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Abstract

This paper analyzes different numerical methods for modal analysis of stepped piezoelectric beams modeled by the

Euler–Bernoulli beam theory. Results from standard numerical approaches, that rely on the discretization of the stepped

beam (assumed modes and finite-element methods), are compared with the solution of the exact transcendental eigenvalue

problem for the infinite dimensional system. An accurate and manageable novel method, that enriches the assumed modes

basis functions with special jump functions, is presented. Numerical results are compared with experimental data and the

accuracy of the adopted beam model is validated.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are used as sensors and actuators in control applications because of their ability to
simultaneously detect structural deformations and exert control actions in a wide frequency range [1]. Layers
of piezoelectric ceramics are integrated in structural elements, by either surface bonding or direct embedding,
to form composite electromechanical structures [2–4]. These elements modify the structural properties by
adding mass and stiffness, material discontinuities, and new electric properties (such as the equivalent
electrical capacitance). Especially in lightweight structures, these additional contributions strongly affect the
modal properties of the overall structure and cannot be neglected. At the same time, the precise knowledge of
the modal properties is the starting point for controllers design (see e.g. Ref. [5]). For these reasons, many
efforts have been devoted to develop numerical and experimental tools for structural modeling of piezoelectric
composites.

Galerkin methods, as finite element [6–8] or assumed modes [3,4,9], are frequently used in the modal
analysis of stepped piezoelectric beams. They consider a finite-dimensional approximation of the continuum
system and reduce the transcendental eigenvalue problem to a linear one. The problem of finding the modal
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properties of a stepped piezoelectric beam was formulated in Refs. [10–13]. This implies the root-finding of
transcendental equations (for natural frequencies) and the inversion of ill-conditioned matrices (for mode
shapes). The related numerical problems become soon unsolvable when increasing the number of piezoelectric
elements. Accurate methods for the solution of transcendental eigenvalue problems are proposed in Refs.
[14,15] (natural frequencies) and in Ref. [16] (natural frequencies and modes shapes), but they have not yet
been applied to piezoelectric structures.

In the present paper, we examine and compare four different techniques for modal analysis of stepped
piezoelectric beams. The first technique is based on the reliable and efficient method recently proposed in Ref.
[16] for the solution of the exact transcendental eigenvalue problem, formulated in terms of the dynamic
stiffness matrix (last energy norm (LEN) method). Next, we test, by comparisons with the exact solution from
the LEN method, three different Galerkin methods for obtaining a finite-dimensional version of the system.
Besides the classical assumed modes (AM) method and finite-element (FE) method, we propose a novel
enhanced version of the AM method, which introduces special jump functions (see e.g. Refs. [17,18]) to enrich
the standard basis functions (enhanced assumed modes, EAM).

Comparisons between experimental and theoretical results are given in Refs. [7,9,12,19]. However,
the accuracy of the numerical techniques used for computing the structural modal properties, on one hand,
and the reliability of the experimental methods used for their identification, on the other hand, have not
been analyzed thoroughly. For these reasons, it is often difficult to understand if the discrepancies
between theoretical predictions and experimental measurements, should be ascribed to inadequate theoretical
models, to inaccurate numerical algorithms, to imprecise measurements, or to unreliable identification
procedures.

The aims of this paper are manifold: (i) to propose reliable methods to extract modal frequencies and
mode shapes of beams with multiple piezoelectric patches; (ii) to comment on the errors introduced by
standard approximate methods such as AM and FE, and to suggest possible improvements; (iii) to
experimentally show that, for typical materials and geometry, the modal properties of a beam with multiple
piezoelectric elements can be reasonably estimated by a simple Euler–Bernoulli model with proper constitutive
coefficients.

2. Modeling

The starting point for modeling stepped piezoelectric beams is to choose a suitable one-dimensional (1D)
model to describe the interactions between the surface bonded piezoelectric transducers and the host beam.
Reviews of the works on beam and plate models of piezoelectric composites can be found in Refs. [1,20,21].
We adopt the Euler–Bernoulli-like model developed in Refs. [22,23]. Its main features are: to introduce the
two-fold electromechanical coupling; to include the effect of the induced electric potential [24]; to account for
three-dimensional (3D) effects as cross-sectional warping [25]. The corresponding governing equations are in
the format of a standard Euler–Bernoulli model, but the constitutive coefficients are improved to get a better
agreement with 3D solutions [23].

