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This paper presents a modified regularized formulation of the Ambrosio–Tortorelli type

to introduce the crack non-interpenetration condition in the variational approach to

fracture mechanics proposed by Francfort and Marigo [1998. Revisiting brittle fracture

as an energy minimization problem. J. Mech. Phys. Solids 46 (8), 1319–1342]. We focus

on the linear elastic case where the contact condition appears as a local unilateral

constraint on the displacement jump at the crack surfaces. The regularized model is

obtained by splitting the strain energy in a spherical and a deviatoric parts and

accounting for the sign of the local volume change. The numerical implementation is

based on a standard finite element discretization and on the adaptation of an alternate

minimization algorithm used in previous works. The new regularization avoids crack

interpenetration and predicts asymmetric results in traction and in compression. Even

though we do not exhibit any gamma-convergence proof toward the desired limit

behavior, we illustrate through several numerical case studies the pertinence of the new

model in comparison to other approaches.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Computational approaches for simulating fracture of solids at the macroscopic scale are commonly classified into two
categories (see e.g. de Borst et al., 2004): (i) discrete crack models with an explicit geometric modeling of cracks as surfaces
of discontinuities and (ii) smeared crack models, approximating cracks with continuum fields having high gradients
localized in thin bands.

The implementation of discrete crack approaches requires specific techniques to introduce discontinuous fields in the
numerical model. The classical method consists in changing the mesh geometry by introducing new boundaries as the
crack propagates together with adaptive remeshing (Ingraffea and Saouma, 1984). Efficient alternatives are the extended
finite element methods (Moës et al., 1999), which enrich the finite element shape functions with discontinuous fields on
the basis of a partition of unity concept (Babuska and Melenk, 1997), and interelement crack methods (Xu and Needleman,
1994; Camacho and Ortiz, 1996), which constrain cracks to propagate along the element interfaces.

Smeared crack (or continuum) approaches, include damage models (see e.g. Jirasek, 1998; Pijaudier-Cabot and Bazant,
1987; Lorentz and Andrieux, 1999) and diffuse interface (or phase-field) models (Aranson et al., 2000; Hakim and Karma,
2009; Marconi and Jagla, 2005). In the comparative study of Song et al. (2008), these approaches are synthetically classified
as element deletion methods. They are based on the use of phenomenological constitutive laws with strain-softening. It is
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well known that they require to account for some kind of non-local effects and the introduction of an internal length to
penalize extreme strain localization and avoid the bad-posedness of the boundary value problem.

The use of each of the computational methods calls for suitable crack (or damage) propagation laws. Remarkable results
have been obtained coupling the discrete crack approach with cohesive force models (Xu and Needleman, 1994; Camacho
and Ortiz, 1996; Ortiz and Pandolfi, 1999; Moës and Belytschko, 2002; Meschke and Dumstorff, 2007; Remmers et al.,
2008), and the smeared crack approach with non-local damage models of integral (see e.g. Jirasek, 1998) or gradient (see
e.g. Peerlings et al., 1998; Lorentz and Benallal, 2005) type. However, fundamental questions on the quality of the
numerical approximation concern the dependence of the results on the finite element meshes and the convergence of the
solutions when the mesh size and/or the internal lengths eventually introduced in the model tend to zero. Even though
several works attempt to establish an equivalence between the discrete and the smeared approaches (Mazars and
Pijaudier-Cabot, 1996; Oliver et al., 2002; Mariani and Perego, 2003; de Borst et al., 2004; Cazes et al., 2009), the
link between damage and fracture remains vague in most of the literature. This point becomes even more hazy
when considering the introduction of the unilateral contact constraint at the crack interfaces (see e.g. Ramtani et al., 1992;
Comi, 2001).

In this panorama, the variational approach to fracture proposed by Francfort and Marigo (1998) has the merit to open
the path for a mathematically deep-rooted theory. It associates a clearly defined and general criterion for crack propagation
with a consistent numerical solution strategy (Bourdin et al., 2000) able to account for complex fracture phenomena in
space (multifissuration, crack branching and coalescence) and time (initiation, brutal propagation). The criterion for quasi-
static crack propagation consists in the minimization of an energy functional defined as the sum of a bulk term, the elastic
energy of the cracked body, and a surface term, the crack energy. The minimization has to be taken among all the possible
cracks sets, which must respect an irreversibility condition to avoid unphysical self-healing. The variational problem finds
its proper mathematical setting in the modern theory of the calculus of variations, where it is classified as a free-

discontinuity problem to be studied in the framework of spaces of special functions of bounded variations (SBV) and their
variants (Ambrosio et al., 2000). Existence of solutions and convergence of time-discrete formulations toward consistent
time-continuous quasi-static evolutions is proved by Dal Maso and Toader (2002) for 2-D antiplane shear, by Francfort and
Larsen (2003) for the n-dimensional case including cracks with an arbitrary number of connected components, and by
Chambolle (2003, 2004) for plane elasticity with vectorial displacement fields. The effect of considering surface energies of
the Griffith or cohesive type is discussed in Bourdin et al. (2008).

The mathematical theory of free-discontinuity problems provides several effective tools to obtain approximate solutions
of the variational problem of fracture mechanics. The most adopted strategy is due to Ambrosio and Tortorelli (1990). Being
initially developed for image segmentation applications (Mumford and Shah, 1989), it is adapted to the fracture problem in
Bourdin et al. (2000) and Bourdin (2007). It is based on the approximation of the original energy functional with a
regularized elliptic functional introducing an auxiliary scalar field and a small parameter. When the small parameter tends
to zero, the elliptic functional convergences, in the sense of gamma-convergence, to the original one. Minimizers of the new
functional are characterized by bands having a thickness of the order of the small parameter, where the gradients of the
displacement field concentrate. These bands are a regularized representation of the cracks. Remarkably, the regularized
model may be regarded as a damage model of the gradient type (Liebe et al., 2001; Lorentz and Benallal, 2005; Benallal and
Marigo, 2007), the auxiliary field being the damage field, the small parameter the associated internal length. The gamma-
convergence result proves that when the internal length tends to zero, gradient damage models with specific constitutive
properties converge toward a model of brittle fracture of the Griffith type (Braides, 1998; Chambolle, 2004; Giacomini,
2005). In this sense, the mathematical theory of free-discontinuity problems and gamma-convergence theorems give a
precise sense to the intuitive idea of using smeared crack approaches to approximate brittle fracture with discrete cracks
(Braides, 1998; Lussardi and Negri, 2007). The availability of several rigorous results about the convergence of finite
element discretizations (Bellettini and Coscia, 1994) and the influence of the meshes on the crack propagation conditions
(Negri, 1999) makes the variational approach a reliable tool for the numerical simulation of fracture phenomena.

This paper discusses a regularized model to introduce the unilateral contact condition in the variational approach of
fracture mechanics. Unilateral contact at the crack lips is not considered in the initial works on the subject. The regularized
model adopted in Bourdin et al. (2000, 2008) is characterized by a symmetric behavior in traction and in compression and
allows for negative displacement jumps, i.e. material interpenetration in cracks associated to compressive actions.
Numerical approaches avoiding material interpenetration are proposed by Lancioni and Royer-Carfagni (2009) and Del
Piero et al. (2007). Lancioni and Royer-Carfagni introduce a regularized variational model permitting only shear damage,
approximation of mode-II cracks. Their model keeps a symmetric behavior in traction and compression. It rules out
material interpenetration by completely forbidding crack openings. It is suitable for compressed materials, but it appears
unrealistic in expanded regions, where open fractures are expected. Del Piero et al. (2007), considering the extension of the
variational approach in the context of non-linear elasticity, formulate a model avoiding material interpenetration in
compression by penalizing extreme volume deformations using an elastic energy density function of the Ogden type.
Hence, they apply the Ambrosio–Tortorelli regularization strategy to numerically solve the variational problem with
standard finite element techniques. The numerical results clearly show the desired non-symmetric behavior for traction
and compression tests. However, material failure in compression displays diffuse damage without a distinct convergence
toward sharp cracks. The resulting rupture mechanism remains difficult to be interpreted both from the physical and the
mathematical point of view. Giacomini and Ponsiglione (2008) studied the mathematical properties of the variational
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problem including frictionless self-contact without interpenetration of matter. Considering a geometrically non-linear
model where the non-interpenetration condition appears as a non-local injectivity constraint and polyconvex elastic
energies density of the Ogden type, they concluded with an existence result. However, in the apparently simpler framework
of linearized elasticity, where the unilateral contact condition appears as a local unilateral constraint on the admissible
displacement jumps, mathematical results are not available at the moment, neither about the existence of solutions, nor
about convergent regularized formulations à la Ambrosio–Tortorelli.

