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Rising dynamics and lift effect in dense segregating granular flows
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Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
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In order to explore the rising dynamics and the existence of a lift effect in dense segregating granular
flows, we perform two-dimensional discrete numerical simulations in the case of single free intrud-
ers and bi-disperse granular mixtures. In both configurations, we do not observe a measurable lift
force acting on the larger grains. The large force fluctuations acting on the bigger grains reduce to
the weight of the latter, following the mere action-reaction principle. This suggests that the rising
dynamics is driven by the force fluctuations, coupled with the properties of the surrounding granu-
lar bed itself. We propose the strong asymmetry displayed by granular bed resistance to downward
(plunging) and upward (withdrawing) motion, as reported in detail by Hill et al. [“Scaling vertical
drag forces in granular media,” Europhys. Lett. 72(1), 137–143 (2005)], as a key ingredient for seg-
regation. Accordingly, moving an object toward the free surface is about 10 times easier than moving
an object toward the rigid bottom. This asymmetry allows for an effective upward motion when large
grains are submitted to upward force fluctuations, without being counterweighted by sinking episodes
when large grains are submitted to downward force fluctuations. In addition to gravity, the existence
of two different boundary conditions formed by the free surface and the rigid bottom explains this
difference of resistance to motion. In this respect, the mechanism allowing size segregation in dense
granular flows would be the same as that allowing legged locomotion in sand [Li et al., “A terrady-
namics of legged locomotion on granular media,” Science 339, 1408–1412 (2013)]. Published by AIP
Publishing. https://doi.org/10.1063/1.5045576

I. INTRODUCTION

In their natural occurrence, granular flows rarely exhibit
the well-defined unique grain size so very useful in labora-
tory experiments or simulations for constraining granular flow
behavior. On the contrary, they usually display a wide range of
sizes, which may cover several orders of magnitude in extreme
cases (as for debris or rock flows).1–4 Even sand dunes, one
natural granular system closest to its laboratory counterpart,
are made of smaller and larger grains.5

An immediate consequence of the diversity of grain sizes
is their sorting: while flowing or being shaken, large grains
and smaller grains separate, forming specific patterns and
thereby affecting the system evolution. In natural cases such
as rock or debris flows, large grains rise to the free sur-
face where they acquire a larger velocity. They accumulate
at the front where they are pushed sideways by the advanc-
ing bulk, thus ending up forming levées that confine and
channel the flow.6–9 In geotechnical application, the separa-
tion by grain size may undermine the mechanical quality of
concrete, or simply of a given soil. Grain size segregation,
as the phenomenon is called, is thus a fundamental aspect of
granular behavior. Yet, although a seemingly simple mecha-
nism and in spite of the effort devoted to it, the mechanical
origin of size segregation in dense granular flows remains
elusive.

First attempts at describing size segregation essentially
focused on the probability of large/small grains to migrate
in the flow following a percolation-like picture of the phe-
nomena, relying on the geometrical characterisation of the

voids opening in a sheared flow as sites that smaller grains
can occupy; the concept of “squeeze expulsion” explains why
a large grain at the bottom starts to migrate upwards in the first
place.10–15 A mechanical explanation for grain size segregation
was introduced later by Gray and Thornton.16 In this model,
segregation is understood as resulting from the heterogeneous
force transmission typically observed in granular packings of
same-size grains and generalised to polydisperse (many-size)
packings.17–19 Accordingly, pressure partition in the media dif-
fers from the classical mixture theory: larger grains sustain a
larger part of the mean pressure than prescribed by their vol-
ume fraction. This causes them to see larger gravity-induced
pressure gradients and to rise as a result. This model allows
for the successful description of gravity-induced segregation
patterns by solving shallow-layer equations in a wide range of
configurations.9,20–22 The mechanical origin assumed (namely,
non-classical pressure partition) is however difficult to estab-
lish,23–26 although considering temperature gradients as in
granular gas may provide a theoretical basis.27 It is, beside,
uneasy to translate in terms of a Lagrangian description of
the dynamics of a given segregated particle. In this perspec-
tive, enlightening experiments were performed with the aim of
quantifying the forces (namely, lift and drag forces) acting on
intruders moving in granular media.28–31 In these experiments,
an intruder buried in a granular bed at a given depth is sub-
mitted to a slow motion (either a slow rotation or a slow drag)
while its vertical position is constrained, and the forces exerted
on it are measured. All report the existence of a lift force, either
dependent on the pressure/depth28 or independent of it.30,31 In
all cases, however, the intruder has a symmetrical shape so that
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the asymmetry necessary to create a lift effect must originate
from the granular bed itself. Applying discrete simulations,
Guillard et al.32 measured the lift forces acting on an intruder
and identified precisely the role of both pressure and shear gra-
dients. Recently, similar simulations of intruders constrained
in height in a granular flow led to the interpretation of the lift
effect as an equivalent of the Saffman effect in viscous-inertial
flows.33

