Let us remark that (54) and (59) read, respectively, as

Atð _a,bÞZLtðbÞ, 8b 2 Dþ and Atð _a, _aÞ ¼Ltð _aÞ:

Subtracting the equality to the inequality gives (61). Conversely, making b¼ _a=2 and b¼ 2 _a in (61) leads to (59).
Inserting (59) into (61) gives (54). &

4.2. Possible bifurcation points

The homogeneous evolution rate _a*t ðxÞ ¼)2Et
0=tEt

00 is always solution of (61). The question is to know whether another
solution exists. The uniqueness is guaranteed when the bilinear formAt is positive definite on H1(0,L), i.e. whenAtðb,bÞ40
for all b 2 H1ð0,LÞ\f0g. Indeed, in such a case, let us consider another solution _a. Making b¼ _a*t in (61) we obtain
Atð _a, _a*t) _aÞZLtð _a*t) _aÞ. Making b¼ _a in the variational inequality satisfied by _a*t , we get Atð _a*t , _a) _a*t ÞZLtð _a) _a*t Þ. The
addition of the two inequalities leads to Atð _a) _a*t , _a) _a*t Þr0 which is possible only if _a ¼ _a*t .

It is clear according to its definition (62) that At is definite positive when St
00o0, i.e. in the case of a behavior with

hardening. We have thus proved:

Proposition 4.3. In the case of a hardening behavior, the unique possible evolution rate is that of the homogeneous response;
there is no possibility of bifurcation from the homogeneous branch.

Remark 5. A stronger result should be to prove that the homogeneous response is the unique one when the behavior is
with hardening. The proof is outside the scope of our paper.
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Let us now consider softening behaviors, i.e. St
0040. In such a case, the quadratic form associated with At contains two

positive and one negative terms. Accordingly, the study of the positivity of At is equivalent to compare the following
Rayleigh ratio R̂t with 1:

R̂tðbÞ ¼
w1L

2
t

R L
0 b
02 dxþEtS

0
t
2S2

t
1
L

R L
0 b dx

# $2

1
2St
00S2

t

R L
0 b

2 dx
, b 2 H1ð0,LÞ\f0g: ð64Þ

Specifically, the possibility of bifurcation from the homogeneous state is given by

min
H1ð0,LÞ\f0g

R̂t 41¼)no bifurcation;

min
H1ð0,LÞ\f0g

R̂t r1¼)bifurcation possible:
:

8
><

>:
ð65Þ

The minimum of the Rayleigh ratio is obtained in a closed form in A.1 (after the change of variable x/x=L) and we get

min
H1ð0,LÞ\f0g

R̂t ¼

2EtS
02
t

St
00 if p2w1L

2
t ZEtS

02
t S

2
t L2,

2p2w1L
2
t

St
00S2

t L2
if p2w1L

2
t oEtS

02
t S

2
t L2:

8
>>>><

>>>>:

ð66Þ

But since 2EtS
02
t 4St

00, no bifurcation is possible if p2w1L
2
t ZEtS

02
t S

2
t L2. On the other hand, when 2p2w1L

2
t rSt

00S2
t L2, then

p2w1L
2
t oEtS

02
t S

2
t L2 and a bifurcation is possible. We have thus proved:

Proposition 4.4. For a softening material, when tZec, a bifurcation from the homogeneous branch is possible if and only if the
length of the bar is sufficiently large. Specifically, we have

LoLbðtÞ¼) no bifurcation at ðu*t ,a*t Þ,
LZLbðtÞ¼) bifurcation possible at ðu*t ,a*t Þ,

(

with

LbðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2w1

St
00S2

t

s

Lt : ð67Þ

Remark 6. Since Dþ , H1ð0,LÞ, then minH1ð0,LÞR̂t rminDþ R̂t and LbðtÞrLsðtÞ. That means that a bifurcation is possible
even though the homogeneous state is stable. Let us note that the ratio Ls(t)/Lb(t) depends only on the function state
a/EðaÞ and the parameter w1, but not on a/LðaÞ. Indeed, comparing (44)–(67) gives

LbðtÞ
LsðtÞ

¼
St
00

2EtS
02
t

o1: ð68Þ

In the case of strongly brittle materials of Example 1, we have LbðtÞ=LsðtÞ ¼ ðqþ1Þ=2q with q41. In the case of weakly
brittle materials with softening (q41) of Example 2, we have LbðtÞ=LsðtÞ ¼ ðq)1Þ=2q. Thus, in both cases, this ratio is a
constant independent of the state and only dependent on the parameter q, see Fig. 3.
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Fig. 3. Domains of stable without bifurcation (white area), stable with bifurcation (light gray area) and unstable (dark gray area) homogeneous states in a
diagram L–e (L¼ length of the bar, e¼ homogeneous strain) for a given q and different values of p for the families of strongly brittle materials of Example 1 or
weakly brittle materials with softening of Example 2.
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4.3. The damage modes of bifurcation

At this stage, we have only proved that another solution than the homogeneous rate could exist for the bifurcation
problem (61) when At is not definite positive. We have now to prove that another solution really exists in such a case and
to determine it (or them).

After the change of variable x/x=L and introducing the three dimensionless parameters

a¼
2w1L

2
t

St
00S2

t L2
, b¼

2Et

St
00S2

t

, c¼ St
00St ,

the variational problem (61) becomes (B.1), see Appendix B. We can only consider the case when the homogeneous state is
stable but a bifurcation is possible, i.e. when minH1ð0,1ÞR̂t r1ominDþ R̂t which is equivalent to 1op

ffiffiffi
a
p

bc2rbc2 and
hence to

LbðtÞrLoLsðtÞ: ð69Þ

In this situation, it is proved in Appendix B that the bifurcation problem admits other solutions than the homogeneous
rate. In particular the damage rate _a which consists in a half-sinusoid whose support is [0,Lb(t)),

_aðxÞ ¼
LsðtÞL

LbðtÞðLsðtÞ)LÞSt
00St

1þcos
px
LbðtÞ

! "
in ð0,LbðtÞÞ,

0 otherwise,

8
><

>:

is solution, as well as its symmetric _a*ðxÞ ¼ _aðL)xÞ. The associated strain rate field is given by

_eðxÞ ¼) LsðtÞ
LsðtÞ)L

þ
LsðtÞL

LbðtÞðLsðtÞ)LÞ
1þcos

px
LbðtÞ

! "
in ð0,LbðtÞÞ,

0 otherwise:

8
<

:

Other solutions exist if LsðtÞZLZ2LbðtÞ. All are made of identical sinusoids of half-length Lb(t). The maximal number of
half-sinusoids is equal to L/Lb(t).

Example 7. In the case of the family of strongly brittle models of Example 1, then bc2¼2q/(qþ1) with q41 and the
condition (69) gives

L
2
o qþ1

2q
LoLbðtÞrLoLsðtÞ:

Therefore, when the length L of the bar is in the interval (Lb(t),Ls(t)), there exists exactly two modes of bifurcation, the half-
sinusoid _a and its symmetric _a*, because it is impossible to put more than one half-sinusoid of length Lb(t) inside the bar.