Here we present a regularized model of the Ambrosio–Tortorelli type that introduces the effect of unilateral contact and
accounts for asymmetric behaviors in traction and compression in the framework of linearized elasticity. The new
regularized formulation is inspired by the mechanical interpretation of the standard Ambrosio–Tortorelli approximation as
a non-local damage model. Sharing the spirit of works introducing unilateral effects in isotropic damage models (Ramtani
et al., 1992; Comi, 2001), it is based on the splitting of the strain energy in a spherical and a deviatoric parts and on the
introduction an energy density depending on the sign of the local volume change. Its numerical implementation adopts a
standard finite element technique and an alternate minimization algorithm.

The exposition starts recalling the variational formulation of fracture mechanics (Section 2). We distinguish among
models not accounting for contact conditions, models where only shear fractures are allowed, and models introducing
unilateral contact effects. Section 3, considering the basic example of uniaxial compression, shows that the model with
shear fracture and the model with unilateral contact put forth existence issues for the variational problem. In Section 4, we
propose a modification of the standard Ambrosio–Tortorelli regularized formulation to account for unilateral effects.
Although we will not provide any rigorous proof of the convergence toward the desired limit behavior, the effectualness of
the proposed regularized model is corroborated by the numerical results. To this end, after providing some details on the
numerical implementation (Section 5), we revisit two numerical case studies considered in previous works (Section 6). The
comparison of several models assesses the effect of the contact conditions on the crack patterns.

2. Brittle fracture as a free-discontinuity problem

2.1. Griffith energy functional

Consider a body O � Rn with displacement U imposed on a part of its boundary, say @uO. Let G be the set of cracked
points of the body, where the displacement field u may be discontinuous. The variational approach to fracture mechanics
proposed by Francfort and Marigo (1998) introduces the following energy functional for the cracked body:

Eðu;GÞ ¼ Edðu;GÞ þ EsðGÞ ¼
Z
OnG

Wð�ðuÞÞdxþ GcH
n�1
ðGÞ, (1)

where W is the elastic energy density, function of the linearized strain �ðuÞ, symmetric part of the gradient of u; Gc is the
fracture toughness (energy required to create a unit surface crack), and Hn�1 the Hausdorff surface measure giving
the crack length (n ¼ 2) or surface (n ¼ 3). The bulk term of (1), Edðu;GÞ, is the elastic energy stored in the cracked body; the
surface term, EsðGÞ, is the energy required to create the crack according to the Griffith model. For linear elastic bodies
Wð�Þ ¼ 1=2A� � �, where A is the fourth order elastic stiffness tensor. In the following, we will focus on the isotropic case for
which, given the Lamé coefficients l and m, the elastic energy reads as

Wð�Þ ¼ 1
2l trð�Þ2 þ m� � �. (2)

2.2. Variational formulation with no-contact condition

The Francfort–Marigo model formulates the quasi-static time evolution of the displacement field u and the crack set G
as a minimization problem on (1). In view of the numerical applications, we focus here on the time-discrete case, with
N þ 1 time steps ft0 ¼ 0; . . . ; ti; . . . ; tN ¼ Tg and displacement loadings linearly increasing in time, say Uðt; xÞ ¼ tŪðxÞ. On the
basis of the knowledge of the state at the time instant ti�1, the state at the time step ti is obtained as the solution of the
following minimization problem:

inffEðu;GÞ : u 2 CðG; tiÞ;G � Gi�1g, (3)

where the space of admissible displacements at time t is

CðG; tÞ:¼fu 2 H1
ðOnGÞ;uðxÞ ¼ tŪðxÞ on @uOg, (4)

while the admissible crack sets have to satisfy the irreversibility condition G � Gi�1. The latter condition is fundamental to
prevent the healing of the crack set Gi�1 at the previous time step. The problem (3) presents formidable difficulties because
of the arbitrariness of the crack set G. Problems of this type, where the unknowns are a field (u) and its jump set (G), are
referred as free-discontinuity problems (Ambrosio et al., 2000).

The formulation of Francfort and Marigo (1998) is based on global energy minimization at each time step. This
formulation mends the well-known limits of the Griffith model on initiation, selection of the crack pattern, and brutal
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propagation problems. Namely, for proportional loadings crack initiation always occurs in finite time, the selection of the
crack pattern is a part of the minimization process without requiring any a priori assumption, and the crack propagation
may be discontinuous in time whenever it turns out to be beneficial for energy minimization. As discussed in detail in
Bourdin et al. (2008), the model precludes the possibility of force loadings because the associated global minimization
problem is not well posed.

A fundamental limit of the formulation based on (3) and (4) is the absence of any contact condition at the crack lips in
the space of admissible displacement CðG; tÞ. The displacement jump across the crack may be arbitrary. The component
normal to the crack surface may be either positive (crack opening) or negative (crack interpenetration). In particular, the
functional (1) being a symmetric function of u and CðG; tÞ being an affine space, if fui;Gig

N
i¼1 is a solution for the loading

ŪðxÞ, then f�ui;Gig
N
i¼1 is a solution for the opposite loading �ŪðxÞ. Hence, any example leading to crack opening, as the

uniaxial traction studied in Francfort and Marigo (1998), automatically implies an unphysical crack interpenetration for the
opposite loading.

2.3. Variational formulation for shear fracture

A simple solution to avoid crack interpenetration in compression is to formulate a model where only shear mode
fracture is permitted. In a variational formulation of the type (3), such a model is distinguished by an additional condition
on the admissible displacements. Namely, the minimization problem (3) should be reformulated as

inffEðu;GÞ : u 2 eCðG; tiÞ;G � Gi�1g, (5)

where the space of admissible displacements is restricted to

eCðG; tÞ:¼fu 2 H1
ðOnGÞ;uðxÞ ¼ tŪðxÞ on @uO;1uU � n ¼ 0 on Gg. (6)

The space eCðG; tÞ admits only fields with a vanishing component of the displacement jump 1uU along the normal n to the
crack surface. As before, the space of admissible displacement is an affine space and the symmetry of Eðu;GÞwith respect to
u implies that opposite loadings lead to solutions with opposite displacements and the same crack pattern.

2.4. Variational formulation with unilateral contact

A more realistic model of brittle fracture should allow for crack opening, but prevent crack interpenetration by including
an unilateral contact condition at the crack lips. Such a model corresponds to the variational formulation

inffEðu;GÞ : u 2 bCðG; tiÞ;G � Gi�1g, (7)

where the minimization is taken over the restricted space of admissible displacements

bCðG; tÞ:¼fu 2 H1
ðOnGÞ;uðxÞ ¼ tŪðxÞ on @uO;1uU � n � 0 on Gg. (8)

The space bCðG; tÞ includes only the displacement fields with a non-negative normal component of the displacement jump
at the crack lips. It is not any more an affine space, but a convex cone. Because of the unilateral contact condition, opposite
loadings may lead to completely different solutions. It is interesting to note that since

eCðG; tÞ � bCðG; tÞ � CðG; tÞ, (9)

then

inf
u2CðG;tiÞ

Edðu;GÞ � inf
u2bCðG;tiÞ

Edðu;GÞ � inf
u2eCðG;tiÞ

Edðu;GÞ, (10)

i.e. the strain energy for a given crack set in the case of shear fracture is larger than the energy of the model with unilateral
contact, which in turns is larger than the energy of the model with no-contact.

The above model for unilateral contact neglects friction effects. Including them in the variational model would demand
the introduction of additional state variables and energy contributions (see e.g. Raous et al., 1999). This important issue
remains out of the scope of the present paper.

