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We consider the curling of an initially flat but naturally curved elastica on a hard, nonadhesive surface.

Combining theory, simulations, and experiments, we find novel behavior, including a constant front

velocity and a self-similar shape of the curl that scales in size as t1=3 at long times after the release of one

end of the elastica. The front velocity is selected by matching the self-similar solution with a roll of nearly

constant curvature located near the free end.
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Curling of an elastic object is a commonplace phenome-
non. It occurs after a piece of gift ribbon has been passed
over by the blade of a pair of scissors, or when a curly hair
has been straightened then released. It arises in the nastic
movements of some plants; the tendrils of Bryonia Dioica
respond to touch stimuli by curling [1]. The membrane of
red blood cells curls outwardly after lysis [2] and during
egress of malaria parasites [3]. Recently, biologically in-
spired experiments on plastic strips with natural curvature
have been performed [4]. Curling has also recently been
exploited as a high-speed temperature- or light-sensitive
actuation mechanism at the microscale [5,6]. Given its
ubiquity, it is surprising that still very little is known about
the dynamics of curling.

The theory of linear bending waves in a naturally
straight elastica is classical, and relevant to the dynamic
buckling of beams [7] and their fragmentation [8,9]. Only a
few dynamically nonlinear solutions are known, such as
that for a traveling loop [10] relevant to the problem of a
cracking whip [11]. Here, we consider the curling of a
naturally curved elastica on a hard surface, driven by
elasticity, inertia, and geometric nonlinearity. Curling is a
moving boundary problem, and thus shares common fea-
tures with crack propagation in beams [12] and peeling of
an elastica from an adhesive surface [13].

Experiments were performed using a steel strip of length
L ¼ 635 mm, thickness a ¼ 0:13 mm, width b ¼
9:5 mm, and radius of natural curvature ��1

0 ¼ 9:3 mm
[14]. The material properties of the strip are mass per unit
length � ¼ 9:732� 10�3 kg=m, Young’s modulus E ¼
193 GPa, Poisson’s ratio � ¼ 0:25, and bending modulus
B ¼ Ea3b=ð12ð1� �2ÞÞ ¼ 0:358� 10�3 N �m2. In the
following, the centerline position of the strip is parame-
trized by the arc-length variable s. The spring was laid flat
on an approximately 2 m–long Norcan bar, secured at the
end s ¼ L and released at the other end, s ¼ 0, and its
motion was imaged using a Photron fast camera at 7000
frames per second. Curling of the spring occurs in the
xy plane, as shown in Fig. 1(a).

In the theoretical description of curling, we consider the
case of a long elastica L � ��1

0 , and assume that the

effects of gravity are negligible: ��1
0 � ‘g, where ‘g ¼

ð B�gÞ1=3 is the elastogravitational length (in the experiments

‘g ¼ 16:4��1
0 ). In the following we nondimensionalize

lengths by ��1
0 , times by T1 ¼ ��2

0 ð�=BÞ1=2, and masses

by ���1
0 . Denoting the center-line position by rðs; tÞ, the

tangent vector is tðs; tÞ ¼ r0ðs; tÞ, where underlines are
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FIG. 1 (color online). Curling of a spring initially laid flat on a
hard surface. (a) Sequence of photograph taken with a time
interval of 2:85 ms. Translation of the coiling front occurs at
12:5 m=s (dashed curve). Shape of the curled region is shown in
close-up of (a): a roll of nearly constant curvature is formed
(light, thick circle, blue online) whose radius is larger than ��1

0

(dashed circle). (b) Long-exposure photograph until time t ¼
30:85 ms.
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used for vectors, and a prime denotes differentiation with
respect to s. The assumed inextensibility of the elastica
means that jtðs; tÞj ¼ 1. Let �ðs; tÞ be the angle between t
and the x axis; the curvature of the elastica, �ðs; tÞ ¼
�0ðs; tÞ, is such that t0ðs; tÞ ¼ �ðs; tÞnðs; tÞ, where nðs; tÞ is
the normal vector. The stress resultant over a cross section
of the elastica at s is written fðs; tÞ, its moment is denoted

mðs; tÞ, and the external force per unit length is pðs; tÞ. To
study curling, we solve the nonlinear Kirchhoff equations
expressing the balance of linear and angular momentum
[15–17], complemented by a linear constitutive law ac-
counting for natural curvature. They read, in dimensionless
form,

f 0 þ p ¼ €r (1)

m0 þ ez � ðt� fÞ ¼ 0 (2)

m ¼ �� 1: (3)

Here, a dot denotes a time derivative. We note from Eq. (2)
that the force can be written as fðs; tÞ ¼ ftt� �0n, where
ftðs; tÞ is the tension.