Example 8. In the case of the family of weakly brittle models with softening of Example 2, then bc2 ¼ 2q=ðq)1Þ with q41
and the condition (69) gives

q)1
2q

LoLbðtÞrLoLsðtÞ:

Therefore, when the length L of the bar is in the interval (Lb(t),Ls(t)), there exist several modes of bifurcation, their number
depending on q. For instance, when q¼2 and hence (q)1)/2q¼1/4, it is possible to construct modes of bifurcation which
contain from one to three half-sinusoids when L¼3Lb(t).

Remark 7. Our proof of existence of branches of solution of the evolution problem which bifurcate from a homogeneous
state is not complete, because we have merely proved that there exist non-constant evolution rate solutions of the
bifurcation problem. A complete proof should require to construct solutions of the evolution problem in a time interval
½t,tþZÞ with Z40. This proof is outside the scope of our paper, but the interested reader can refer to Benallal and Marigo
(2007) or Pham and Marigo (2009a). In Benallal and Marigo (2007) such explicit constructions are made in the particular
case of the weakly brittle model with softening of Example 2 with q¼2 and p¼0, whereas in Pham and Marigo (2009a)
a general method of construction of damage localized solutions is proposed and discussed for a broader class of
softening laws.

4.4. Stability of the bifurcated branches

The bifurcated branches are experimentally observable only if they correspond to stable states. The following
proposition gives an important result on the stability of the branches bifurcating from a stable homogeneous state.

Proposition 4.5. Let ðu*t ,a*t Þ be a homogeneous state of a bar of length LoLsðtÞ. Let t/ðut,atÞ be a continuous evolution in the
interval ½t,tþZÞ which starts from ðu*t ,a*t Þ at time t and which satisfies (st) in the interval ðt,tþZÞ. Then, for Z sufficiently small,
all the states of this branch are stable, i.e. satisfy (ST).
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Proof. We denote by J + J the natural norm on H1(0,L). Let t 2 ðt,tþZÞ, ðv,bÞ 2 C0 &Dþ , ðv,bÞað0,0Þ, and let h be a small
positive real number. Expanding Eðutþhv,atþhbÞ with respect to h up to the second order gives

Eðutþhv,atþhbÞ ¼ Eðut,atÞþhE0ðut,atÞðv,bÞþ
h2

2
E00ðut,atÞðv,bÞþoðh2Þ:

Since the evolution satisfies (st), we have E0ðut,atÞðv,bÞZ0. Thus, it is sufficient to prove that E00ðut,atÞðv,bÞ40 for proving
the stability of ðut,atÞ in the direction ðv,bÞ. By continuity, the quadratic form E00ðut,atÞ converges to the quadratic form
E00ðu*t ,a*t Þ when t tends to t and

8ðv,bÞ 2 C0 & H1ð0,LÞ, jðE00ðut,atÞ)E00ðu*t ,a*t ÞÞðv,bÞjrOðt)tÞðJvJ2þJbJ2Þ,

where Oð+Þ is bounded on ½0,ZÞ and lims-0OðsÞ ¼ 0. Therefore, it is sufficient to prove that there exists kt 40 such that

8ðv,bÞ 2 C0 &Dþ , E00ðu*t ,a*t Þðv,bÞZktðJvJ2þJbJ2Þ: ð70Þ

Indeed, in such a case, for Z sufficiently small, we will have for all t 2 ½t,tþZÞ

E00ðut,atÞðv,bÞZ ðkt)Oðt)tÞÞðJvJ2þJbJ2Þ40:

Since LoLsðtÞ, the state ðu*t ,a*t Þ is stable and Rt ¼minC0&DþRt 41. By definition of Rt , see (41), we get for all ðv,bÞ 2
C0 &Dþ

E00ðu*t ,a*t Þðv,bÞZ 1)
1
Rt

! "
w1L

2
t

Z L

0
b02 dxþEt

Z L

0
ðv0)S0tStbÞ2 dx

! "
Z0,

with the equality to 0 if and only if ðv,bÞ ¼ ð0,0Þ. Then, by standard arguments, we obtain (70). &

This proposition proves that when the length of the bar is such that LbðtÞrLoLsðtÞ, then not only the homogeneous
state ðu*t ,a*t Þ is stable, but also all the states sufficiently close to ðu*t ,a*t Þ and belonging to a bifurcated branch (or the
homogeneous branch). From a practical viewpoint this result is rather bad, since it renders possible the bifurcation from
the homogeneous branch to a bifurcated branch even if the homogeneous state is still stable. Moreover, it is not a priori
possible to know whether the bifurcation will really arise, because that might depend on dynamical effects or on the
presence of imperfections which could favor one branch rather than the other.

4.5. Interpretation in a stress–strain diagram

Let us calculate the stress rate _s associated with a non-constant solution of the bifurcation problem. Let n be the
number of half-sinusoids of this solution, n must be such that

LbðtÞrnLbðtÞrLoLsðtÞ:

Then using (B.6) and (58) we get _s which can be compared to the stress rate _St associated with the homogeneous solution.
Specifically, we obtain

_s ¼) EtL
nLsðtÞ)L

, _St ¼)
EtLbðtÞ

LsðtÞ)LbðtÞ
: ð71Þ

Since LZnLbðtÞ, we have j _sjZ j _St j which means that the decrease of the stress associated with any mode of bifurcation is
greater than that associated with the homogeneous evolution. In other words, the localization of damage increases the
softening behavior of the bar.

When L¼Lb(t), then n¼1 and _s ¼ _S. It is a limit case where the bifurcation branch is tangent to the homogeneous
branch. The two branches have the same slope, but the evolution rates ð _u, _aÞ are different (that corresponds in Appendix B
to the case 1 where p

ffiffiffi
a
p
¼ 1, n¼1).

When n¼1 and L tends to Ls(t), then _s tends to infinity. It is a limit case where the bifurcation branch has a vertical
slope (limit of a snap-back), the amplitude of the damage rate being infinite.

Example 9. In the case of strongly brittle materials of family 1 with p4)1
2 and q41, the function e/LbðeÞ is decreasing.

For a bar with length Lr‘b
c ¼ ðqþ1Þ‘s

c=2q, we will obtain the following responses during a monotonic loading where e
increases, see Fig. 4(i):

1. The response follows the homogeneous branch as long as eoebðLÞ ¼ ðL=‘b
c Þ
ð1)qÞ=ð2pþ1Þec.

2. When e is the interval ½ebðLÞ,esðLÞ(, esðLÞ ¼ ðL=‘s
cÞ
ð1)qÞ=ð2pþ1Þec, the response can bifurcate from any homogeneous point to

the unique possible bifurcated branch passing through this point. The bifurcation is tangent if that happens at ebðLÞ
while the bifurcated branch is vertical if that happens at esðLÞ.

3. When e4esðLÞ, the homogeneous branch is no more stable and the evolution necessarily follows a bifurcated branch
(or the bar is broken).
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In the case of weakly brittle materials of family 2 with p41
2 and q41, the function e/LbðeÞ is decreasing. For a bar with

length Lr‘b
c ¼ ðq)1Þ‘s

c=2q, we will obtain the following responses, see Fig. 4(ii):

1. The response follows the homogeneous branch as long as eoebðLÞ ¼ ðL=‘b
c Þ
ðqþ1Þ=ð1)2pÞec.

2. When e is in the interval ½ebðLÞ,esðLÞ(, esðLÞ ¼ ðL=‘s
cÞ
ðqþ1Þ=ð1)2pÞec, the response can bifurcate to one of the possible bifurcated

branches passing through a homogeneous point. The bifurcation is necessarily tangent if that happens at ebðLÞwhile the
bifurcated branch can be vertical if that happens at esðLÞ.