2.1. Geometry

We consider a beam of length l where two sets of piezoelectric elements are symmetrically bonded side by
side to form np bimorph pairs. The resulting stepped piezoelectric-composite beam consists of n regular
segments. Purely elastic segments alternate with three-layered segments composed of one elastic core and two
identical piezoelectric laminae. Each piezoelectric lamina is constituted by piezoelectric ceramics polarized
along the thickness direction. Their upper and lower surfaces are covered by two metallic electrodes with
negligible mechanical properties. The electrodes of each bimorph pair are connected in parallel and counter-
phase in the so-called bender configuration. The generic material point of the beam axis is named by the
abscissa x. The generic beam node is indicated by X h and the generic beam segment of length lh between X h

and X hþ1 is indicated by Sh (see Fig. 1). We introduce the subsets of indices Ib and Ip associated to elastic and
active piezoelectric segments, respectively.
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2.2. Beam model

The generic segment Sh is modeled as an Euler–Bernoulli beam and its kinematical state at time t is
described by the deflection field whðx; tÞ and voltage V hðtÞ across the terminals of the bimorph pair (the voltage
is defined only if Sh is a piezoelectric segment, i.e. h 2 Ip). By assuming a linearized theory, the following
constitutive equations relate the bending moment Mh and the line charge density qh to the bending
deformation w00h and the voltage V h (prime denotes the space derivative):

MhðxÞ ¼ khw00hðx; tÞ � ehV hðtÞ, (1a)

qhðxÞ ¼ ehw00hðx; tÞ þ �hV hðtÞ. (1b)

For each piezoelectric segment the mechanical stiffness kh, the bending coupling coefficient eh, and the
piezoelectric capacitance per unit line �h are estimated by the expressions provided in Ref. [23] and reported in
Section A.1. For purely elastic segments the constitutive equations (1) reduce to

Mhðx; tÞ ¼ khw00hðx; tÞ. (2)

The mechanical equilibrium equation in the generic segment Sh is

kh

q4whðx; tÞ

qx4
þ rh €whðx; tÞ ¼ bðx; tÞ, (3)

where rh is the linear mass density, b is the applied transversal load per unit line, and superimposed dot
denotes time derivative. The electric equilibrium equations are the Kirchhoff’s laws at the np ground-referred
electric terminals of the piezoelectric segments. At the generic piezoelectric segment Sh, the balance between
the total applied electric charge Qh and the integral of the line charge qh gives

eh½w
0
hðX hþ1; tÞ � w0hðX h; tÞ� þ ChVhðtÞ ¼ QhðtÞ, (4)

where Ch ¼ �hlh is the inherent capacitance (or damped capacitance [6]) of the segment Sh.
The mechanical continuity conditions between different segments imply the continuity of displacement,

rotations, shear forces, and bending moment. At node X h between the segments Sh�1 and Sh they read

Displacement: wh�1ðX h; tÞ ¼ whðX h; tÞ;

Rotation: w0h�1ðX h; tÞ ¼ w0hðX h; tÞ;

Moment: kh�1w
00
h�1ðX h; tÞ � eh�1V h�1ðtÞ ¼ khw00hðX h; tÞ � ehVhðtÞ;

Shear: kh�1w
000
h�1ðX h; tÞ ¼ khw000h ðX h; tÞ;

ð5Þ

where the bending moment includes the piezoelectrically induced contribution.1 For the beam in Fig. 1, the
segment Sh�1 is not piezoelectric and Vh�1 in Eqs. (5) must be set to zero. The total number of continuity
conditions between adjacent segments is 4ðn� 1Þ.
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Fig. 1. Sketch of the stepped piezoelectric beam.

1The piezoelectric effect induces a constant bending moment in the piezoelectric segments. This contribution appears only in the

continuity conditions. Its effect is equivalent to a pair of opposite bending moments of intensity ehVh applied at the ends of each

piezoelectric segment.
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Eq. (4) shows a well-known result [3,9,26,27]: a piezoelectric sandwich bender is electrically equivalent to a
capacitor in parallel connection to a charge generator, whose intensity is proportional to the average curvature
of the region covered by the electrodes.

If the potential V h is imposed by a given voltage source or short-circuited to ground (V h ¼ 0), Eq. (4) is not
required for the solution of the problem. If the piezoelectric segment Sh is left open-circuited, then QhðtÞ ¼ 0 in
Eq. (4) and

VhðtÞ ¼ �
eh

Ch

ðw0hðX hþ1; tÞ � w0hðX h; tÞÞ. (6)

3. Exact formulation

Consider a finite-length beam subject to nw linear constraints on the deflection fields and their derivatives up
to the third order. These constraints include at least four boundary conditions. Moreover, assume that the
piezoelectric segments are either short-circuited or open-circuited, and that external forces are null, i.e. b ¼ 0.
The indices corresponding to closed-circuited segments are collected in the set ISCp , those corresponding to
open-circuited segments in the set IOC

p :
By looking for solutions in the harmonic form at frequency o:

whðx; tÞ ¼ ~whðx;oÞeiot; V hðtÞ ¼ ~V hðoÞeiot, (7)

the general solution of the mechanical equilibrium equation of the hth segment is found to be (the dependence
on o is omitted)