3. Existence issues

Direct methods of the calculus of variations provide existence results for the minimization problem (3) by resorting to a
weak formulation based on the introduction of spaces of special functions with bounded variations which allows for the
discontinuity of the displacement field on an unknown set of jump points (Ambrosio et al., 2000). Proofs of existence of
solutions and convergence of the time-discrete quasi-static evolution are available for antiplane linear elasticity (Dal Maso
and Toader, 2002; Francfort and Larsen, 2003) and for general linear (Chambolle, 2003) and non-linear (Dal Maso et al.,
2005) elasticity without contact conditions. Giacomini and Ponsiglione (2008) discuss the case of the unilateral contact
problem in the geometrically non-linear framework where the non-interpenetration condition translates into an injectivity
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constraint. No existence theorems are available for the geometrically linearized shear fracture model and the unilateral
contact model, where the minimization problem is restricted over the spaces of admissible displacements (6) and (8),
respectively. Analyzing the simple example of uniaxial compression of a cylinder, we show below that existence is really an
issue in those cases.

3.1. Uniaxial compression of a 3-D cylinder: a case of non-existence of solutions

Francfort and Marigo (1998) illustrated analytically the solution of the minimization problem (3) for the uniaxial
traction of a 3-D cylinder within the model with no-contact condition. Here we revisit this problem for compressive
loading with the model accounting for the unilateral contact at the crack lips.

We consider an initially crack-free cylinder O 	 S
 ð0; LÞ, S being a smooth bounded open connected domain of R2,
made of an isotropic and homogeneous material with Young’s modulus Y , Poisson’s ratio n, and fracture toughness Gc. The
components ui of a vector u will be referred to an orthogonal reference system f0; e1; e2; e3gwith the e3-axis oriented along
the axis of the cylinder (see Fig. 1a). The boundary conditions impose a null axial displacement at x3 ¼ 0 and an axial
displacement t at x3 ¼ L. The other components of the displacements are free, the cylinder bases being free to slide without
friction on the support. The cylinder mantle is free. Hence, for the model with no-contact condition considered in Francfort
and Marigo (1998), the space of admissible displacements is

CðG; tÞ 	 fv 2 H1
ðOnG;R2

Þ;v3 ¼ 0 on S
 0;v3 ¼ t on S
 Lg. (11)

For the model with unilateral contact admissible displacements must be in

bCðG; tÞ 	 fv 2 CðG; tÞ;1uU � n � 0 on Gg. (12)

In the two cases, we introduce the following notation for the elastic energy and the total energy for a given crack state G
and loading parameter t:

EðtÞd ðGÞ ¼ inf
u2CðG;tÞ

Edðu;GÞ; EðtÞðGÞ ¼ EðtÞd ðGÞ þ EsðGÞ, (13)

bEðtÞd ðGÞ ¼ inf
u2bCðG;tÞ Edðu;GÞ; bEðtÞðGÞ ¼ bEðtÞd ðGÞ þ EsðGÞ. (14)

For the initial uncracked state G0 ¼ ;, Esð;Þ ¼ 0 and the total energy is given by

EðtÞð;Þ ¼ bEðtÞð;Þ ¼ 1

2

Y jSj

L
t2, (15)

where jSj is the cross sectional area. For a generic crack set G, denoting by PðGÞ the projection of the crack set onto the
cross-section S and by YðGÞ ¼H2

ðPðGÞÞ=jSj the damaged ratio of cross sectional area, the following estimate from below of
the total energy of the model with no-contact conditions holds (see Francfort and Marigo, 1998, Proposition 3.1):

EðtÞðGÞ � ð1�YðGÞÞEð;; tÞ þ GcYðGÞjSj. (16)

Noting that bEðtÞðGÞ � EðtÞðGÞ and bEðtÞð;Þ ¼ EðtÞð;Þ, the analog estimate holds true also for the model with unilateral
contact, i.e.:

bEðtÞðGÞ � ð1�YðGÞÞbEð;; tÞ þ GcYðGÞjSj. (17)
Fig. 1. Uniaxial compression as an example of non-existence of solutions for the linearized unilateral contact model: (a) reference configuration; (b)

linearized model: a plane crack minimizing sequence with rigid-body displacements which does not converge for y! 0; (c) geometric non-linear model:

the solution with rigid-body displacements.
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Moreover, we may prove an estimate from above of the infimum of the energy:

Proposition 3.1. For all loadings t 2 R,

inf
G
bEðtÞðGÞ ¼ inf

G
inf

u2CðG;tÞ
bEðu;GÞ � GcjSj. (18)

Proof. The case t � 0 is trivial. For to0, consider the following family of admissible pairs of crack sets and displacement
fields ðGy;uy 2

bCðGy; tÞÞ with 0oyoymax corresponding to a plane crack of normal ny ¼ � sin ye1 þ cos ye3 passing through
a point x̄ 2 O and cutting the cylinder into two rigid parts Oþy 	 fx 2 O; ðx� x̄Þ � ny40g and O�y 	 fx 2 O; ðx� x̄Þ � nyo0g
without intersecting the bases x3 ¼ 0; L (see Fig. 1b):

Gy 	 fx 2 O : ðx� x̄Þ � ny ¼ 0g, (19)

uy ¼
uþy ¼ tð1= tan ye1 þ e3Þ; x 2 Oþy ;
u�y ¼ 0; x 2 O�y :

(
(20)

The associated strain energy is null and the total energy is bEðuy;GyÞ ¼ GcjSj= cos y. Hence, ðGy;uyÞ with y sufficiently small
(but positive) is an admissible pair whose energy approaches arbitrarily close to the value GcjSj. &

Using the estimates (17) and (18), we derive the following results about the solution of the minimization problem (7) of
the model with unilateral contact:

Proposition 3.2. For traction loadings ðt � 0Þ, the cylinder remains crack free as long as

0 � totr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkL=YÞ

q
.

For t4tr a solution-crack consists in cutting the cylinder into two pieces along an arbitrary transverse section.

Proof. The proof in Francfort and Marigo (1998) for the model with no-contact can be repeated without modifications. We

recall here only the reasoning for t4tr, which is fundamental for the next proposition. Since bEðtÞd ð;Þ4GcjSj, the estimate (17)

implies that bEðtÞðGÞ � GcjSj. Moreover, bEðtÞðGÞ ¼ GcjSj only if YðGÞ ¼ 1, i.e. PðGÞ ¼ S, H2
ðGÞ ¼ jSj and bEðtÞd ðGÞ ¼ 0. Hence, the

optimal displacement field must be a piecewise rigid displacement, respecting the boundary conditions u3 ¼ 0 on x3 ¼ 0
and u3 ¼ t on x3 ¼ L. The only cracked state respecting the conditions above is a transverse crack G 	 S
 z̄ with z̄ 2 ½0; L�

dividing the solid into two connected domains Oþy 	 fx 2 O; z4z̄g and O�y 	 fx 2 O; zoz̄g experiencing rigid displacements

of the form

u ¼
u� ¼ a1e1 þ a2e2; x 2 O�a ;
uþ ¼ b1e1 þ b2e2 þ te3; x 2 Oþa ;

(
(21)

where a1, a2, b1, b2 are arbitrary constants. This concludes the proof for the model with no-contact. In the unilateral contact
case, we must additionally check that the crack jump on G is admissible, i.e. that 1uU � n � 0 on G. This condition is verified
for the traction loadings because

1uU � n ¼ ðuþ � u�Þ � e3 ¼ t40: &

Proposition 3.3. For compression loadings (t � 0), the cylinder remains crack free as long as

0 � t4� tr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkL=YÞ

q
.

For to� tr the minimization problem (7) for the unilateral contact model does not admit a solution.

Proof. We prove only the part for to� tr. The estimate (17) implies that with to� tr , bEðtÞðGÞ � GcjSj. Hence, in view of (18)

the minimum value of bEðtÞðGÞ, if it exists, should be exactly equal to GcjSj. Repeating the reasoning of the previous
proposition one can shows that, for to� tr, the only class of crack states and displacement fields respecting the boundary

conditions in x3 ¼ 0 and x3 ¼ L for which bEðtÞðGÞ ¼ GcjSj is a transverse crack cutting the solids into two parts with rigid
displacements in the form (21). But in this case

1uU � n ¼ ðuþ � u�Þ � e3 ¼ to0

and the states attaining the limit value of the energy (18) are not compatible with the unilateral contact condition. We
conclude that for to� tr the minimization problem of the model with unilateral contact does not admit a solution. &
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Remarks.
�
 For the shear fracture model characterized by the admissible displacements (6) the same result as in Proposition 3.3
holds for both traction ðt40Þ and compression ðto0Þ loadings. The shear fracture model presents existence issues in
both cases. In particular, the analogs of estimates (17) and (18) stay true because eCðG; tÞ � bCðG; tÞ.