These equations are completed by the initial conditions
rðs; 0Þ ¼ sex and _rðs; 0Þ ¼ 0 and the following six bound-
ary conditions: the free end is moment and force free,
namely, mð0; tÞ ¼ 0, m0ð0; tÞ ¼ 0, and ftð0; tÞ ¼ 0; letting
scðtÞ be the yet-unknown front position, the conditions for
the contact at a nonadhesive surface [13] read yðscðtÞ; tÞ ¼
�ðscðtÞ; tÞ ¼ �ðscðtÞ; tÞ ¼ 0. Together, these boundary con-
ditions allow for the integration of the shape of the elastica
in time, including the determination of scðtÞ.

In the presence of a line of contact with a flat surface, it
is well known that the contact force, pðs; tÞ, vanishes in the
interior of the contact region s > scðtÞ, as can be seen by
solving Eqs. (1)–(3) for p in the case of a flat configuration.

The force of contact only has a Dirac contribution at the
point of contact: p

D
ðs; tÞ ¼ ��ðs� scðtÞÞ�0ðscðtÞ�; tÞey;

see for instance Ref. [18]. In addition, we assume that
there is no contact between distant parts of the curled
elastica, even at long times. We will check later the validity
of this assumption.

Once the flattened elastica is released, the curvature at
the free end s ¼ 0 varies rapidly from zero to one on a time
scale of the order of t1 ¼ a�0=vs where vs � 1 is the
speed of sound in the material [9]. During this short period,
the curvature near s ¼ 0 relaxes; the physical description
in this regime is beyond the scope of the thin rod approxi-
mation underlying Eqs. (1) and (2). For times t1 � t � 1,
�ðs; tÞ � 1, the motion of the contact-free region s < scðtÞ
is governed by the linear beam equation €yþ y0000 ¼ 0. The
solution to this equation and the initial and boundary
conditions reads

yðs; tÞ ¼ t
Cð1Þ � Cð�Þ þ ��2½Sð1Þ � Sð�Þ� � � cos��

2

2

Sð1Þ ;

(4)

where � ¼ s=
ffiffiffiffiffiffiffiffi
2�t

p
and Cð�Þ ¼ R

�
0 cosð��02=2Þd�0 and

Sð�Þ ¼ R
�
0 sinð��02=2Þd�0 are the Fresnel cosine and sine

integrals. Equation (4) follows from an extension of the
analysis of [9] to one-sided contact. It predicts that the
y coordinate of the center of mass of the curled elastica
scales as t at short times. The front position is given by the

root of yðscðtÞ; tÞ ¼ 0, namely scðtÞ ¼
ffiffiffiffiffiffiffiffi
2�t

p
, and advances

as t1=2 at short times. This is the same scaling behavior as
for crack propagation at early times in a wedged beam [12],
a phenomenon also governed by the linear beam equation.
The validity of Eq. (4) at short times is confirmed in Fig. 2
by a numerical solution of Eqs. (1)–(3) in time, using the
numerical method of discrete elastic rods [19].
This self-similar behavior at early times only applies to

the very first frames in the experiments in Fig. 1(a), and
breaks down as the deflection angle �ð0; tÞ becomes of
order 1. For long times t � 1, the elastica has completed
many turns, and we describe the shape of the curl and the
front position. Naı̈vely, one might expect that the curling
dynamics is described by a traveling wave solution, in
which (r� vtex), f, andm are functions of (s� vt), where

v is the front velocity. This would imply that the center of
mass of the curled elastica simply translates along the x
axis, which is incompatible with the presence of a nonzero
vertical contact force at the point of contact scðtÞ. We thus
search for a more general, self-similar solution to
Kirchhoff’s equations. We first postulate that the position
of the point of contact is written in terms of an unknown
velocity parameter v and exponent �> 0 as rðscðtÞ; tÞ ¼
scðtÞex ¼ vt�ex and, second, that the position vector of an
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FIG. 2 (color online). Main plot: short time behavior. Vertical
component, y, of the curled elastica position versus the self-
similar variable s=

ffiffi
t

p � x=
ffiffi
t

p
. Self-similar solution from Eq. (4)