~whðxÞ ¼ ah cos
lhx

lh

� �
þ bh sin

lhx

lh

� �
þ ch cosh

lhx

lh

� �
þ dh sinh

lhx

lh

� �
; x 2 ðX h;X hþ1Þ, (8)

with

lh ¼ lh

ffiffiffiffi
o
p

ffiffiffiffiffi
rh

kh

4

r
. (9)

The natural frequencies and mode shapes of the stepped beam are the frequencies o and the displacement
fields in form (8) that verify the nw constraints and the 4ðn� 1Þ continuity conditions (5). We introduce the
segment nodal displacement vector

wh ¼ ½ ~whðX hÞ ~w
0
hðX hÞ ~whðX hþ1Þ ~w

0
hðX hþ1Þ�

T (10)

and the segment nodal force vector

fh ¼ ½� ~ThðX hÞ � ~MhðX hÞ ~ThðX hþ1Þ ~MhðX hþ1Þ�
T, (11)

where ~MhðxÞ and ~ThðxÞ ¼ � ~M
0

hðxÞ are the harmonic components of bending moment and shear force of the
hth segment. The constitutive equations (1) and the expression of the displacement field (8) lead to the
following relation between segment nodal forces and segment nodal displacements:

fh ¼ Khwh � eh
~V h, (12)

where Kh is the segment dynamic stiffness and eh the segment coupling vector. The matrix Kh is given by

Kh ¼
kh

r

a �c f �d

�c b d g

f d a c

�d g c b

2
66664

3
77775. (13)

The scalars a, b, c, d, f , g, r are functions of lh and lh:

a ¼ �l3hðcoshðlhÞ sinðlhÞ þ cosðlhÞ sinhðlhÞÞ; f ¼ l3hðsinðlhÞ þ sinhðlhÞÞ,
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b ¼ l2hlhð� coshðlhÞ sinðlhÞ þ cosðlhÞ sinhðlhÞÞ; g ¼ l2hlhðsinðlhÞ � sinhðlhÞÞ,

c ¼ lhl
2
h sinðlhÞ sinhðlhÞ; r ¼ l3hð�1þ cosðlhÞ coshðlhÞÞ,

d ¼ l2hlhðcoshðlhÞ � cosðlhÞÞ. (14)

The coupling vector

eh ¼ ½0 � eh 0 eh�
T (15)

introduces the electrically induced bending moments at the segment ends. For purely elastic segments and
short-circuited segments, ~V h ¼ 0 and Eq. (12) becomes

fh ¼ Khwh. (16)

Open-circuited segments, for which the voltage is given by Eq. (6), present the stiffening effect due to the open-
circuit condition in the modified stiffness matrix:

fh ¼ K
open
h wh; K

open
h ¼ Kh þ

1

Ch

ehe
T
h

� �
. (17)

The global equilibrium equation for null external loading and piezoelectric segments in either short- or
open-circuit condition is written in the form

K̂ðoÞŵ ¼ 0, (18)

where K̂ is a 2ðnþ 1Þ � 2ðnþ 1Þ global stiffness matrix and ŵ is the global nodal displacement
vector, comprised of the 2ðnþ 1Þ nodal displacements and rotations. The global stiffness matrix is
obtained by assembling the segment matrices of Eqs. (13) and (17) with procedures analogous to those
used in FE analysis. When introducing the nw mechanical constraints, the dynamic stiffness and coupling
matrices are modified by eliminating the corresponding degrees of freedom. This leads to the constrained
version of Eq. (18)

KðoÞw ¼ 0, (19)

where w and KðoÞ are constrained global displacement vector and stiffness matrix.
Eqs. (8) and (19) provide the natural frequencies and mode shapes of a stepped beam with open- or short-

circuited piezoelectric segments. Due to the distributed nature of the mechanical system, the characteristic
equation (19) is transcendental in o and finding its roots (natural frequencies) is not trivial. Moreover,
whenever a modal frequency is found, standard algorithms generally fail in finding associated mode shapes,
because they imply the inversion of ill-conditioned matrices.

The LEN method proposed in Ref. [16] and recalled in Section A.2 provides a reliable method for solving
the transcendental eigenvalue problem. It allows for the simultaneous determination of the eigenvalues and
the mode shapes without any matrix inversion and with an arbitrary precision. The natural frequencies are
computed as the roots of the so-called last energy norm (41) and the corresponding modal nodal
displacements by the recursive relations (44).