�
 Our construction of a minimizing sequence to prove non-existence of a minimum fails if we change the boundary

conditions at the bases of the cylinder. However, that does not mean that existence is recovered if we control the
tangential displacements at the bases.

�
 In the proposed counterexample, the minimization problem does not admit a solution because the minimizing sequence

(19)–(20) does not converge for y! 0. Possible artificial remedies to recover the existence of solution include the
introduction of a upper bound on the norm of allowable displacements or of a residual stiffness in the cracked surface.
As a drawback, the solution will depend on the associated non-physical constants.

�
 Differently from the existence issues encountered for force loadings (see Bourdin et al., 2008), here the problems come

from the linearized kinematics. In the geometric non-linear framework, where the non-interpenetration condition reads
as injectivity constraint on the displacement map (see e.g. Ciarlet and Nečas, 1987), the minimization problem enjoys
existence of solutions, as proved by Giacomini and Ponsiglione (2008). In the case of the uniaxial compression
considered here, a possible solution for to� tr is obtained by cutting the cylinder into two rigid parts with a plane
parallel to the bases. Interpenetration is avoided by translating one of the two parts along e1, as sketched in Fig. 1c.

4. Regularized models: approximation by elliptic functionals

The minimization problem for the quasi-static crack evolution as formulated in (3) is not prone to an immediate
numerical implementation. To tackle it numerically with a standard finite element discretization, Bourdin et al. (2000)
resort to a regularization strategy proposed by Ambrosio and Tortorelli (1990) for solving similar free-discontinuity
problems encountered in image segmentation (Mumford and Shah, 1989). Lancioni and Royer-Carfagni (2009) propose a
variant of the regularized formulation to reproduce the behavior of the shear fracture model. Here, after recalling these
approaches, we present a tentative regularized variational formulation for the model including unilateral contact effects. At
present time, rigorous gamma-convergence results are available only for the model with no-contact condition.

4.1. Regularized model with no-contact condition

To approximate the solution of the minimization problem (3) for the no-contact model, Bourdin et al. (2000) adopted
the following one-parameter family of elliptic functionals:

E‘ðu;aÞ ¼ Pðu;aÞ þ GcS‘ðaÞ, (22)

with

Pðu;aÞ ¼
Z
O

1

2
ðaðaÞ þ k‘ÞA�ðuÞ � �ðuÞdx, (23)

S‘ðaÞ ¼
Z
O

wðaÞ
‘
þ ‘ra � ra

� �
dx, (24)

where ‘ and k‘ are positive scalar parameter, a is an additional scalar field1 with values in ½0;1�, and

aðaÞ ¼ ð1� aÞ2; wðaÞ ¼ a2=4. (25)

The associated regularized version of the minimality principle (3) for the time-discrete quasi-static evolution between the
time steps ti�1 and ti reads as

inffE‘ðu;aÞ : u 2 UðiÞ;a 2AðiÞg, (26)

where the spaces of admissible state fields at the step i are

UðiÞ:¼fu 2 H1
ðOÞ;uðxÞ ¼ tiŪðxÞ on @uOg, (27)

AðiÞ:¼fa 2 H1
ðOÞ;ai�1 � a � 1g. (28)

The condition a � ai�1 in the definition of the space AðiÞ is the regularized version of the irreversibility condition G � Gi�1

in (3).
1 In Ambrosio and Tortorelli (1990) and Bourdin et al. (2000) the additional field is denoted by v, with v ¼ 1� a.
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Gamma-convergence theorems (Braides, 1998; Chambolle, 2004) prove that, for ‘! 0þ, the sequence ðū‘; ā‘Þ, obtained
as the global minimum of (22) for fixed ‘, converges, in a specific weak sense, to the global minimum of (1). Moreover,
Giacomini (2005) proves that the time-discrete quasi-discrete evolution obtained by minimizing the regularized functional
under the irreversibility condition on a converges to the quasi-static evolution of the brittle fracture model of Francfort and
Marigo (1998). Roughly speaking, convergence of ðū‘; ā‘Þ, minimizer of the functional (22), toward ðū; ḠÞ, minimizer of the
Griffith functional (1), means that the field ā‘ localizes in thin bands where the gradient of ū‘ is high; these bands stand for
the crack set Ḡ where ū is discontinuous. Moreover, on this kind of solutions Pðu;aÞ provides an approximation of the
elastic energy of the cracked body, whilst S‘ðaÞ approximates the crack surface. The parameter k‘ is a residual stiffness
introduced to secure the positive definiteness of the elastic energy. Its value should be sufficiently small. Convergence
toward brittle fracture requires k‘ going to zero faster than ‘.

Global minimization is at the basis of all the available mathematical results. Moreover, in the absence of strong
singularities in the stress field, it is essential to reproduce initiation and brutal phenomena within the Griffith model
associated with the energy functional (1) (see Bourdin et al., 2008). In numerical works, global minimization is not
practicable. One may try, at best, to look for the local minima around the solution at the previous time step (Bourdin et al.,
2000; Del Piero et al., 2007; Lancioni and Royer-Carfagni, 2009).

A formulation based on local minimization of the regularized functional may be mechanically interpreted as the quasi-
static evolution of a gradient damage model as per Benallal and Marigo (2007). In this context ‘ is an additional material
parameter, the internal length, the scalar field a represents the damage field, and aðaÞA is the damaged elastic stiffness,
where a ¼ 0 means a sound material, a ¼ 1 a completely damaged one. The function wðaÞ stays for the energy dissipated in
a homogeneous damage process. Differently from the Griffith energy (1), the regularized functional recovers initiation and
brutal phenomena in the absence of strong singularities also with local minimization. The internal length ‘ will determine
the corresponding threshold values of the loading parameter.
4.2. Regularized model for shear fracture

Lancioni and Royer-Carfagni recently proposed a regularized formulation reproducing the behavior of the shear fracture
model (Lancioni and Royer-Carfagni, 2009). On the basis of the mechanical interpretation of the regularized formulation as
a damage model, they modified the Ambrosio–Tortorelli functional (22) to obtain a gradient damage model developing
shear bands with localized damage approximating mode-II cracks. The approach is based on the orthogonal decomposition
of the linearized strain tensor in its spherical and deviatoric components:

� ¼ �S þ �D; �S ¼
1

n
trð�ÞI; �D ¼ ��

1

n
trð�ÞI, (29)

where I denotes the n-dimensional identity tensor. With this decomposition, the strain energy density of a linear elastic
isotropic material may be written as the sum of the spherical and deviatoric contributions:

Wð�Þ ¼
1

2
l trð�Þ2 þ m� � � ¼ k0

trð�Þ2

2
þ m�D � �D, (30)

where l and m are the Lamé coefficients and k0 ¼ lþ 2m=n is the bulk modulus of the material. The regularized
formulation for shear fracture replaces the functional E‘ðu;aÞ of the variational statement (26) by

eE‘ðu;aÞ ¼
Z
O

eWð�ðuÞ;aÞdxþ GcS‘ðaÞ (31)

with

eWð�;aÞ ¼ k0
trð�Þ2

2
þ ðaðaÞ þ k‘Þm�D � �D

 !
, (32)

where the spherical part of the elastic energy density remains unaffected by the value of the scalar field a. The modified
energy functional implies that the creation of additional surface energy may be compensated exclusively by a reduction of
the deviatoric elastic energy.
4.3. Regularized model for fracture with unilateral contact condition at crack lips

A model with unilateral contact is expected to authorize crack opening in the regions where the material tends to
expand and to forbid crack interpenetration in compressed regions. In the regularized setting, such a model should respond
differently as a function of the sign of the volume change, i.e. the divergence of the displacement or, equivalently, the trace
of the strain tensor. To implant a similar behavior in an energy minimization principle, it is useful to introduce the
decomposition of the trace of the strain tensor in positive and negative parts: trþð�Þ ¼ maxðtrð�Þ;0Þ and
tr�ð�Þ ¼ maxð�trð�Þ;0Þ, and further distinguish the contributions due to compression, expansion, and shear of the strain
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energy, as follows:

Wð�Þ ¼ k0
tr�ð�Þ2

2
þ k0

trþð�Þ2

2
þ m�D � �D. (33)

Our proposal for a regularized formulation of the model with unilateral contact is to substitute in the variational
statement (26) the energy functional E‘ðu;aÞ with

bE‘ðu;aÞ ¼
Z
O

bWð�ðuÞ;aÞdxþ

Z
O

GcS‘ðaÞ, (34)

where

bWð�;aÞ ¼ k0
tr�ð�Þ2

2
þ ðaðaÞ þ k‘Þ k0

trþð�Þ2

2
þ m�D � �D

 !
. (35)

With (34) only the strain energy associated to expansion and shear enters into the competition with the surface energy.
In the regions where the volume change is negative, the spherical part of the strain energy cannot be released by the
creation of new cracks. On the contrary, in the regions with positive volume change, the whole elastic energy may redeem
the increments of the surface energy. These properties modify the criterion for crack propagation underlying the energy
minimality principle. As a result, the new functional assures a residual resistance in compression, without forbidding
crack opening. A similar damage criterion is adopted in the damage models of Comi (2001) and Ramtani et al. (1992).
The hope that the proposed regularized formulation leads to the unilateral contact model in the limit ‘! 0 is corroborated
by the fact that bE‘ðu;aÞ reduces to (22) in regions with a positive volume change and to (31) in regions with a negative
volume change.