3. When e4esðLÞ, the homogeneous branch is no more stable and the evolution necessarily follows a bifurcated branch (or
the bar is broken).

5. Some consequences on the identification of the model from uniaxial tests

The goal of this section is to propose a procedure to identify the two constitutive parameters am, w1 and the
two constitutive functions a/EðaÞ, a/LðaÞ with the only use of uniaxial tests. We will not discuss the practical
feasibility of the procedure, but we assume that it is possible to detect at each time whether the strain field is
homogeneous in space.

5.1. Identification of am, w1 and a/EðaÞ

For a bar of given length, one measures for each value of the overall stretching e in a given interval ½0,eM( the stress s
and check whether the strain field is homogeneous. If not, one decreases the length of the bar, makes the uniaxial test
again and repeats the procedure until the response becomes homogeneous in the full range of e. (Theoretically, there exists
a threshold Lm, which can depend on eM , for the length of the bar under which no bifurcation from the homogeneous
response is possible. Indeed, by continuity arguments, Lm ¼mine2½ec ,eM (LbðeÞ.)

From these measures of e and s, one proceeds as follows:

1. One determines the sound Young modulus E0.
2. One determines the critical strain ec (and hence the critical stress sc) as the value of the strain after which the response

is no more linear.
3. One obtains the function F from the relation s¼ FðeÞ when e 2 ½ec,eM(.
4. By integration (which can be made graphically), one obtains the damage dissipated energy wðeÞ for each e, see

Section 3.2 and Fig. 5.
5. For discriminating if am is finite or infinite, one should make the test for all e (i.e. take eM ¼ þ1). In practice, one can

extrapolate the function F for large values of e, for instance by fitting by the best power law, and then conclude. If wðeÞ
tends to a finite limit when e goes to infinity, one sets w1 ¼ lime-1wðeÞ. Otherwise, one sets am ¼ þ1, choose
arbitrarily a certain e1 (for instance e1 ¼ 2ec) and takes for w1 the dissipated energy at this e1, i.e. w1 ¼wðe1Þ.

6. One sets a¼wðeÞ=w1 and one inverts the relation to obtain e¼ eðaÞ.
7. One obtains EðaÞ by EðaÞ ¼ FðeðaÞÞ=eðaÞ and then SðaÞ ¼ 1=EðaÞ.
8. One obtains the first derivatives with the same accuracy than EðaÞ by virtue of the relations )E0ðaÞ ¼ 2w1=eðaÞ2 and

S0ðaÞ ¼ )E0ðaÞSðaÞ2.

"

"c "c

!c
! !!s !c !s!b

"

Fig. 4. Different possibilities of bifurcation from the homogeneous response. The curves represent the homogeneous response (in black: the stable states
without possible bifurcation; in dark gray: the stable states with possible bifurcation; in light gray: the unstable states). The arrows represent the
different possible directions of bifurcation at three particular points (the first is at ebðLÞ; the third is at esðLÞ). (i) The model of family 1 with p¼0 and q¼2,
L¼ 3‘b

c =4; (strongly brittle) (ii) the model of family 2 with p¼3 and q¼3, L¼ ‘b
c ; note that ebðLÞ ¼ ec (weakly brittle).
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9. One obtains the second derivatives with a good accuracy provided that the slope F0ðeÞ of the stress–strain curve is itself
measured with a good accuracy. Indeed, one can use for instance the following relation for S00ðaÞ:

S00ðaÞ ¼) 8w2
1F
0ðeÞ

FðeÞ3ðFðeÞ)F0ðeÞeÞ
with e¼ eðaÞ: ð72Þ

Proof. By definition wðeÞ ¼
R e

0 FðeÞ de)1
2FðeÞe and hence 2w0ðeÞ ¼ FðeÞ)F0ðeÞe. By construction, w1a¼wðeÞ and hence

2w1da=de¼ FðeÞ)F0ðeÞe. Then, differentiating the equality S0ðaÞFðeÞ2 ¼ 2w1 with respect to e leads to 0¼S00ðaÞðda=deÞ
FðeÞ2þ2S0ðaÞF0ðeÞFðeÞ. After easy calculations and using the definition e¼ eðaÞ, we get (72). &

5.2. Identification of a/LðaÞ

The function a/LðaÞ does not influence the shape of the stress–strain curve s¼ FðeÞ, but is essential for assessing its
stability. Since the homogeneous response is always stable without any possible bifurcation in the case of a hardening
behavior (i.e. when F is increasing), it is impossible to identify a/LðaÞ with uniaxial tests alone for such materials.
Accordingly, we only consider behavior with softening, i.e. F is assumed to be decreasing.

Let us first remark that if one is able to measure LsðeÞ, i.e. the length of the bar beyond which the homogeneous state
ðu* ¼ ex,a* ¼wðeÞ=w1Þ is no more stable, then one obtains Lða*Þ. Indeed, by virtue of (44), we have

Lða*Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S00ða*Þ3e2

8p2S0ða*Þ4w1

s

LsðeÞ,

where S0ða*Þ and S00ða*Þ can be obtained from the stress–strain curve. However, it is not always possible for measuring
LsðeÞ with monotonically increasing uniaxial tests. Indeed, let us consider a material whose stability function e/LsðeÞ is
increasing like in Fig. 6 or Fig. 3(iii). If the length of the bar is small (less than ‘b

c ), then the homogeneous response is stable
and no bifurcation is possible whatever the overall strain. We cannot obtain any information about Lða*Þ. If the length of
the bar is too large (greater than ‘s

c), then the homogeneous response is no more stable as soon as the critical strain is
reached and we can obtain an information about Lða*Þ only by considering non-homogeneous responses. Therefore, it is

! !

" "

"c "c

w1

w (!)

Fig. 5. Measurement of the damage dissipated energy during a homogeneous evolution, using the stress–strain response. Left: definition of wðeÞ; right:
definition of w1 ¼wðþ1Þ when wðþ1Þo1.

Lm

s
c

!c !

Ls (!)

Lb (!)

L

l
b
cl

Fig. 6. Path of loading for measuring LbðeÞ. First stage: the length of the bar is fixed at Lm and the overall strain is increasing from 0 to e; second stage: the
overall strain is fixed at e and the length of the bar is increasing up to L.
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more convenient to consider another procedure which is able to give LsðeÞ in any circumstance. The principle of this
procedure is as follows:

1. One chooses a bar with a length L sufficiently large so that L4LsðeÞ. (That requires to have a priori estimates on LsðeÞ or
to iterate the procedure.)

2. One equips the bar with a series of nþ1 hard devices regularly spaced. The number of devices must be sufficiently large
to ensure that their distance Lm¼L/n be sufficiently small so that the homogeneous response of a bar of length Lm be
stable without any bifurcation for all overall strains up to the desired value e.