4. Galerkin methods

Galerkin methods look for approximate solutions of the displacement field of the form [28]

wðx; tÞ ¼ /T
ðxÞyðtÞ, (20)

where /ðxÞ and yðtÞ are N-dimensional vectors giving a N-dimensional approximation of the deflection field of
the stepped beam. The vector /ðxÞ collects the basis functions fiðxÞ, and yðtÞ the corresponding weighting
coefficients yiðtÞ.

Substituting the Galerkin expansion (20) into an integral formulation of the equations of motion of the
stepped beams (3) and (5), leads to a N-dimensional system for the weighting coefficient y. For beams with
either open- or short-circuited piezoelectric segments and without mechanical loading, the frequency-domain
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version of this system of equations is

ð�o2MG þ KGÞ~y ¼ 0, (21)

where ~yðoÞ is the Fourier transform of yðtÞ and mass and stiffness matrices are given by

ðMGÞij ¼
Xn

h¼1

rh

Z
Sh

fiðxÞfjðxÞdx, (22)

ðKGÞij ¼
Xn

h¼1

kh

Z
Sh

f00i ðxÞf
00
j ðxÞdxþ

X
h2IOC

p

e2h
Ch

ðf0iðX hþ1Þ � f0iðX hÞÞðf
0
jðX hþ1Þ � f0jðX hÞÞ. (23)

The second contribution to the stiffness matrix in Eq. (23) is the additional stiffness due to the stored electrical
energy in open-circuited piezoelectric elements. In this case, the eigenvalue problem is linear in o2 and can be
easily solved with standard techniques [29]. As the number N of basis functions increases, the solution
becomes more accurate [28]. Nevertheless, ad hoc choices of basis functions may lead to fast convergence of
the approximate solutions to the exact one. In the following, we present three different methods for generating
valuable basis functions.

Here and henceforth, we assume that the basis functions are normalized to satisfy the following condition:

Xn

h¼1

Z
Sh

rhðfðxÞÞ
2 dx ¼ m, (24)

where m is the beam total mass.

4.1. Assumed modes (AM) method

Approximate natural frequencies and mode shapes of stepped piezoelectric beams are often found by
considering as basis functions the mode shapes of the corresponding continuous beam without the array of
piezoelectric elements (e.g. Refs. [3,9]), i.e. the solutions of

fIV
ðxÞ � l4fðxÞ ¼ 0; l ¼ l

ffiffiffiffi
o
p

ffiffiffiffiffi
rb

kb

4

r
; x ¼

x

l
(25)

with proper mechanical boundary conditions. The resulting basis functions are smooth functions which do not
include the curvature discontinuities at the interphase between elastic and piezoelectric segments.

For a cantilever beam the eigenvalues are the roots of the following transcendental equation:

1þ cosh l cos l ¼ 0. (26)

The numerical values for the eigenvalues li and the corresponding mode shapes fi can be found in several
books (see for example Ref. [30]).

4.2. Enhanced assumed modes (EAM) method

A more accurate approximate solution of the eigenvalue problem can be found by enriching the
mode shapes of the homogeneous beam with suitable discontinuity functions. These additional functions
are tasked with modeling the effects of material discontinuities. Here, we introduce n� 1 discontinuity
functions fyhg

n�1
h¼1, one for each step between elastic and piezoelectric segments. The generic discontinuity

function yh is chosen to satisfy the mechanical constraints, to be continuous with its first derivative,
and to have a jump on the second derivative at the hth step. A function with these characteristics may be
generated as the static deflection of a homogenous beam due to a concentrated bending moment applied at the
hth step.
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For a left cantilevered beam, the solution of the simple static problem resulting from the application of a
concentrated moment at the hth step (i.e. at x ¼ X hþ1) is

yh ¼

ah

x2

2l
; x 2 ½0;X hþ1Þ;

ah

X hþ1

2l
ð2x� X hþ1Þ; x 2 ½X hþ1; l�:

8>><
>>: (27)

The constant ah is proportional to the applied moment and can be chosen in order to normalize the special
jump functions as in Eq. (24).

4.3. Finite-element (FE) method

The FE method is a reliable method for the solution of the eigenvalue problem of the stepped piezoelectric
beams. We implement the standard two-node 1D FE with quadratic shape functions, which has been
employed for a stepped piezoelectric beam in Ref. [6]. The only difference with respect to the model used in
Ref. [6] relies on the choice of the constitutive coefficients kh; eh; and �h of the multilayered piezoelectric
segments. Here, these coefficients are estimated through the improved formula presented in Ref. [23] and
reported in Eqs. (31). These coefficients intrinsically include 3D effects as cross-sectional warping that are of
primary importance in piezoelectric laminates with thickness-polarized piezoelectric layers.