4.4. Uniaxial homogeneous response

Consider a volume element in an uniaxial stress state, say s ¼ s33e3 
 e3, with imposed axial strain e33. To illustrate the
properties of the regularized formulation as a gradient damage model, we study the uniaxial homogeneous material
response. This is obtained by minimizing the functional (34) under the hypothesis ra ¼ 0 (homogeneous damage
distribution). We focus on the case without residual stiffness (k‘ ¼ 0).

At the ith loading step, the minimization of the regularized functional with respect to a � ai�1 gives the Kuhn–Tucker
conditions representing the damage criterion (see e.g. Lorentz and Andrieux, 1999). With ra ¼ 0, they are in the form

f ðs33;aÞ � 0; a� ai�1 � 0; f ðs33;aÞða� ai�1Þ ¼ 0, (36)

where, for the unilateral contact model (34), if e33 � 0

s33 ¼ aðaÞYe33; f ðs33;aÞ ¼
s2

33a0ðaÞ
2aðaÞ2Y

þ
Gcw0ðaÞ

‘
, (37)

whilst if e33 � 0

s33 ¼
3aðaÞ

2ð1þ nÞ þ aðaÞð1� 2nÞ
Ye33; f ðs33;aÞ ¼

s2
33a0ðaÞð1þ nÞ

3aðaÞ2Y
þ

Gcw0ðaÞ
‘

. (38)

Solving (36)–(38) for s33 and a as a function of e33 starting from e33 ¼ 0, with either monotonically increasing or
monotonically decreasing loadings, gives the uniaxial strain–stress relationship and the damage evolution. Fig. 2 reports
0

σc

σc

1
4
0

1

σ 3
3

σ33

0c c

33

α

α

Fig. 2. Uniaxial homogeneous response for the regularized unilateral contact model given by (34) with wðaÞ ¼ a2=4 and aðaÞ ¼ ð1� aÞ2: stress s33

(continuous line) and damage parameter a (dashed line) as a function of the axial strain e33. See Eqs. (39) and (40) for the expression of e�c and s�c ,

respectively.
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the results obtained for aðaÞ ¼ ð1� aÞ2 and wðaÞ ¼ a2=4, as assumed in (25). The diagram of Fig. 2 illustrates some
important mechanical properties of such a regularized formulation as a gradient damage model:
�
 The model does not have a purely elastic phase. With (25), w0ð0Þ ¼ 0 and the limit of elasticity of the underlying damage
model is zero. The strain–stress diagram shows a hardening phase from e33 ¼ 0 to e33 ¼ eþc (or e�c ), followed by a
softening phase for e334eþc (or e33oe�c ) where the critical strains are

eþc ¼
ffiffiffiffiffiffiffiffiffi
Gc

6Y‘

r
; e�c ¼ �

41þ 14n
96

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n
p

ffiffiffiffiffiffi
Gc

Y‘

r
. (39)
�
 There are maximum allowable values of the stress for homogeneous states, sþc in uniaxial traction and s�c in uniaxial
compression. Their values are computed to be

sþc ¼
3

16

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffi
YGc

‘

r
; s�c ¼ �

9

32
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n
p

ffiffiffiffiffiffiffiffi
YGc

‘

r
. (40)

The critical values of the stress are reached at e33 ¼ �ec . The smaller the internal length, the higher the maximum
allowable stress.

�
 The material response is not symmetric in traction and compression. In particular, the limit values of the stress in (40)

differ by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ nÞ=3

p
.

�
 The uniaxial response of Fig. 2 may be interpreted as the homogeneous solution for the traction/compression test of a
bar. In a quasi-static evolution ruled by a local minimality condition, the homogeneous response is stable provided that
the length of the bar is small enough, as shown in Benallal and Marigo (2007). For long bars, the system will follow the
response in Fig. 2 till jejoec , snapping to a non-homogeneous solution (the cracked state) at ec . In any case, the bar
cannot sustain a stress greater that s�c . Hence s�c may be regarded as the rupture stresses in the traction/compression
test. The small differences between the critical values in traction and in compression are not in agreement with the
experimental results. This point motivates the use of more complex damage models to reproduce a realistic material
behavior (see e.g. Comi, 2001; Badel et al., 2007).

The properties above are specific for wðaÞ and aðaÞ as in (25), which represents a particular choice of the constitutive
properties of the damage model. This is not the unique choice assuring the gamma-convergence of the regularized
functional toward brittle fracture for ‘! 0 (see Braides, 1998). For example, an interesting alternative damage model is
obtained by choosing

aðaÞ ¼ ð1� aÞ2; wðaÞ ¼ ca, (41)

where c is a suitable normalization constant. In this case, the homogeneous model would be characterized by a non-
vanishing elastic phase, because w0ð0Þa0 (see Eqs. (37) and (38)).

4.5. Choice of the length ‘: brittle fracture vs. gradient damage

The shape of the damaged zone (and hence of the approximate crack path) can significantly change with the length ‘ if ‘
is not sufficiently small with respect to the size L of the domain O. The value of ‘ may be chosen according to two criteria,
depending on whether ‘ is considered as a pure numerical parameter of the regularized model of brittle fracture or as a real
material parameter of a gradient damage model.

In the former case, the smaller ‘ the best the approximation of the brittle fracture model by a gradient damage model.
But the improvement of the approximation will have a cost, because the mesh size must be smaller than ‘. Hence, it is of
practical importance to determine from which value of ‘=L the results become stable. At the present time, that
determination is purely empirical. Our numerical tests presented in the following sections use ‘=L of the order of 1

100.
In the latter case, the value of ‘ must be selected according to experimental data. A possible way is to identify the

maximum allowable stress in the uniaxial homogeneous response sþc given (40) with the rupture stress sc in uniaxial
traction tests of a bar. Using the available database values for the Young modulus Y , the toughness Gc , and the rupture
stress sc , is then possible to uniquely determine a reasonable value for the internal length ‘. When ‘ is fixed, there are no
more free numerical parameters, but the damaged zone can depend on the size L of the structure. That will correspond to a
real size effect, well known for non-local damage models. In return, if the numerical results become stable when L becomes
large enough, then we can conclude that the size effects disappear for large structures and that we recover the results
corresponding to a brittle material of toughness Gc.

5. Numerical implementation

The numerical solution of the regularized minimization problems described in the previous section is not a trivial task
because the regularized functionals are not convex in the pair ðu;aÞ. Solving numerically the global optimization problem is



ARTICLE IN PRESS

H. Amor et al. / J. Mech. Phys. Solids 57 (2009) 1209–1229 1219
not feasible. One may try at best to look for local minima. To this end, Bourdin et al. (2000), dealing with the model with
no-contact condition, used an iterative algorithm based on an alternate minimization strategy on ðu;aÞ. Lancioni and Royer-
Carfagni (2009) and Del Piero et al. (2007) applied the same basic algorithm to solve the problem for the shear fracture
model and for the fracture of a non-linear elastic body, respectively. Also our numerical work on the unilateral contact
model is based on an alternate minimization. We recall below the main points of the algorithm, focusing on the difficulties
in the solution of the two basic subproblems due to the unilateral contact and the irreversibility condition. Finally, we
discuss the finite element implementation and the criteria for a correct tuning of the key numerical parameters.