3. One increases progressively the displacement of each device so that the strain be homogeneous in the whole bar.
Namely, the displacement ui(t) of the i-th device at time t must be equal to tiLm, 0r irn. Accordingly, at t¼ e the bar
should be in the homogeneous state ðu*,a*Þ.

4. Then, one removes the hard devices one by one, starting from one end and going to the other end, see Fig. 7. One notes
when the strain field in the ‘‘released’’ part of the bar is no more homogeneous. As it is proved below, one obtains that
LsðeÞ 2 ½iLm,ðiþ1ÞLmÞ if the loss of homogeneity happens after the i-th device was removed.

The proof that the homogeneous state is the only one that we will observe as long as the length of the released part of
the bar is less than LsðeÞ is made difficult because of the discrete character of the process. (In fact, the setting of the
evolution problem itself is not easy, because we have to imagine a process during which the kinematical constraint is
continuously released in time.) So, we replace the discrete apparatus above by a continuous one. Specifically, we starts
from the initial condition where the state of the whole bar (0,L) is the homogeneous one ðu*,a*Þ and where the
displacement of all the points of the bar is controlled. Then, we release the kinematical constraint in the part (0,t) of the bar
with t increasing from 0 to L, see Fig. 7.

This procedure leads to an evolution problem similar to the general one formulated in Section 2.2. The length t of the
unconstrained part of the bar plays the role of the time. The unique change concerns the sets of kinematically admissible
displacements. In the present case, we have

Ct ¼ fv 2 H1ð0,LÞ : vð0Þ ¼ 0,vðxÞ ¼ ex if x 2 ½t,L(g: ð73Þ

Hence, Ct is still an affine space, but the associated linear space is now time dependent and is denoted C0
t ,

C0
t ¼ fv 2 H1ð0,LÞ : vð0Þ ¼ 0,vðxÞ ¼ 0 if x 2 ½t,L(g: ð74Þ

Let us note that C0
t is included in C0 ¼H1

0ð0,LÞ for all t 2 ½0,L(.
Accordingly, the evolution ðut ,atÞ of the bar must still satisfy (IR), (ST) and (EB), but with the initial condition

ðu0,a0Þ ¼ ðu*,a*Þ, with the new definition of Ct and with C0
t instead of C0. Moreover, since Ut ¼ eL for all t, we have _Ut ¼ 0 and

hence (EB) simply reads as

Eðut ,atÞ ¼ Eðu*,a*Þ, 8t 2 ½0,L(: ð75Þ

Thus, the total energy remains constant throughout the process.

Notation 2. In the remaining part of this section we will use the simplified notations

E* ¼ Eða*Þ, E00* ¼E00ða*Þ, S0* ¼ S0ða*Þ, S00* ¼ S00ða*Þ, S* ¼Eða*Þe, L* ¼ Lða*Þ:

Moreover, we will frequently refer to the analysis or the results of the evolution problem associated with the monotonically increasing
uniaxial tension test of Section 2.2. In such a case, it is necessary to use the following change of notations where the original
parameters are those relative to the evolution problem of Section 2.2 and the final ones are those of the current evolution problem:

t/e, L/t, a*t /a*: ð76Þ

Let us first prove the following expected result:

Proposition 5.1. The evolution consisting in the constant homogeneous state, i.e. ðut ,atÞ ¼ ðu*,a*Þ for t 2 ½0,L(, is solution of the
evolution problem as long as toLsðeÞ, but this state is no more stable as soon as t4LsðeÞ.

Lm x
0 L

0 1 i n

t0
xL

Fig. 7. Procedure for measuring LbðeÞ. Left: the practical apparatus where a series of equally spaced hard devices are progressively removed; right: the
theoretical version of this apparatus where the length t of the unconstrained part of the bar grows continuously.
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Proof. (IR) and (EB) are automatically satisfied at all t. It remains to determine when the state is stable. Let t 2 ½0,L(, h40
and ðv,bÞ 2 C0

t &Dþ . Expanding Eðu*þhv,a*þhbÞ up to the second order in h leads to

Eðu*þhv,a*þhbÞ)Eðu*,a*Þ ¼ h2

2
E00ðu*,a*Þðv,bÞþoðh2Þ,

because we have still E0ðu*,a*Þðv,bÞ ¼ 0. (Indeed, since C0
t , C

0, the equality (39) with e instead of t holds true.) Therefore,
the stability of the state ðu*,a*Þ depends on the sign of the second derivative which reads here as

E00ðu*,a*Þðv,bÞ ¼
Z t

0
w1L

2
*b
0ðxÞ2þE*ðv0ðxÞ)S0*S*bðxÞÞ

2)
1
2
S00*S2

*bðxÞ
2

! "
dxþ

Z L

t
w1L

2
*b
0ðxÞ2þ

1
2
E00*e2bðxÞ2

! "
dx: ð77Þ

In (77) the integral over (t,L) is non-negative and the integrals over (0,t) are the same as in (40) (after the change of
notations (76)). Accordingly, using the results of Section 3.3, we obtain that E00ðu*,a*Þðv,bÞZ0 when toLsðeÞ. Moreover,
since the equality holds only when ðv,bÞ ¼ ð0,0Þ, we can conclude that ðu*,a*Þ is stable when toLsðeÞ.

When t4LsðeÞ, let us choose ðv,bÞ 2 C0
t &Dþ such that

bðxÞ ¼
1þcos

px
LsðeÞ

if x 2 ð0,LsðeÞÞ,

0 otherwise,

8
<

:

vð0Þ ¼ 0, v0ðxÞ ¼S0*S* +
1)LsðeÞ=tþcos

px
LsðeÞ

! "
if x 2 ð0,LsðeÞÞ,

)LsðeÞ=t if x 2 ðLsðeÞ,tÞ,
0 otherwise:

8
>>><

>>>:

After the change of notations (76), the restrictions of ðv,bÞ to [0,t] are a minimizer of the Rayleigh ratio (41) over C0
t &Dþ ,

see A.2. Since these fields lead to a Rayleigh ratio less than 1, the integral over (0,t) in (77) is negative while the integral
over (t,L) vanishes. Therefore E00ðu*,a*Þðv,bÞo0 and the state ðu*,a*Þ is unstable. &

Remark 8. The procedure which consists in removing the kinematical constraint progressively from one end of the bar is
essential. Indeed, suppose to change the procedure by removing the constraints from the middle of the bar, i.e. in the
growing interval It¼((L)t)/2, (Lþt)/2). If we choose for the restriction of ðv,bÞ to It a minimizer of the Rayleigh ratio (41)
over H1

0ðItÞ & fa 2 H1ðItÞ : aZ0g, then b does not vanish at one end of It, say for example x¼(L)t)/2. Hence, by continuity
ba0 in the still constrained part (0, (L)t)/2) and the corresponding integral in E00ðu*,a*Þðv,bÞ is positive. Therefore, the
stability result is changed and the homogeneous state remains stable until a value of t greater than LsðeÞ. In other words,
the constrained parts of the bar have a stabilizing effect on the unconstrained one. But, in our procedure where the
constraints act only on one side, this stabilizing effect is not sufficient to change the critical value LsðeÞ.