The trial solution in the generic element is constructed from the values of the deflection and rotation at the
element nodes (nodal displacements) by using classical Hermite polynomials. In the present case, each beam
segment is divided into a number of disjoint elements. The vector of weighting coefficients y is comprised of
the amplitudes of the nodal displacements and rotations at all the mesh nodes. The mass and stiffness matrices
of the eth element in the elastic or short-circuited piezoelectric segment Sh are:

Me ¼ rh

13le

35

11l2e
210

9le

70

�13l2e
420

11l2e
210

l3e
105

13l2e
420

�l3e
140

9le

70

13l2e
420

13le

35

�11l2e
210

�13l2e
420

�l3e
140

�11l2e
210

l3e
105

2
6666666666664

3
7777777777775
; Ke ¼ kh

12

l3e

6

l2e

�12

l3e

6

12e
6

l2e

4

le

�6

l2e

2

le

�12

l3e

�6

l2e

12

l3e

�6

l2e
6

l2e

2

le

�6

l2e

4

le

2
66666666666664

3
77777777777775
, (28)

where le is the element length. For elements belonging to open-circuited piezoelectric segments, the stiffness
matrix is modified by adding the contribution due to the electrically stored energy

1

le�h

ehe
T
h ¼

e2h
le�h

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

2
6664

3
7775, (29)

where the coupling vector eh is defined by Eq. (15). The global stiffness and mass matrices are computed by
assembling the element matrices and by imposing the kinematic constraints.

5. Results

5.1. Experiments

A cantilever aluminum beam (Al6061-T6) hosting two surface bonded bimorph pairs of piezoelectric
transducers (Piezo-System T110-H4E-602) was built (see Figs. 2 and 3). Tables 1 and 2 report the
corresponding geometric and material properties. This system is a stepped piezoelectric beam composed of five
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Fig. 2. Geometry of the stepped beam considered in numerical examples and experimental tests. The arrows indicate the polarization of

the piezoelectric layers.

Fig. 3. Picture of the stepped beam used for experimental tests.

Table 1

Dimensions (mm) of the stepped piezoelectric beam

l1 ¼ 5:0, l2 ¼ 36:5, l3 ¼ 6:0, l4 ¼ 36:5, l5 ¼ 117:0
l ¼ 201:0, wp ¼ 17:6, wb ¼ 20:0, hp ¼ 0:267, hb ¼ 2:85

Table 2

Material data for aluminum and piezoelectric ceramics

Aluminum (Al6061-T6)

rðalÞV ¼ 2700kgm�3, Y ðalÞ ¼ 69� 109 Nm�2, nðalÞ ¼ 0:33

Piezoelectric ceramics (PZT-5H-S4-ENH)

rðPZTÞV ¼ 7800kgm�3, Y
ðPZTÞ
1 ¼ 62� 109 Nm�2, Y

ðPZTÞ
3 ¼ 50� 109 Nm�2

n12 ¼ 0:31, d31 ¼ �320� 10�3 mV�1, d33 ¼ 650� 10�3 mV�1

�T33 ¼ 3800�0

C. Maurini et al. / Journal of Sound and Vibration 298 (2006) 918–933 925



regular segments, three elastic and two piezoelectric. The piezoelectric transducers were bonded on the beam
by a thin-layer of non-conductive epoxy resin and each bimorph pair was electrically interconnected in parallel
and counter-phase. The single piezoelectric transducer is made of a layer of thickness-polarized piezoelectric
ceramic (PZT-5H) having the upper and lower surfaces covered by a thin nickel film serving as electrode. The
electric contact between the lower electrode of each transducer and the grounded beam was achieved by a
small spot of electrically conductive adhesive in the central region of the piezoelectric transducer, where
interfacial stresses are low [2].

The beam frequency response was determined by exciting the structure with a frequency sweep signal at one
of the two piezoelectric pairs and measuring the beam tip velocity by a laser velocimeter (Polytec OFV 350) as
illustrated in Fig. 4. The input signal was generated digitally in Labview, converted by the D/A converter
National Instruments AT-MIO-16E-10, and amplified by ad hoc designed voltage amplifier. The analog
output of the laser and the voltage applied at the exciting transducer were measured by the A/D converter
National Instruments PCI-4452 and a personal computer was used for digital signal processing. Non-invasive
measurements were performed by exciting the beam with one of the surface-bonded transducers (included in
the model, being part of the stepped beam itself), and by measuring the tip velocity with the laser-vibrometer.

Table 3 reports the measured natural frequencies of the first four structural modes and compares them with
the numerical values found by using the LEN method. Fig. 5 displays the experimental and numerical mobility
functions obtained either when shunting the first piezoelectric pair and exciting the second one (V2 ¼ 0 and
V4 ¼ V̄ ) or vice versa (V 2 ¼ V̄ and V 4 ¼ 0). The numerical plots rely on a eight dof modal model obtained by
the LEN method.