5.1. The minimization algorithm

5.1.1. Alternate minimization

The alternate minimization algorithm consists in solving a series of minimization subproblems on u at fixed a, and vice
versa on a at fixed u, until convergence. The effectiveness of this strategy relies on the convexity and coerciveness of E‘ðu;aÞ
in each of the two variables. On the basis of the knowledge of the solution ðui�1;ai�1Þ at the time step ti�1, the solution
ðui;aiÞ at time step ti, defined as the solution of (26), is found by the following iterative procedure:
�
 Initialization: Set ðuð0Þ;að0ÞÞ:¼ðui�1;ai�1Þ.

�
 Iteration p:

1. Compute, under the constraint uðxÞ ¼ tiŪðxÞ on @uO,

uðpÞ:¼ argmin
u

E‘ðu;aðp�1ÞÞ. (42)

2. Compute, under the constraints ai�1 � a � 1 on O,

aðpÞ:¼ argmin
a

E‘ðu
ðpÞ;aÞ. (43)
�
 End: Repeat until kaðpÞ � aðp�1Þk1 � d1. Set ðui;aiÞ:¼ðu
ðpÞ;aðpÞÞ.

This algorithm imposes the solution to satisfy only first order optimality conditions on u and a. To ensure that its output is a
local minimum, further tests based on second order optimality conditions should be performed. This point is currently
under investigation but not included in the present work. Of course, global optimization remains out of reach.

5.1.2. Minimization at fixed a
In the model with no-contact condition and in the shear fracture model, the energy functional is quadratic in u and the

substep (42) reduces to the solution of a linear system. In the unilateral contact model, bE‘ðu;aÞ is not any more quadratic in
u. At fixed a, bE‘ðu;aÞ is a continuous, piecewise quadratic, strictly convex functional of u, with a continuous first derivative.
The associated minimization subproblem (42) is non-smooth, but it enjoys existence and uniqueness of the solution. To
solve it, we apply the following quasi-Newton algorithm:
�
 Initialization: Set uðp;0Þ:¼uðp�1Þ.

�

(44)

2m�DðvÞ � �DðvÞÞdx. (45)
Iteration q: Compute, under the constraint uðxÞ ¼ tiŪðxÞ on @uO,

uðp;qÞ:¼ argmin
u

Kðuðp;q�1Þ;aðp�1ÞÞðuÞ,

where the stiffness operator K is defined by

Kðu;aÞðvÞ:¼
Z
O
k0ð1� Hðdiv uÞÞðdiv vÞ2 dxþ

Z
O
ðaðaÞ þ k‘Þðk0Hðdiv uÞðdiv vÞ2 þ

H being the Heaviside step function defined as HðxÞ ¼ 1 if x � 0, HðxÞ ¼ 0 if xo0.

�
 End: Repeat until kuðp;qÞ � uðp;q�1Þk1 � d2 with d2od1. Set uðpÞ:¼uðp;qÞ.
The stiffness operator K coincides with the second directional derivative of bE‘ðu;aÞ with respect to u when the latter
exists, i.e. when div ua0 almost everywhere. Although the global convergence of such undamped Newton algorithm is not
assured in general, its application to non-smooth problems is not foolish, as argued by Alart (1997). In all our simulations
we observed a quick convergence, normally in two or three iterations, provided that the residual stiffness k‘ is sufficiently
high to ensure a reasonable conditioning of the tangential stiffness matrix. On the other hand, numerical instabilities
caused by bad-conditioning problems may arise if k‘ is too small. This issue is not due to the nonlinearities in u, because
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the shear fracture model presents the same basic problem, even if in that case the minimization at fixed a consists in the
solution of a single linear system (see the comments in Section 5.2).

5.1.3. Minimization at fixed u

The minimization on a for fixed u in (43) is a quadratic optimization problem with bound constraints. The
unconstrained minimizers of the functional with aðaÞ and wðaÞ given in (25), automatically satisfy the upper bound a � 1.
The main difficulty stays behind the numerical implementation of the irreversibility condition a � ai�1. The previous
numerical works in the literature avoid the recourse to bound-constrained optimization algorithms and reduce the
minimization in a to the solution of an unconstrained linear system. Bourdin et al. (2000) use an approximate version of
the irreversibility condition to transform the lower bound on a into an equality constraint. They remove the lower bound
on a and impose a ¼ 1 in the regions where the solution of the previous type step ai�1 is sufficiently close to 1. In other
words, they prevent material healing only for fully developed cracks. Lancioni and Royer-Carfagni (2009) replace the
substep 2 of the alternate minimization algorithm by the following two substeps. The irreversibility condition is enforced
projecting the solution of the unconstrained problem on the admissible space:
2(a)
 Solve (43) on a at fixed u without bound constraints. This reduces to the solution of a linear system.

2(b)
 Set a ¼ ai�1 wherever the obtained solution for a is smaller than its local value ai�1 at the previous time step.
Such a posteriori projection procedure keeps the exact version of the irreversibility conditions a � ai�1, but deviates from a
true alternate minimization algorithm. The solution for a obtained at the end of each iteration does not coincide necessarily
with the minimum of the constrained problem. Allaire et al. (2007) adopt the same solution scheme to account for the
irreversibility condition in the simulation of a damage evolution by a level set method. Del Piero et al. (2007) use a
combination of the two approximations above, by implementing the irreversibility condition as in Lancioni and Royer-
Carfagni (2009), but only wherever a exceeds a fixed threshold, as in Bourdin et al. (2000).

In our numerical implementation of the alternate minimization algorithm, we tried to keep the exact version of the
irreversibility condition in a true alternate minimization scheme. To this end, we had recourse to a solver for large-scale
bound-constrained optimization. Especially, we employed the solver included in the Optimization Toolbox of Matlab,
which implements the reflective Newton trust-region algorithm described in Coleman and Yuying (1996). For all the
considered test cases, we compared the results obtained with the bound-constrained solver to those obtained with the
projection method employed by Lancioni and Royer-Carfagni. We did not note any discrepancy in the final crack patterns
and energy diagrams. The fundamental advantage of the projection method is to require the solution of a single linear
system, a task for which standard reliable solvers may be used. However, the overall algorithm using the a posteriori

projection is not any more a genuine alternate minimization. On the other hand, using solvers for large-scale bound-
constrained optimization at each step of the alternate minimization is extremely expensive in terms of computational
costs.

5.2. Discretization and parameter setting

To obtain a discretized formulation of the minimization problem, we use standard linear triangular finite elements with
unstructured and uniform meshes. In 2-D elasticity, each element has three nodal degrees of freedom: the two components
of the displacement vector and a. The key parameters to be set for a numerical simulation are the regularization parameter
‘, the typical element size, say h, the loading increment DT , and the residual stiffness k‘ . The loading increment DT, which
we keep uniform, may be adapted to follow the phenomena encountered in each simulation.

An accurate estimation of the discretized surface energies requires the element size h to be much smaller than the
regularization parameter ‘. Namely, Bourdin et al. (2008) show that, with linear triangular elements the surface energy is
overestimated by a factor f ðh=‘Þ ¼ 1þ h=4‘. Having h=‘51 demands the use of extremely large meshes, because ‘ must be
sufficiently small to make the regularized formulation a good approximation of brittle fracture. Numerical experiments
show that setting h�‘ still gives qualitatively reasonable results, even if the computed surface energy must be expected to
be correspondingly overestimated.

The dependence of the estimated surface energy on the mesh size rules also that the mesh must be kept uniform to
avoid artificial inhomogeneities. Similarly, structured meshes introduce anisotropies, as pointed out by Negri (1999). This
suggests to avoid adaptive mesh refinement, even if this option is attractive to reduce the computational cost.