The last step consists in proving the:

Proposition 5.2. There exists no possibility of bifurcation from the homogeneous state ðu*,a*Þ as long as toLsðeÞ. At t¼ LsðeÞ a
bifurcation is possible in the direction ð _u, _aÞ given by

_aðxÞ ¼
A 1þcos

px
LsðeÞ

! "
,

0,

8
><

>:
_uðxÞ ¼

AS0*S*
LsðeÞ
p sin

px
LsðeÞ

if x 2 ½0,LsðeÞ(,

0 otherwise,

8
<

: ð78Þ

where A is an arbitrary dimensionless positive constant.

Proof. Let us first construct the rate problem giving the possible evolution rates ð _u, _aÞ at time t associated with a solution
of the evolution problem leaving the homogeneous state ðu*,a*Þ at time t. This construction is quite similar to that of
Section 4.1, we have only to change the definitions of Ct and C0 by (73) and (74), and to modify the energy balance
according to (75). From (52) which is a consequence of (ST), we get _u 0ðxÞ ¼S0*S* _aðxÞþ _C in (0,t) where _C is a constant,
whereas _u ¼ 0 in [t,L]. The constant is given by the (new) conditions _uð0Þ ¼ _uðtÞ ¼ 0 which leads to

_uðxÞ ¼S0*S*
Z x

0
ð _aðyÞ)/ _aSÞ dy when x 2 ½0,t(, / _aS¼ 1

t

Z t

0

_aðyÞ dy: ð79Þ

Inserting (79) into (50) leads to the variational inequality for _a: A*t ð _a,bÞZ0, 8b 2 Dþ , where A*t denotes the symmetric
bilinear form defined on H1(0,L)2 by

A*t ð _a,bÞ ¼w1L
2
*

Z t

0

_a 0ðxÞb0ðxÞ dxþE*S0
2

* S
2
*

1
t

Z t

0

_aðxÞ dx
Z t

0
bðxÞ dx)

1
2
S00*S2

*

Z t

0

_aðxÞbðxÞ dx

þ
Z L

t
w1L

2
* _a
0ðxÞb0ðxÞþ

1
2
E00*e2 _aðxÞbðxÞ

! "
dx: ð80Þ
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Let us consider the energy balance (75). Let h be a small positive number and let us set wtþh ¼ ðutþh,atþhÞ,
w* ¼ wt ¼ ðu*,a*Þ. Expanding EðwtþhÞ)Eðw*Þ up to the second order and inserting into (75) give

0¼ E0ðw*Þðwtþh)w*Þþ
1
2
E00ðw*Þðwtþh)w*ÞþoðJwtþh)w*J2Þ: ð81Þ

Since utþh)u* 2 C0
t , C

0 and atþh)a* 2 Dþ , we have E0ðw*Þðwtþh)w*Þ ¼ 0 by virtue of (39). Therefore, dividing (81) by h2

and passing to the limit when h goes to 0, we finally obtain that the evolution rate must satisfy E00ðw*Þð _u, _aÞ ¼ 0. Using (79)
and inserting into (77), we get A*t ð _a, _aÞ ¼ 0.

Therefore, _a must be a solution of the following variational problem:

_a 2 Dþ , A*t ð _a,b) _aÞZ0 8b 2 Dþ ð82Þ

and then _u is given by (79). Of course, ð _u, _aÞ ¼ ð0,0Þ is solution at all t. That corresponds to the trivial branch ðut ,atÞ ¼ ðu*,a*Þ
for all t. Let us examine whether another solution exists.

1. When toLsðeÞ: Then, using the results of Section 3.3, we obtain E00ðu*,a*Þðv,bÞZ0 for all ðv,bÞ 2 C0
t &Dþ and

the equality holds only when ðv,bÞ ¼ ð0,0Þ. Hence (0,0) is the unique solution of the rate problem, no bifurcation is
possible.

2. When t¼ LsðeÞ: Then, A*t ð _a, _aÞ ¼ 0 and hence E00ðw*Þð _u, _aÞ ¼ 0 are possible if and only if ð _u, _aÞ ¼ ð0,0Þ in [t,L] and the
restriction of ð _u, _aÞ to [0,t] is a minimizer of the Rayleigh ratio (41) (with the change of notations (76)) over
H1

0ð0,tÞ & fb 2 H1ð0,tÞ : bZ0g. That corresponds to the limit case where the minimum of the Rayleigh ratio is equal to 1.
Then, using the result of Proposition A.2 (the case p2a¼ bc2), we get (78).

Since the state ðu*,a*Þ is no more stable when t4LsðeÞ, one can expects that either the evolution will follow the bifurcated
branch at t¼ LsðeÞ if this branch is stable, or the evolution will jump to another branch or the bar will break at t¼ LsðeÞ. In
any case, one should observe a sufficiently noticeable event to identify LsðeÞ. &

6. Conclusion and perspectives

Starting from a class of gradient damage models whose construction and evolution law are based on a variational
approach, we have illustrated the regularizing effect induced by the gradient terms. Specifically we have shown that the
presence of a gradient of damage term stabilizes the homogeneous response in an uniaxial test provided that the size of
the specimen is small enough. In turn, these size effects give the opportunity to identify the constitutive functions by
measuring only the homogeneous response and its loss of stability. To prevent that the measurements are polluted by
bifurcations to non-homogeneous branches before the loss of stability of the homogeneous state, we propose a procedure
which prohibit such bifurcations. The main advantage of this procedure is that requires to measure only global quantities
and simply to detect a loss of homogeneity of the strain field. A possible limitation of this procedure could be the
requirement of tests on slender and sufficiently short specimens, which can be a difficult task for materials whose
characteristic length is too small. In such a case, there is no other alternative but to identify the constitutive functions from
damage localized responses. That will need to extend the study presented in this work to localized solutions, including a
full stability and bifurcation analysis. This task will be the subject of future works in the prolongation of those already
achieved, like Benallal and Marigo (2007), Pham and Marigo (2009b) and Pham et al. (2010).

Another important task will consist in extending all these results to a three-dimensional setting. There is no theoretical
impossibility to do that and, even, a part of this extension has been already made, see Pham and Marigo (2010a,b). The
construction of the model, the setting of the evolution problem and the determination of the homogeneous response are quite
similar to those in one-dimensional. But there exists a practical difficulty to calculate the critical size of a three-dimensional
specimen beyond which the homogeneous state is no more stable. That needs in general numerical computations. However, such
a study deserves to be made, because new geometric parameters appear and probably play a role. For instance, it should be
interesting to analyze the influence of the slenderness of a specimen (the ratio of the radius and the length in the case of a
cylindrical specimen for instance) on that critical size. That could give access to some informations on the constitutive parameters.
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Appendix A. Minimization of the Rayleigh ratio

Let a40, b40 and ca0 three given real numbers. Let V ¼H1
0ð0,1Þ & H1ð0,1Þ be the Sobolev space equipped with its

natural norm and let us define the Rayleigh ratio R on V by

Rðv,bÞ ¼

R 1
0 ðab

0ðxÞ2þbðv0ðxÞ)cbðxÞÞ2Þ dx
R 1

0 bðxÞ2 dx
if ba0,

þ1 if b¼ 0:

8
>><

>>:

Let us show that R is positive on V. The Rayleigh ratio is non-negative because a40 and b40. In order that R¼ 0, we should
have bðxÞ ¼ C and v0 ¼ cC where C is a constant. In such a case, since v(0)¼v(1)¼0, we should have 0¼