(red curve) versus numerical solution to Eqs. (1)–(3) using the
method of discrete elastic rods [19] (symbols). The curling front
position agrees well with the prediction of the linearized theory,
sc=

ffiffi
t

p ¼ ffiffiffiffiffiffiffi
2�

p � 2:5, at early times, t � 0:06. Inset: moderate
times, t � 9:90. Comparison of shapes of elastica in experiments
and in simulation at evenly separated times, until the curled
region makes approximately one turn.
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arbitrary point reads, in the frame moving along with the
point of contact,

rðs; tÞ � vt�ex ¼ t	RðuÞ: (5)

Here u ¼ ðvt� � sÞ=t	 is the self-similar variable, 	> 0
is a second scaling exponent, and RðuÞ is the unknown
master curve. By convention, the position of the curling
front corresponds to u ¼ 0, and RðuÞ ¼ 0. Note that the
variable u is an arc-length parameter for the master curve
RðuÞ since the tangent vector TðuÞ 	 R0ðuÞ ¼ �tðs; tÞ sat-
isfies jTðuÞj ¼ 1.

An energy argument allows us to find �. Anticipating
that the curled part of the elastica dilates slowly compared
to its translation velocity (	< �), the kinetic energy den-
sity at late times is proportional to the squared typical
velocity ð�t��1Þ2. Balancing this with the density of elastic
energy, which is of order 1 in our dimensionless units, we
have � ¼ 1 and so rðscðtÞ; tÞ ¼ vtex: the curling front
advances at an asymptotically constant velocity v.

The exponent 	 can be obtained from momentum con-
servation along the y direction as follows. By Eqs. (2) and
(3), the y component of the force that the flat part of the
elastica, s > sc, exerts on the curled part, s < sc, reads
fyðscÞ ¼ ��0 
 t�2	, while the rate of change of

y momentum on the curled part of the elastica scales as
t	�1, by Eq. (5); balancing the two gives	 ¼ 1=3. We thus
confirm our assumption that 	<�.

In Fig. 3, we show the results of numerical simulations
of the shape of the curled elastica at long times. Figure 3(a)
confirms that the elastica includes a slowly dilating, self-
similar ‘‘outer’’ region (I). In addition, Fig. 3(b) reveals the
existence of an ‘‘inner’’ region consisting of a roll of
constant curvature (II) and a small boundary layer near
the free end (III) over which the curvature increases to
�ð0; tÞ ¼ 1, as imposed by the moment-free boundary
condition at s ¼ 0. In Fig. 3(c) we see that, in the simula-

tions, the point of contact scðtÞ departs from the t1=2 scaling
valid at short times to a linear scaling t at long times;
furthermore, the y coordinate of the center of mass of the
curled elastica yM departs from a linear scaling yM 
 t at

short times to a cube root scaling t1=3 at long times. This
confirms the validity of the exponents � ¼ 1 and 	 ¼ 1=3
found by scaling arguments.

The curvature of the curled elastica at long times is
described by a differential equation that can be obtained
by combining Kirchhoff’s equations with the self-similar
ansatz (5), with � ¼ 1 and 	 ¼ 1=3. First, projecting
Eq. (1) along t and n and using Eqs. (2) and (3) leads to
f0t þ ��0 ¼ €r � t and �ft � �00 ¼ €r � n. Second, after elim-
inating the tension, ft, in the first equation using the second
one, calculating the tangential and normal components of
the acceleration at dominant order in t from Eq. (5), and
integrating the resulting equation with respect to s, we
obtain