The residual stiffness k‘ must be chosen sufficiently small to not add a large artificial stiffness to damaged elements; at
the same time, it must be sufficiently large to assure a reasonable conditioning of the stiffness matrix used for the solution
of the minimization subproblem at fixed a. In the model without contact condition this choice is not critical. Even with
extremely small values of k‘ (e.g. k‘�10�9), we never observed numerical instabilities in the solution of the linear system
obtained as minimality condition at fixed a. On the other hand, the shear fracture model and the unilateral contact model
are much more sensitive to the choice of the residual stiffness. We observed numerical instabilities starting from k‘�10�5.
Similar issues have been put into evidence also in the shear fracture model of Lancioni and Royer-Carfagni (2009) and in
the model with geometrical and material non-linearities of Del Piero et al. (2007). The shear fracture model and the
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unilateral contact model show the same basic problem, which is associated to the presence of compressed fracture in shear.
A plausible explanation is that shear fractures in compression include elements characterized by a vanishing stiffness in
purely deviatoric modes and a finite stiffness with respect to volume changes. This induces a bad-conditioning in the
solution of the displacement problems at fixed a. The issue seems similar to the one encountered in incompressible
elasticity (see e.g. Hughes, 2000). Possible remedies to be explored in future works include the use of higher order finite
elements with special reduced integration techniques and augmented Lagrangian methods (Glowinski and Le Tallec, 1982).
In the present work, we obtained reasonable results using a trade-off value for the residual stiffness, k‘�10�4.

The regularized functionals introduced in Section 4 underestimate the surface energy of fracture developing at the
boundaries. To recover a correct value for the surface energy, Bourdin et al. (2000) and Del Piero et al. (2007) performed the
computations on an enlarged logical domain. Here, we bypass the problem by forbidding fractures to develop exactly at the
boundary. To this end we impose as boundary condition a ¼ 0 on @O. For small ‘, this constraint has a minor influence on
the results because fractures are free to appear at a small distance from the boundaries whenever it turns out to be
beneficial for energy minimization. This point is well illustrated by the numerical results in the next section. The final effect
is similar to covering the boundary by a non-breakable film, whose thickness goes to zero as ‘! 0. The resulting additional
residual stiffness reduces the bad-conditioning problems encountered when a compressed shear fracture meets a
boundary.

6. Numerical experiments

Section 4 introduces a tentative regularized formulation for the variational model including the unilateral contact
condition without giving any rigorous convergence proof toward the desired limit behavior. The efficiency of the
regularized functional in reproducing fractures with unilateral contact will be illustrated through numerical simulations.
To this end we revisit two examples of 2-D elasticity considered in the literature by comparing the results of the different
contact models: no-contact, shear, and unilateral.

The numerical values will refer to non-dimensional variables. For the considered models, a dimensional analysis shows

that the values of the typical material stiffness, say the Lamé coefficient l, the fracture toughness Gc , and the scaling length

L can be factored out from the energy functional by scaling the displacement with u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GcL=l

p
. Only two non-dimensional

parameters influence the results of the numerical simulations: the ratio of the Lamé coefficients m=l (or equivalently the
Poisson coefficient n) and the ratio ‘=L between the regularization parameter and the typical geometric dimension.

6.1. Fiber reinforced matrix

The first example is a model problem introduced in Bourdin et al. (2000) to highlight the ability of the variational
approach to recover initiation phenomena and complex crack patterns. It has been revisited also in Del Piero et al. (2007)
with a model including non-linear effects and in Bourdin (2007) using a backtracking algorithm. Fig. 3 represents the
system geometry, a squared plate of side 3L with a circular blocked inclusion of radius R ¼ rL. The loading is given by
applied normal2 displacements u � e2 ¼ t u0 on the upper border of the plate. The other boundaries are free. This setup may
stand for the traction/compression experiment of a fiber reinforced matrix, or the failure test of a pinned plate (see e.g. Naik
and Prabhakaran, 1987).
2 Differently from Del Piero et al. (2007), the tangential displacements are left free.
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Our simulations refer to the case l ¼ m with plane strain assumptions, corresponding to n ¼ 0:25, and ‘=L ¼ 1
100. For the

discretization, we adopted a non-structured homogeneous finite element mesh composed of 182 580 triangles with a total
number of 3
 92 047 degrees of freedom. The typical element size is about h�0:01L. For the residual stiffness, we set
k‘ ¼ 2
 10�4. In the simulations discussed below, the loading increment is DT ¼ 0:05. Numerical results show an
interesting dependence on the geometric aspect ratio, specified by the radius of the inclusion. We report on the cases
where r ¼ 0:5 and 0:25.
6.1.1. Case 1: r ¼ 0:5
Figs. 4 and 5 summarize the results obtained with the unilateral contact model for traction (t40) and compression

(to0) loadings. The images at the top display the evolution of the deformed configuration of the structure colored
according to the values of a. A linear scale ranging from a ¼ 0 (black) to a ¼ 1 (white) is used. As expected, a is close to zero
almost everywhere except in thin bands with thickness of the order of ‘. Those bands are the regularized representation of
the cracks. Elements with a40:95 are considered completely cracked and are not represented. The images at the bottom
report on the undeformed geometry the sign of the volume change in each element, according to the value of the
divergence of the displacement field. Light gray stays for compressed regions (divðuÞo0), dark gray is for expanded regions
(divðuÞ40). Here the coloring of the cracked elements (a40:95) distinguishes between opening cracks with a total release
of the elastic energy (in white) and shear cracks releasing only the deviatoric part of the elastic energy (in black). This
Fig. 4. Traction test with r ¼ 0:5 using the unilateral contact model and the no-contact model, which give the same crack evolution. Top: damage field on

the deformed configuration represented with a linear color scale ranging from black (a ¼ 0) to white (a ¼ 1). Bottom: regions with positive (dark gray) or

negative (light gray) volume change and distinction between shear (in black) and opening (in white) cracks. In this case shear cracks are absent.

Fig. 5. Compression test for r ¼ 0:5 using the unilateral contact model. Legend as in Fig. 4. The volume change diagrams (bottom row) underline the

presence of shear cracks (in black).
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Fig. 6. Energy diagrams for the fiber reinforced matrix with r ¼ 0:5 using the unilateral contact model and the shear fracture model. The no-contact

model gives results identical to the unilateral model in traction (a).
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representation helps understanding the behavior of the unilateral contact model, which strongly depends on the sign of the
volume change.

Figs. 6(a) and (b) plot the elastic, surface, and total energies as a function of the loading parameter t, for t40 and to0,
respectively. With the formulation of Francfort and Marigo (1998) based on global optimization at each time step, the total
energy should be an absolutely continuous function of t. In our numerical results, the total energies are not continuous
because the numerical algorithm of Section 5 does not implement global optimality conditions, but only local ones. With
local minimization, a discontinuity in the total energy plot indicates a brutal phenomenon where the solution at the
previous step becomes unstable and the structure snaps to a new cracked state at a lower energy level. The associated
critical value of the loading parameter may depend on the length ‘, as for the example of Section 4.4. To recover the
continuity of the total energy and quasi-static evolutions coherent with Francfort and Marigo (1998), Bourdin (2007)
proposes a specific backtracking algorithm, which is not applied here.

For the traction test (Fig. 4), the unilateral contact model gives the same results as the no-contact model, which are
reported in Bourdin et al. (2000). The discontinuities in the energy diagrams of Fig. 6(a) distinguish brutal events. Cracks
develop only in regions with positive volume change. We observe a brutal initiation phenomenon at t�2:00, followed by an
asymmetric collapse of one of the two residual ligaments and the final failure. A more detailed description of the time
history may be obtained by further refining the time increment, but this is inessential for the present study. Analogue
behaviors have been widely commented in several works (Bourdin et al., 2000, 2008; Bourdin, 2007; Del Piero et al., 2007).
A careful check of the final crack pattern at t ¼ 2:30 reveals the persistence of thin undamaged films, which is due to the
boundary condition a ¼ 0 adopted in our numerical work. This does not affect the final result.

Reversing the loading (to0), the quasi-static evolution of the model with no-contact conditions remains as in Fig. 4 but
with a reversed sign of the displacement. This implies an unphysical interpenetration of the crack lips. On the other hand,
the proposed regularized formulation accounting for the unilateral contact condition shows a completely different
behavior (Fig. 5):
�
 The (almost) elastic solution remains stable until t�� 2:35.

�
 At t�� 2:40 a brutal initiation phenomenon generates a complex crack pattern, including branches of shear and

opening cracks, represented, respectively, in black and in white in the volume change diagrams.

�
 At t�� 2:45 the branches coming from the left and the right of the inclusion rejoin at the bottom. Although the crack

now isolates the inclusion from the rest of the structure, there is still an important residual elastic energy due to
unilateral contact effects, as shown by the energy diagram of Fig. 6(b).