Table 3 and Fig. 5 assess the accuracy of the simple Euler–Bernoulli model to describe the modal properties
of a stepped piezoelectric beam. The difference between the numerical (LEN method) and the experimental
values for the first four natural frequencies are within 1.8% error and the frequency responses are barely
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PCI-4452

AT-MIO
16E-10

Laser velocimeter
controller

Laser
velocimeter

PC: Lab View

Amplifier

Fig. 4. Experimental setup for frequency response measures.

Table 3

First four natural frequencies of the stepped beam in Figs. 2 and 3 with short-circuited piezoelectric transducers

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

Experimental 66.25 360.2 990 1943

LEN 66:69 ðþ1:56%Þ 363:6 ðþ1:54%Þ 1001 ðþ1:79%Þ 1955 ðþ1:37%Þ

Comparisons between experimental values and numerical results of the LEN method.

C. Maurini et al. / Journal of Sound and Vibration 298 (2006) 918–933926



distinguishable. Moreover, the percentage errors in the first four frequencies are almost constant and the ratios
between the natural frequencies are correctly predicted. This validates the Euler–Bernoulli model for low
vibration modes and considered geometry and materials. The agreement between theory and experiments also
indicates that neglecting shear effects and rotatory inertia is reasonable for thin beams with surface bonded
piezoelectric transducers (see also Ref. [12]).

5.2. Comparisons

Table 4 lists the first four natural frequencies for short-circuited piezoelectric elements computed with the
four methods above. The corresponding mode shapes and curvatures are plotted in Fig. 6. These results are
calculated with the following choices of degrees of freedom: (i) AM method: eight dof given by the first eight
mode shapes of the homogeneous cantilever beam; (ii) EAM method: 12 dof, given by the first eight mode
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Fig. 5. Experimental mobility function of the stepped beam in Figs. 2 and 3 obtained by applying a frequency sweep at one piezoelectric

segment, the other being short-circuited. The response is taken with a velocimeter as in Fig. 4. The different numerical (dashed or dotted

lines) and experimental (continuous lines) frequency responses refer to excitation at the second segment (V2 ¼ V̄ ðtÞ, V4 ¼ 0) or at the

fourth segment (V 2 ¼ 0, V4 ¼ V̄ ðtÞ).

Table 4

First four natural frequencies of the stepped beam in Figs. 2 and 3 with short-circuited piezoelectric transducers

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

LEN 66.6859 363.590 1001.24 1954.99

AM 67.2832 365.742 1007.76 1969.53

ðþ0:89%Þ ðþ0:592%Þ ðþ0:650%Þ ðþ0:744%Þ
EAM 66.6864 363.600 1001.33 1955.19

ðþ6:79� 10�4%Þ ðþ2:79� 10�3%Þ ðþ8:25� 10�3%Þ ðþ0:0101%Þ

FE 66.6860 363.606 1001.49 1957.06

ðþ2:12� 10�4%Þ ðþ4:24� 10�3%Þ ðþ0:0242%Þ ðþ0:106%Þ

Unif. beam 57.6071 361.0170 1010.86 1980.88

ð�13:6%Þ ð�0:708%Þ ðþ0:960%Þ ðþ1:32%Þ

Comparisons among the results of the different methods including percentile differences with respect to the LEN method. The frequencies

of the aluminum beam without the transducers (uniform beam) are reported as reference value.
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shapes of the homogeneous cantilever beam and the 4 jump functions fyigi¼1;...;4 defined as in Eq. (27); (iii) FE
method: 26 dof given by the nodal displacement and rotation at the 13 nodes obtained by subdividing each
of the beam segment into subelements of the same length with 1 subelement in the first and third segment,
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Fig. 6. Mode shapes and mode curvatures of the stepped cantilever beam computed with the presented algorithms (continuous line: LEN;
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homogenous beam).
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3 subelements in the second and fourth segment, and 5 subelements in the fifth segment. Table 4 also reports
the natural frequencies of the homogeneous aluminum beam (without the piezoelectric transducers) to
underline the influence of the piezoelectric elements.

Table 5 summarizes the characteristic features of the presented numerical methods. Comparison of the
methods suggests the following conclusions:

� The AM, even being the most widespread, does not provide satisfactory determinations of the modal
properties. This is due to the excessive smoothness of the basis functions.
� The EAM method provides accurate estimates of the natural frequencies and of the mode shapes because

the special jump functions increase the frequencies’ accuracies and introduce the effects of the beam
segmentation. Its implementation is very easy and it seems to be directly applicable to 2D problems, for
example plates and shells hosting piezoelectric transducers (see e.g. Refs. [31,32]).
� The FE method is a well-established method and provides accurate predictions of the natural frequencies.