R 1
0 v0 ðxÞ dx¼ cC and

hence C¼0 since ca0. Therefore, we should have b¼ 0, which is not allowed, and hence Rðv,bÞ40 for every ðv,bÞ 2 V.
We want to calculate the minimum of R over V and its minimum over the convex subset V \ fbZ0g. In both cases the

minimum exists (in the sense that it is reached by an admissible pair ðv*,b*Þ) by virtue of the compactness of the injection
of H1 into L2 and by the weak lower semi-continuity of a semi-norm. We can eliminate the field v by minimizing R with
respect to v at given b. By standard arguments of calculus of variations, we immediately deduce that the minimizer vn is
such that v00* ¼ cb0 and hence that there exists a constant d such that cbðxÞ)v0*ðxÞ ¼ d for all x in (0,1). Since v*ð0Þ ¼ v*ð1Þ ¼ 0,
integrating the previous relation over (0,1) gives d¼ c/bS and

v0*ðxÞ ¼ cbðxÞ)c/bS, /bS :¼
Z 1

0
bðxÞ dx:

Inserting this relation into the definition of R, the Rayleigh ratio becomes the following functional defined on H1(0,1):

R̂ðbÞ ¼
a
R 1

0 b0ðxÞ2 dxþbc2ð
R 1

0 bðxÞ dxÞ2
R 1

0 bðxÞ2 dx
if ba0,

þ1 if b¼ 0:

8
>><

>>:

A.1. Minimization of R̂ over H1(0,1)

Let b* be a minimizer and R¼ R̂ðb*Þ40. The directional derivative of R̂ at b* must vanish in every direction b 2 H1ð0,1Þ
and hence

a

Z 1

0
b0*ðxÞb

0ðxÞ dxþbc2/b*S
Z 1

0
bðxÞ dx¼R

Z 1

0
b*ðxÞbðxÞ dx, 8b 2 H1ð0,1Þ:

By standard arguments of calculus of variations, we immediately deduce that b* is such that

ab00*ðxÞþRb*ðxÞ ¼ bc2/b*S, 8x 2 ð0,1Þ,

with the natural boundary conditions b0*ð0Þ ¼ b0*ð1Þ ¼ 0. This second order ordinary differential equation with constant
coefficients (and constant second member) has for general solution

b*ðxÞ ¼ Acos

ffiffiffiffi
R

a

r
xþBsin

ffiffiffiffi
R

a

r
xþ

bc2

R
/b*S: ðA:1Þ

The natural boundary conditions give 0¼B and 0¼ Asin
ffiffiffiffiffiffiffiffiffi
R=a

p
. Moreover, integrating (A.1) over (0,1) gives the equation for

the integral of b*: ðR)bc
2Þ/b*S¼ 0. Accordingly, there exists two possibilities:

1. Either A¼0. In such a case, b* is constant and since this constant cannot be 0 we get R¼ bc2.
2. Or Aa0. In such a case, sin

ffiffiffiffiffiffiffiffiffi
R=a

p
¼ 0 gives R¼ p2a.

Finally we have obtained the following result

Proposition A.1. The minimum of the Rayleigh ratio R over V is equal to the minimum of bc2 and p2a:

min
V
R¼minfbc2,p2ag:

Moreover the eigenspace of minimizers is given by

b*ðxÞ ¼ CþAcospx, v*ðxÞ ¼
cA
p sinpx,

where A¼0 if bc2op2a, C¼0 if bc24p2a and, A and C are arbitrary real numbers otherwise.
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A.2. Minimization of R̂ over Hþ ¼H1ð0,1Þ \ fbZ0g

Let b* be a minimizer and R¼ R̂ðb*Þ40. Since Hþ is not a linear space, but only a convex set, the minimizer has to
satisfy the variational inequality R̂ 0ðb*ÞðbÞZ0, 8b 2 Hþ which reads as

a

Z 1

0
b0*ðxÞb

0ðxÞ dxþbc2/b*S
Z 1

0
bðxÞ dxZR

Z 1

0
b*ðxÞbðxÞ dx, 8b 2 Hþ : ðA:2Þ

The inequality becomes an equality when b¼ b*.
It is then possible to prove that the minimizer is in H2(0,1) (and hence it is continuously differentiable) but we omit its

technical proof and assume that this smoothness property holds. Accordingly, after an integration by parts, (A.2) becomes

0Z
Z 1

0
ðab00*ðxÞþRb*ðxÞ)bc

2/b*SÞbðxÞ dx)ab0*ð1Þbð1Þþab
0
*ð0Þbð0Þ, 8b 2 Hþ

and by standard arguments we get

ab00* þRb*rbc2/b*S in ð0,1Þ, b0*ð1ÞZ0, b0*ð0Þr0: ðA:3Þ

But since the equality holds in (A.2) when b¼ b* and since b*Z0 we have also

ðab00* þRb*)bc
2/b*SÞb* ¼ 0 in ð0,1Þ, b0*ð1Þb*ð1Þ ¼ b0*ð0Þbð0Þ ¼ 0:

Therefore, if b*ð0Þ40, then b0*ð0Þ ¼ 0. If b*ð0Þ ¼ 0, since b*Z0, we must have b0*ð0ÞZ0. But, by virtue of (A.3), we must also
have b0*ð0Þr0. Hence, in all cases, b0*ð0Þ ¼ 0. Similarly, in all cases, b0*ð1Þ ¼ 0. Accordingly, the minimizer is an element of
H2(0,1) which satisfies

b*Z0, ab00* þRb*)bc
2/b*Sr0, ðab00* þRb*)bc

2/b*SÞb* ¼ 0, b0*ð0Þ ¼ b0*ð1Þ ¼ 0: ðA:4Þ

Let us denote by supp b* the support of b*, i.e. supp b* ¼ fx 2 ð0,1Þ : b*ðxÞ40g. Since b*a0 and b* is continuous, supp b*
is a not empty open set. Let I¼(xm,xM) be a connected component of supp b*. At the ends of the interval, we necessarily
have b0*ðxmÞ ¼ b0*ðxMÞ ¼ 0. Indeed the equality holds at 0 and 1. If xm40 (resp. xM o1) then, by definition of I, we have
b*ðxmÞ ¼ 0 (resp. b*ðxMÞ ¼ 0) and, since b* is non-negative and differentiable, b0* must vanish at the points where b*
vanishes.

Accordingly, b* must satisfy

b*ðxÞ40, ab00*ðxÞþRb*ðxÞ ¼ bc2/b*S, 8x 2 ðxm,xMÞ, ðA:5Þ

b0*ðxmÞ ¼ 0, b0*ðxMÞ ¼ 0, ðA:6Þ

b*ðxmÞ ¼ 0 if xm40, b*ðxMÞ ¼ 0 if xM o1: ðA:7Þ

Let us examine the different possibilities

1. Case where b*ðxmÞ40 and b*ðxMÞ40. Then I¼(0,1). By easy calculations, we find b*ðxÞ ¼ ðbc
2=RÞ/b*SþAcos

ffiffiffiffiffiffiffiffiffi
R=a

p
x

with Asin
ffiffiffiffiffiffiffiffiffi
R=a

p
¼ 0. Accordingly, there exist two subcases:

(a) If A¼0, then b* is a positive constant and R¼ bc2.
(b) If Aa0, then there exists n 2 N* such that R¼ n2p2a. From the definition of /b*S we get /b*S¼ ðbc

2=RÞ/b*S. But
since /b*S40, we obtain also R¼ bc2.