�00

�
þ �2

2
¼ 2v2w

3
; (6)

where w ¼ 1� s=ðvtÞ varies between w ¼ 0 at the point
of contact [s ¼ scðtÞ � vt] and w ¼ 1 near the free end
(s ¼ 0). An integration constant, equal to ð�00=�Þjs¼scðtÞ,
has been omitted in the above equation since it goes to zero

as t�2=3.
Equation (6) for the self-similar curling is confirmed by

the numerical collapse of �00=�þ �2=2 in Fig. 4(b). At
long times this quantity is seen to vary linearly with w, and
not to depend on time. This collapse holds in the self-
similar region (I), corresponding to the interval 0<w<
wr. At w ¼ wr � 0:61, as seen from Fig. 4(b), the elastica
enters the roll region (II) and the curvature becomes uni-
form and time independent, with �r � 0:56. Note that self-
contact of the elastica has been ignored in the simulation.
This is consistent: closer examination reveals that in
region (II), the elastica is a non-self-intersecting spiral
with a very small but positive step.
The selection of the front velocity v, of the plateau

curvature �r, and of the relative size wr of the self-similar
region can be explained by solving the inner regions ðIIÞ þ
ðIIIÞ, and then matching with the self-similar solution in the
outer region (I). Because the dimensionless formulation of
our dynamical problem is free of any parameter, these
numbers are universal.
In the inner regions ðIIÞ þ ðIIIÞ, the elastica behaves as a

rigid solid rotating with uniform angular speed�r ¼ _t � n.
Its shape is governed by Eqs. (1)–(3); in particular, the
momentum balance is given by f0ðs; tÞ ¼ ��2

r~rðs; tÞ,
where ~rðs; tÞ is the position vector at s measured with
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FIG. 3 (color online). Direct numerical solution for the shape
of curled elastica at long times, using the method of discrete
elastic rods [19]. (a) Slow expansion of the curled region.
(b) Close-up view revealing the structure of the curl, made up
of an outer region (I), a nearly circular roll (II), and a boundary
layer (III). In (c), the contact position scðtÞ and the y coordinate
of the center of mass of the curled elastica yM are plotted on log-
log scales, confirming the short and long time behaviors found
by scaling arguments.
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respect to the center of rotation. This centripetal accelera-
tion amounts to a central force, and gives rise to the
conservation [20] of the angular momentum flux IðsÞ ¼
mðsÞ þ ez � ~rðsÞ � fðsÞ, whose value is I ¼ 0 by the stress

and moment-free boundary conditions. Enforcing this con-
straint, the actual values of �r and �r are then found by a
shooting algorithm with just one free parameter. Requiring
that, starting from s ¼ 0, the static solution converges to a
roll of constant curvature, we find �r ¼ 0:564 244 and
�r ¼ �0:279 783.

At long times, the angular velocity of the self-similar
region (I) is, using Eq. (5), � ¼ _t � n ¼ ��vð1� w=3Þ.
Matching this velocity with �r implies

�
�r

�r

�
2 ¼ v2

�
1� wr

3

�
2
: (7)

Physically, �2
r=�

2
r is the tension that builds up to balance

the centripetal acceleration in the roll. The asymptotic

behavior of Eq. (6), � � ð4v2w=3Þ1=2, provides another
matching condition at w ¼ wr:

�r ¼ ð4v2wr=3Þ1=2: (8)

The values of wr and v can now be found by solving
Eqs. (7) and (8). This yields wr ¼ 0:614 199 and v ¼
0:623 508. Reverting to dimensional form and using the
experimental values of B, �, and �0, we calculate a front

velocity v

ffiffiffiffiffiffi
B�2

0

�

r
¼ 12:8 m=s, which agrees with the mea-

sured value, 12:5 m=s.
The asymptotic solution is shown in Fig. 4(b), and is

validated by the numerical solution: our calculations of wr,
�r, and the slope of �

00=�þ �2=2 in the self-similar region
yield a prediction for the master curve, shown as dashed
lines in Fig. 4(b), onto which the numerical curves collapse
with no adjustable parameter.
In summary, we have considered the curling dynamics of

an elastica at long times, and have found a novel front
solution resulting from inertia, elasticity, and geometric
nonlinearities. We have shown that, in neglecting gravity,
curling on a surface occurs by self-similar dilation of the
elastica, in marked contrast with traveling wave-type so-
lutions of heavy elastica on a surface [21–23]. Future work
will concentrate on curling in a viscous environment, as is
relevant to bursting red blood cells [2,3] and polymersomes
[24], in which it is expected that viscous drag and lubrica-
tion forces play a central role.
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