But, even with a larger number of dof, the corresponding estimates of the higher frequencies are worse than
those of EAM method. Furthermore, due to the lack of continuity of the curvatures of the basis functions
at the element junctions, a satisfactory computation of the mode shapes may require post-processing.
� The LEN method guarantees an arbitrary precision in the computation of the beam modal properties, that

may be easily controlled by setting the tolerance of the root-finding algorithm used for the natural
frequencies. Its implementation is straightforward, but its extension to 2D problems seems difficult.

6. Conclusions

This paper analyzed numerical methods for modal analysis of stepped piezoelectric beams. The analysis
relies on linear models and, for beam modeling, on an Euler–Bernoulli theory including 3D effects [22,23].

Four different numerical techniques have been tested. The exact transcendental eigenvalue problem has
been solved by the LEN method [16]. We have proposed a simple and efficient enhancement of classical AM
method, that introduces special jump functions to catch the curvature discontinuities of the mode shapes
(EAM method). Numerical comparisons have shown that the EAM method may be preferable also to the
standard (1D) FE method, especially for higher frequencies.

Comparisons between theoretical and experimental resonance frequencies indicates that an Euler–Bernoulli
model correctly predicts the dynamics of a stepped piezoelectric beam with typical geometry and material
properties. This is shown by the good agreement between the numerical and experimental natural frequencies
and response functions.

Numerical methods established in this paper seem particularly promising in analyzing and designing
distributed control systems similar to those proposed in Refs. [4,26,27], where arrays of piezoelectric elements
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Table 5

Comparison between the four methods for numerical modal analysis

LEN AM EAM FE

Accuracy on

frequencies

– Fair High High

Accuracy on mode

shapes

– Poor High Medium

Basis functions – Modes of the hom. beam Modes of the hom. beam

+ jump functions

Hermite polynomials

Stiffness matrix Transcendental,

symmetric, banded

Symmetric, not-banded Symmetric, not-banded Symmetric, banded

Assembly of matrices Easy Not needed Not needed Easy

Accuracy on mode

curvatures

Very high Poor High High, but requires

post-processing
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and distributed electric circuits are exploited for multimodal vibration damping. Further extensions of the
present work should address the problem of an accurate numerical modal analysis of plates with multiple
piezoelectric patches, as those considered in Refs. [31,32].
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Appendix A

A.1. Constitutive parameters of a stepped piezoelectric beam

The coefficients appearing in the electromechanical constitutive relations of the three-layer sandwich
piezoelectric beam with counter-phase connected piezoelectric layers, can be estimated with different modeling
approaches. As shown in Refs. [22,23], standard models assuming an uniaxial stress state lead to relevant
errors in estimating the equivalent piezoelectric capacitance. Here, the coefficients found by the null transverse
stress resultants model proposed in Ref. [23] are used. The beam constitutive coefficients are found from the
beam cross-sectional geometry and the following constitutive parameters: Y

ðPZTÞ
1 , n12 (in-plane Young

modulus and Poisson ratio of the piezoelectric material at constant electric field), d31 (piezoelectric strain
coefficient), �T33 (dielectric permittivity at constant stress along the direction of polarization), Y and n (host
beam Young modulus and Poisson ratio).

In standard IEEE notation [33], we define the plane stress (T33 ¼ 0) coefficients

~cE
11 ¼

Y
ðPZTÞ
1

1� n212
; ~cE

12 ¼ n12
Y
ðPZTÞ
1

1� n212
, (30a)

~e31 ¼ �d31
Y
ðPZTÞ
1

1� n12
; ~�S

33 ¼ �
T
33 � 2d2

31

Y
ðPZTÞ
1

1� n12
, (30b)

~cD
11 ¼ ~cE

11 þ ~e
2
31=~�

S
33; ~cD

12 ¼ ~cE
12 þ ~e

2
31=~�

S
33, (30c)

~c11 ¼
Y

1� n2
; ~c12 ¼ n

Y

1� n2
. (30d)

Using Eq. (30), the constitutive coefficients for the hth segment (piezoelectric), under the conditions of
vanishing transversal force resultants, are calculated as [23]:

kh ¼ abK11 1�
K2

12

K2
11

� �
þ ðap � abÞ

1

12
h3

b ~c11ð1� n2Þ, (31a)

eh ¼ ab ~e31ðhp þ hbÞ 1�
K12

K11

� �
, (31b)

�h ¼
2ap~�

S
33

hp

þ
ðap ~e31ðhp þ hbÞÞ

2

K11
, (31c)
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where the stiffness parameters K11, K12 are defined by

Kab ¼
~cE
abh3

p

12
6 1þ

hb

hp

� �2

þ 2
~cD
ab

~cE
ab

þ
~cab
~cE
ab

h3
b

h3
p

 !
. (32)

The linear mass density rh is given by

rh ¼ abhbrV (33)

in purely elastic segments, and by

rh ¼ abhbrV þ 2aphpr
ðPZTÞ
V (34)

in piezoelectric segments. The parameters rV and rðPZTÞV are the volume mass density of the elastic and
piezoelectric materials.