Finally, in such a case, we have

R¼ bc2, b*ðxÞ ¼ CþAncosnpx with C40, jAnj
¼ 0 if bc2an2p2a,

oC if bc2 ¼ n2p2a:

(

2. Case where b*ðxmÞ40 and b*ðxMÞ ¼ 0. Then I¼(0,D) with 0oDr1. We have b*ðxÞ ¼ ðbc
2=RÞ/b*SþAcos

ffiffiffiffiffiffiffiffiffi
R=a

p
x in (0,D)

and the boundary conditions at D read as

bc2

R
/b*SþAcos

ffiffiffiffiffiffiffiffiffi
R=a

p
D¼ 0, Asin

ffiffiffiffiffiffiffiffiffi
R=a

p
D¼ 0:
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The constant A cannot vanishes, because we should have /b*S¼ 0 what is impossible. Hence R¼ n2p2a=D2 with n 2 N*
and ðbc2=RÞ/b*Sþð)1ÞnA¼ 0. But since b*40 in [0,D), we must take n¼1 and hence

R¼
p2a

D2
, b*ðxÞ ¼

bc2

p2a
D2/b*S 1þcosp x

D

# $
, 8x 2 ½0,D(:

Calculating the integral of b* over I gives
RD

0 b*ðxÞ dx¼ ðbc2=p2aÞD3/b*S. Let us consider two subcases corresponding to
the partitioning of the support of b*:
(a) If I is the unique connected component of supp b*, then b* ¼ 0 in [D,1] and

RD
0 b*ðxÞ dx¼/b*S40. Therefore

D3 ¼ p2a=bc2 and R¼ ðp2aÞ1=3ðbc2Þ2=3. The condition Dr1 requires that p2arbc2.
(b) If there exists another connected component, then

RD
0 b*ðxÞ dxo/b*S, D3op2a=bc2 and R4ðp2aÞ1=3ðbc2Þ2=3.

3. Case where b*ðxmÞ ¼ 0 and b*ðxMÞ40. It is a case symmetric to the previous one. We obtain the same results by changing
x by 1)x.

4. Case where b*ðxmÞ ¼ b*ðxMÞ ¼ 0. Let us set xi¼(xMþxm)/2 and D¼(xM)xm)/2. Then, after calculations similar to those of
the two previous cases we get

R¼
p2a

D2
, b*ðxÞ ¼

bc2

p2a
D2/b*S 1þcosp x)xi

D

# $
, 8x 2 ½xi)D,xiþD(:

Moreover
R

Ib*ðxÞ dx¼ ðbc2=p2aÞ2D3/b*S and we still consider two subcases corresponding to the partitioning of the
support of b*:
(a) If I is the unique connected component of supp b*, then

R
Ib*ðxÞ dx¼/b*S40. Therefore D3 ¼ p2a=2bc2 and

R¼ ðp2aÞ1=3ð2bc2Þ2=3. The condition 2Dr1 requires that 4p2arbc2.
(b) If there exists another connected component, then

R
Ib*ðxÞ dxo/b*S, D3op2a=2bc2 and R4 ðp2aÞ1=3ð2bc2Þ2=3.

Comparing the different cases, we see that if p2a4bc2 then the subcase 1a gives the minimal value for the Rayleigh ratio,
while if p2aobc2 then the minimal value is obtained in subcase 2a (or symmetrically in subcase 3a) and the support of the
minimizer consists in a unique connected component starting at x¼0 or finishing at x¼1. Specifically, we have

Proposition A.2. The minimization of the Rayleigh ratio R̂ over Hþ leads to

1. If p2a4bc2, then minHþ R̂ ¼ bc2 and the minimizers are b*ðxÞ ¼ C40.
2. If p2a¼ bc2, then minHþ R̂ ¼ bc2 and the minimizers are b*ðxÞ ¼ CþAcospx with C40 and jAjrC.
3. If p2aobc2, then minHþ R̂ ¼ ðp2aÞ1=3ðbc2Þ2=3 and the minimizers are

b*ðxÞ ¼
C 1þcospx

D

# $
if x 2 ð0,DÞ

0 otherwise

8
<

: and ~b*ðxÞ ¼ b*ð1)xÞ,

where C is an arbitrary positive constant and D3 ¼ p2a=bc2.

Appendix B. The bifurcation problem

Many arguments used in this section are those developed in the previous one. Hence we merely refer to that section
when we need such arguments. Let a, b and c three given positive real numbers such that 1op

ffiffiffi
a
p

bc2rbc2 and let
Hþ ¼ fb 2 H1ð0,1Þ : bZ0g. We consider the following variational problem:

Find _a 2 Hþ such that 8b 2 H1ð0,1Þ

a

Z 1

0

_a 0ðb0) _a0Þ dxþbc2/ _aS
Z 1

0
ðb) _aÞ dx)

Z 1

0

_aðb) _aÞ dxZbc

Z 1

0
ðb) _aÞ dx, ðB:1Þ

where / _aS¼
R 1

0
_a dx. This problem admits the constant solution _aðxÞ ¼ bc=ðbc2)1Þ,8x 2 ½0,1( and the issue is to know

whether the solution is unique.
Even though it is possible to prove that any solution belongs to H2(0,1) (and hence is continuously differentiable), we omit the

technical proof of this smoothness property and assume that it holds. Accordingly, after an integration by parts, (B.1) becomes

0Z
Z 1

0
ða _a 00þ _aþbcð1)c/ _aSÞÞðb) _aÞ dx)a _a 0ð1Þðbð1Þ) _að1ÞÞþa _a 0ð0Þðbð0Þ) _að0ÞÞ:

By standard arguments, we first obtain that _a must satisfy

_aZ0, a _a 00þ _aþbcð1)c/ _aSÞr0, _aða _a00þ _aþbcð1)c/ _aSÞÞ ¼ 0 a:e: in ð0,1Þ, ðB:2Þ

with the boundary conditions

_að0ÞZ0, _a 0ð0Þr0, _að0Þ _a 0ð0Þ ¼ 0, _að1ÞZ0, _a 0ð1ÞZ0, _að1Þ _a 0ð1Þ ¼ 0:
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By the same arguments as those used in the previous section, we show that the boundary conditions above imply that
_a 0ð0Þ ¼ _a 0ð1Þ ¼ 0. Finally _a must be an element of H2(0,1) which satisfies (B.2) and the boundary conditions _a 0ð0Þ ¼ _a 0ð1Þ ¼ 0.