�
 At t�� 5:40 we observe a further brutal event with the appearance of a new opening crack at the bottom of the

inclusion. This crack seems to continue propagating at a slower time scale. Our simulation stops before the expected
complete separation of the solid in two parts.
Fig. 7 shows the crack patterns obtained with the shear fracture model. The corresponding energy plots are in Fig. 6(c). In
this case, all the cracks are of the shear type with a partial release of the elastic energy. Forbidding a priori the crack
opening and the release of the isotropic part of the elastic energy has important consequences on the crack propagation
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Fig. 8. No-contact model: traction test for r ¼ 0:25. The crack in the compressed region (light gray) implies material interpenetration.

Fig. 7. Compression test for r ¼ 0:5 using the shear fracture model.
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criterion. As for the no-contact model, the results of the traction and compression tests coincide, modulo the sign of the
displacement field.

With the adopted dimensional scaling, the values of the surface energy in the energy plots of Fig. 6 should correspond to
the non-dimensional lengths of the cracks of Fig. 4. Considering that the numerical results are obtained with a typical
element size h�‘, we may expect an overestimation of the surface energy by a factor f ðh=‘Þ ¼ 1þ h=4‘�1:25 (see Bourdin
et al., 2008, Section 8.1). This estimate is verified with a reasonable accuracy for the traction test of Fig. 4 characterized only
by opening cracks. In the other cases including shear cracks, the computed surface energy is larger than the geometrical
crack lengths. This is particularly evident for the shear model, where the computed surface energy in Fig. 6(c) appears to be
approximately the double of the crack lengths in Fig. 7, even after accounting for the presumed corrective factor. The
overestimation of the surface energy is highlighted also by the increased thickness of the damaged bands. This issue, for
which we do not have a satisfying explication, deserves further investigations. We suspect it may be related to the
relatively high residual stiffness and the bad-conditioning problems encountered in regions with shear cracks.
6.1.2. Case 2: r ¼ 0:25
For small values of the inclusion radius r, the surface energy required to tear the plate apart by a circular crack around

the inclusion becomes smaller than the surface energy required to cut the plate transversally as in Fig. 4. The circular crack
pattern is indeed the result of the model with no-contact condition for a fiber radius r ¼ 0:25, as already reported in
Bourdin et al. (2000). However, the final result of the traction test recalled in Fig. 8 clearly shows material interpenetration
in the compressed region at the bottom of the inclusion.

Del Piero et al. (2007) run the same simulation using a non-linear model that precludes material interpenetration by a
suitable non-linear constitutive law penalizing large volume changes. The crack shape they found is similar to the one of
the no-contact model, but without crack interpenetration and a diffuse damage in the compressed region. The associated
rupture mechanism remains of difficult interpretation.

Our model for unilateral contact provides the solution in Fig. 9. Its explanation is clear: by forbidding crack
interpenetration, circular crack patterns around the fiber are ruled out from the set of admissible cracks; the cracking mode
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Fig. 9. Unilateral contact model: traction test for r ¼ 0:25.

Fig. 10. Energy diagrams for r ¼ 0:25 (traction).
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with minimal energy continues to be similar to the one obtained for inclusions of a larger radius. For the compression test,
not reported here, we observed results qualitatively similar to those of Fig. 5.

Fig. 10 compares the energy plots of the no-contact and the unilateral contact models.

6.2. Stone panel of the ashlar masonry of the French Panthéon

Lancioni and Royer-Carfagni (2009) propose an interesting application of the variational approach to fracture
mechanics. They study the causes of the crack patterns observed in the stone panel of the ashlar masonry of the French
Panthéon in Paris. They focus on a single stone panel with the simplified geometry reported in Fig. 11. The panel is modeled
as a linear elastic isotropic solid with Poisson ratio n ¼ 0:1 and plane stress conditions. The rectangular blocked inclusion
simulates the effect of reinforcements in the form of iron staples. Using the shear fracture model, they obtain a crack
pattern qualitatively similar to the one observed in situ with the loading mode of Fig. 11 (iron-staple pull-out). The study
concludes that iron-staple pull-out is the most likely cause of the failure.

We re-run the simulation for the iron-staple pull-out test using a regularization parameter ‘ ¼ 0:02L, a residual stiffness
k‘ ¼ 2
 10�4, and a uniform mesh with typical element size h ¼ 0:01L.
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Fig. 11. A stone panel of the ashlar masonry of the French Panthéon. Geometry and boundary conditions are set as in Lancioni and Royer-Carfagni (2009)

where L ¼ 1 m. The blocked inclusion represents an iron-staple, the applied displacements simulates the structural loadings.

Fig. 12. Ashlar masonry of the French Panthéon. Iron-staple pull-out test for t40 with the shear fracture model.

Fig. 13. Ashlar masonry of the French Panthéon. Iron-staple pull-out test for t40 with the unilateral contact model. Deformed configuration (left) and

volume change diagram (right). The whole crack, including shear and opening branches, appears after a single brutal event at t�0:44.
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With the shear fracture model, we obtained the evolution in Fig. 12, which is in agreement with the results of Lancioni
and Royer-Carfagni (2009). At t�0:48 a shear crack appears at the left of the blocked inclusion. It continues propagating
toward the free border, reached at t�0:56.

The unilateral contact model gives a different result, which is resumed in Fig. 13. Removing the hypothesis that cracks
can propagate only in shear mode, we observe an opening crack in the region at the right of the inclusion subjected to a
positive volume change. This crack pattern allows the system to reach a state at a significantly lower energy level, as
pointed out by the energy diagrams of Fig. 14.

For reverse loadings (to0), the crack pattern given by the shear fracture model is the same as in Fig. 12, with an opposite
sign of the displacements. The model with unilateral contact provides the solution in Fig. 15. The crack pattern is again
different from the one of the shear model.
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Fig. 14. Energies for Panthéon ashlar masonry: traction (a) and compression (b) with the unilateral contact model are compared to the shear fracture

model (c).

Fig. 15. Ashlar masonry of the French Panthéon. Iron-staple pull-out test for to0 using the unilateral contact model.
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A close look to Fig. 15 enlightens an interesting feature of the proposed model: a crack generated in shear may change
type during the evolution, becoming an opening crack with a total release of the elastic energy (and vice versa). In the
present case, the horizontal branch of the crack at the bottom of the inclusion appears as a shear crack with partial release
of the elastic energy at t ¼ �0:45 (in black in the bottom row of images). It switches to the opening mode at t ¼ �1:20
(in white in the bottom row of images) giving a total release of the elastic energy. This property, which is barely appreciable
in the present simulation, may be fundamental to reproduce a realistic physical behavior for more complex loading cases
(e.g. cyclic loadings).

The reported results may provide further support to the study of Lancioni and Royer-Carfagni on the damage
of the Panthéon ashlar masonry. Observing that the final crack pattern given by the shear fracture model (Fig. 12) is in
qualitative agreement to the one observed experimentally, they conclude that the loading mode in Fig. 11 is the most
probable cause of failure. The more realistic model with unilateral contact show that such a loading mode alone would
probably induce a different failure pattern including opening cracks. At the light of the information reported in
Lancioni and Royer-Carfagni (2009) and our results, we suspect that the crack pattern observed in situ can be coherently
justified only considering the combined action of multiple loadings, including compressive forces directed along the
vertical direction e2. Example of such additional loadings may be the staple expansion due to oxidation considered in
Lancioni and Royer-Carfagni (2009). Another point to be considered in future investigations is the adherence of the stone
panel to the substrate.
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7. Concluding remarks

Starting from the regularized model proposed by Bourdin et al. (2000), separating the spherical part and the deviatoric
part of the bulk energy and accounting for the sign of the volumetric strain, we have obtained a regularized model able to
predict asymmetric results in traction and in compression. That constitutes a real improvement in comparison to the two
previous models developed by Bourdin et al. (2000) and Lancioni and Royer-Carfagni (2009). Even though gamma-
convergence results are unavailable at the present time, we believe that the new model is a good approximation of the non-
interpenetration condition that must be satisfied by the crack lips. This feeling is reinforced by the realistic results of the
various numerical tests presented above. Of course, all those numerical results are impacted by the choice of the alternate
minimization algorithm the convergence of which to (local) minima is not guaranteed. Even if several numerical aspects
remain to be improved, the variational approach to fracture and its regularized versions are a very powerful tool to predict
intricate crack paths without any a priori assumption.
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