For the geometrical and material data reported in Tables 1 and 2, numerical values of the constitutive
coefficients (31)–(34) are

piezoelectric segment:

kh ¼ 4:099Nm2;

rh ¼ 0:2280 kgm�1;

�h ¼ 2:6252� 10�6 Fm�1;

eh ¼ �0:00108NmV�1;

8>>>><
>>>>:

(35)

elastic segment:
kh ¼ 2:662Nm2;

rh ¼ 0:1539 kgm�1:

(
(36)

A.2. Solution of the transcendental eigenvalue problem

We briefly review the procedure presented in Ref. [16] (and called in the present paper LEN method) for
solving the transcendental eigenvalue problem for a structure consisting of n continuous substructures:

KðoÞx ¼ 0, (37)

where K is a n� n real symmetric, non-negative definite dynamic stiffness matrix whose entries are
transcendental functions of o. At any trial frequency ō the symmetric matrix K can be decomposed in terms of
a non-singular lower triangular matrix L with unit diagonal elements and a diagonal matrix D:

K ¼ LDLT. (38)

Or equivalently,

PTKP ¼ D, (39)

where the upper triangular matrix P, satisfying

P ¼ L�T (40)

is introduced. The last entry of D is called last energy norm (LEN) and it is given by

dn ¼ PT
nKPn, (41)

where the matrix subscript n indicates the nth column, thus Pn is the last column vector of P. From Eqs. (38)
and (40) we find:

KPn ¼ ðKPÞn ¼ ðLDÞn. (42)

By noticing that L is lower triangular with unit diagonal elements and D is diagonal, we obtain

KPn ¼ dnIn, (43)
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where I is the n-dimensional identity matrix. Therefore, if dn vanishes at ō; then ō is a natural frequency and
Pn is the corresponding eigenvector, which can be found from the following recursive relations:

P1 ¼ I1; F1 ¼ ðKÞ1,

Pk ¼ Ik �
Xk�1
i¼1

ðFkÞi

ðFiÞ i

Pi; Fk ¼ ðKÞk �
Xk�1
i¼1

ðFkÞi

ðFiÞi
Fi, (44)

where F is a lower triangular matrix defined by

F ¼ P�TD ¼ KP. (45)

In this way, the eigenvalues are obtained as the root of the LEN dn and the associated eigenvectors are
simultaneously found, without any matrix inversion, as the corresponding Pn. Moreover, it is possible to show
[16] that dn is a monotonically decreasing function of the frequency o and its graph is composed of infinite
branches separated by singular points where the function is approaching �1 from the left and þ1 from the
right. Therefore, for each branch there is a unique root of dn which can be easily found by applying standard
root-searching algorithms (e.g. bisection).

The problem of properly locating each eigenvalue, meaning giving suitable upper and lower bounds on any
specific eigenvalue, can be solved by using the Wittrick–Williams mode count function [15]

JðōÞ ¼
Xn

k¼1

JkðōÞ þ sðKðōÞÞ. (46)

Eq. (46) yields the number J of natural frequencies that are exceeded by a trial frequency ō: The term Jk in Eq.
(46) is the number of natural frequencies of the kth substructure that would be exceeded by ō if its ends were
to be clamped (i.e. the nodal displacements set to zero). For Euler–Bernoulli beams a simple formula for Jk

may be derived (see Ref. [14]):

Jk ¼ j � 1
2
ð1� ð�1Þjsignð1� cosh lk cos lkÞÞ, (47)

where lk is defined in Eq. (9), j is the largest integer less than lk=p and the function sign gives the argument
sign. The term sðKðōÞÞ is the so-called sign count of the symmetric matrix K, and equals the number of negative
elements along the diagonal of D.

With this procedure only the eigenvalues related to eigenvectors having zero displacement for the last node
are missed [16]. Indeed, by assuming that v̄ is the eigenvector associated to ō and that dnðōÞa0, from
decomposition (38)

0 ¼ ðKv̄Þn ¼ dnðv̄Þn. (48)

Eq. (48) implies that the nodal displacement ðv̄Þn vanishes. In Ref. [16] it is shown that these particular
eigenvalues can be determined by re-numbering nodes on the structure or by suitably adding nodes.
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