Since bc40, _a ¼ 0 cannot be solution and hence supp _a is not empty. Let I¼(xm,xM) be a connected component of
supp _a. At the ends of the interval, we necessarily have _a 0ðxmÞ ¼ _a 0ðxMÞ ¼ 0, see A.2. Accordingly, _a must satisfy

_aðxÞ40, a _a 00ðxÞþ _aðxÞ ¼ bc2/ _aS)bc, 8x 2 ðxm,xMÞ, ðB:3Þ

_a 0ðxmÞ ¼ 0, _a 0ðxMÞ ¼ 0, ðB:4Þ

_aðxmÞ ¼ 0 if xm40, _aðxMÞ ¼ 0 if xM o1, ðB:5Þ

Let us examine the different possibilities

1. Case where _aðxmÞ40 and _aðxMÞ40. Then I¼(0,1). By easy calculations, we find _aðxÞ ¼ bc2/ _aS)bcþAcosx=
ffiffiffi
a
p

with
Asin1=

ffiffiffi
a
p
¼ 0. Hence, there exists two subcases:

(a) If A¼0, then _a is the constant solution bc=ðbc2)1Þ.
(b) If Aa0, then sin1=

ffiffiffi
a
p
¼ 0 requires that there exists n 2 N* such that n2p2a¼ 1. Integrating _a over (0,1) gives

/ _aS¼ bc=ðbc2)1Þ. Finally, _a is given by

_aðxÞ ¼ bc

bc2)1
þAcosnpx, jAjo bc

bc2)1
, np

ffiffiffi
a
p
¼ 1, n 2 N*,

where the value of A is only limited by the condition _a40 in ½0,1(.
2. Case where _aðxmÞ40 and _aðxMÞ ¼ 0. Then I¼(0,D) with 0oDr1. We get _aðxÞ ¼ bc2/ _aS)bcþAcosx=

ffiffiffi
a
p

in ½0,D( and the
boundary conditions at D read as

bc2/ _aS)bcþAcos
Dffiffiffi
a
p ¼ 0, Asin

Dffiffiffi
a
p ¼ 0:

The case A¼0 is not possible, because that should lead to _a ¼ 0 in [0,D), what is not allowed. Therefore Aa0 and
D¼ np

ffiffiffi
a
p

with n 2 N*. Hence _aðxÞ ¼ ðbc2/ _aS)bcÞð1)ð)1Þncosnpx=DÞ in [0,D]. But since _a40 in [0,D), we must take
n¼1 and finally we have

D¼ p
ffiffiffi
a
p

, _aðxÞ ¼ ðbc2/ _aS)bcÞ 1þcosp x
D

# $
in ½0,D(:

It remains to determine / _aS which depends on the other possible connected components of supp _a and to check that
_aZ0 everywhere.

3. Case where _aðxmÞ ¼ 0 and _aðxMÞ40. It is a case symmetric to the previous one. We obtain the same results by changing x by
1)x.

4. Case where _aðxmÞ ¼ _aðxMÞ ¼ 0. We set xi¼(xMþxm)/2 and D¼(xM)xm)/2. Then, after calculations similar to those of the
two previous cases we get

D¼ p
ffiffiffi
a
p

, _aðxÞ ¼ ðbc2/ _aS)bcÞ 1þcos
x)xiffiffiffi

a
p

! "
in ½xi)p

ffiffiffi
a
p

,xiþp
ffiffiffi
a
p
(:

This case requires that 2p
ffiffiffi
a
p r1. When this condition is satisfied, xi can be arbitrarily chosen in ½p

ffiffiffi
a
p

,1)p
ffiffiffi
a
p
(.

Comparing the different cases, it appears that there exists a solution other than the constant one when n2p2a¼ 1 for some
n 2 N*. Otherwise, any solution must be a combination of cases 2, 3 and 4 above. The profile of _a is a half-sinusoid in cases 2 and
3 whereas the profile is a sinusoid in case 4, but in each case the amplitude and the length of the sinusoids are the same.
Accordingly, let us define N 2 N* such that Np

ffiffiffi
a
p r1oðNþ1Þp

ffiffiffi
a
p

. (Since p
ffiffiffi
a
p

bc241, we have 1rNobc2.) Let us consider a
combination of half-sinusoids and sinusoids whose total length is np

ffiffiffi
a
p

with 1rnrN. Since the integral of _a over a half-
sinusoid is equal to ðbc2/ _aS)bcÞp

ffiffiffi
a
p

, we get

_aðxÞ ¼ bc

np
ffiffiffi
a
p bc2)1 1þcos

x)xiffiffiffi
a
p

! "
, ðB:6Þ

on each connected component of supp _a, i.e. on the interval jx)xijrp
ffiffiffi
a
p

with xi¼0 in case 2 and xi¼1 in case 3. Since
p
ffiffiffi
a
p

bc241, _aZ0 everywhere and this solution is admissible. Thus, we are in a position to conclude

Proposition B.1. Under the conditions that the positive parameters a, b and c are such that 1op
ffiffiffi
a
p

bc2rbc2, the variational
problem (B.1) admits other solutions than the constant one. In particular, the half-sinusoids _a and _a* given by

_aðxÞ ¼
bc

p
ffiffiffi
a
p

bc2)1
1þcos

xffiffiffi
a
p

! "
in ð0,p

ffiffiffi
a
p
Þ,

0 otherwise,

8
><

>:
_a*ðxÞ ¼ _að1)xÞ,
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are such solutions. Other solutions exist when bc2 is sufficiently large and p
ffiffiffi
a
p

is sufficiently small. All those solutions are made
of half-sinusoids or sinusoids with same (half-)length p

ffiffiffi
a
p

and same amplitude 2bc=ðnp
ffiffiffi
a
p

bc2)1Þ where n is the total number
of half-sinusoids, but the locations of the sinusoids remain essentially arbitrary, see Fig. B1.
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Bažant, Z., 1976. Instability, ductility and size effect in strain softening concrete. J. Eng. Mech. 102 (2), 331–344.
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Polytechniques et Universitaires Romandes.
Frémond, M., Nedjar, B., 1996. Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33 (8), 1083–1103.
Geers, M., Peerlings, R., Brekelmans, W., de Borst, R., 2000. Phenomenological nonlocal approaches based on implicit gradient-enhanced damage.

Acta Mech. 144 (1–2), 1–15.
Hill, R., 1958. A general theory for uniqueness and stability for elastic plastic solids. J. Mech. Phys. Solids 6, 236–249.
Hill, R., 1962. Acceleration waves in solids. J. Mech. Phys. Solids 10 (1), 1–16.
Lorentz, E., Andrieux, S., 1999. A variational formulation of nonlocal damage models. Int. J. Plast. 15, 119–138.
Lorentz, E., Andrieux, S., 2003. Analysis of non-local models through energetic formulations. Int. J. Solids Struct. 40 (12), 2905–2936.
Lorentz, E., Benallal, A., 2005. Gradient constitutive relations: numerical aspects and applications to gradient damage. Comput. Methods Appl. Mech. Eng. 194,

5191–5220.
Marigo, J.-J., 1981. Formulation d’une loi d’endommagement d’un matériau élastique. C. R. Acad. Sci. Paris Sér. II 292 (19), 1309–1312.
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Pham, K., Marigo, J.-J., 2010b. Approche variationnelle de l’endommagement: II. Les mod !eles !a gradient. C. R. Mécanique 338 (4), 199–206.
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Fig. B1. Example of a non-constant solution of the bifurcation problem where bc2¼12, p
ffiffiffi
a
p
¼ 0:12 and n¼5. The solution is made of one half-sinusoid

and two sinusoids. The gray line represents the constant solution.
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