These intruder experiments are all performed for intrud-
ers whose position is constrained in the direction normal to
the flow, either attached to a spring or simply a fixed point.
Hence they cannot move freely in response to the application
of a force. In segregating flows, however, things are different
as the intruder can move freely; lift forces may thus relax and
therefore may not build up to such high values, as observed
in Refs. 30 and 32. The direct quantification of lift forces in
freely segregating granular flows seems hardly feasible exper-
imentally, as it would imply measuring the position of and the
resulting force acting on a given entirely free intruder (not to
say many intruders). Discrete numerical simulations, on the
other hand, give access to all contact forces in a given flow,
thus allowing direct computation of the resulting force on free
intruders, as well as the easy exploration of the experiments
parameters, as in Refs. 32–39. The identification of the mecha-
nism leading to the rising of larger grains in freely segregating
granular flows, applying discrete numerical simulation, forms
the aim of the present paper. Note that we limit our study to
the case of dense systems.

In the following, we present two-dimensional discrete
numerical simulations of bi-disperse (two grain sizes) dense
granular flows applying the contact dynamics (CD) algo-
rithm.40,41 The segregation of a single large grain (namely, an
intruder) and the segregation of a collection of large grains are
investigated in terms of the average force resultant applied to
the large grains. In contrast to Refs. 32 and 33 for constrained
intruders, we do not measure the existence of a net lift force.
On the contrary, we find that contact forces applied to larger
grains exhibit important fluctuations, but do on average bal-
ance the large grain weight following a simple action/reaction
principle. We argue that the rising motion of the large grains
is dominated by these large force fluctuations and is made
possible by the strong asymmetry displayed by granular bed
resistance to downward (plunging) and upward (withdrawing)
motion, as reported in detail in Refs. 42–45. Following these
authors, moving an object toward the free surface is about 10
times easier than moving an object toward the rigid bottom.
This asymmetry allows for an effective rising dynamics when
large grains are submitted to large positive (upward) forces
without being counterweighted by equivalent sinking episodes
when large grains are submitted to equivalently large negative
(downward) forces.

The numerical techniques are briefly presented in Sec. II.
The case of the single large intruder is discussed in Sec. III,
while Sec. IV reports the case of bi-disperse granular mixtures.
A discussion follows in Sec. V.

II. CONTACT DYNAMICS SIMULATIONS
OF BI-DISPERSE GRANULAR FLOWS

The numerical method applied to simulate the granu-
lar flows is the Contact Dynamics (CD) algorithm,17,40,41

already applied for segregation problems by the same author in
Refs. 26 and 38. The basic ingredients of this method are the
following. Grains interact at contacts through solid friction and
hardcore repulsion. Solid friction imposes that locally, and the
normal and tangential contact forces satisfy f t ≤ µf n, where
µ is the coefficient of friction at contact. Moreover, a coeffi-
cient of restitution e sets the amount of energy dissipated in
collisions. The numerical values of µ and e affect the effective
frictional properties of the flow (velocity, angle of repose. . .),
but we do not consider their influence on the segregation pro-
cess. Their value was set to µ = 0.5 and e = 0.5, for all contacts
irrespective of the size of the grains involved, and was not var-
ied. The hardcore repulsion ensures that grains at contacts do
not overlap beyond an accepted small δ that allows for con-
tact detection. By contrast with Molecular Dynamics (MD)
methods which introduce an explicit stiffness to describe the
contact rigidity, the hardcore repulsion in the CD method is a
non-smooth strict condition. The difference between MD and
CD methods is however expected to be virtually null in the
flow configuration studied, provided that both are used within
the range of numerical parameters in which their validity is
ensured.

Two-dimensional granular beds were simulated, formed
of small grains of diameter d, and large grains of diameter
D. To prevent the geometrical ordering likely to happen in
2D for strictly mono-sized packings, small grain diameter
exhibits a variability of '30% in the single intruder config-
uration (namely, 0.044 ≤ d ≤ 0.06). The dimensions of the
granular bed are L = 100d and H ∈ [55d, 70d] (depending
on the composition), with periodic boundary conditions in the
direction of the flow. The basal boundary is made of a row of
fixed grains of diameter 0.05 (namely,'d). The mass density of
the intruder/large grains is the same as that of the surrounding
smaller grains (ρ = 0.1 kg m−2).

Two configurations are considered. In the case of the sin-
gle intruder, one large grain is buried in a bed of smaller grains
inclined at a slope θ. While the flow develops (in a steady
regime), the intruder rises from its initial position H/3 to the
free surface. In the case of the granular mixture, small and
large grains are initially deposited under gravity in a mixed
state, achieved by random positioning of small and large grains

TABLE I. Summary of simulations performed.

Volume fraction of Slope θ Grain size Number of
Simulations large beads ΦL (deg) ratio D/d independent runs

Intruder . . . 20, 21.5, 23 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 144
Mixture 0.2, 0.4, 0.6 (±0.02) 20, 21.5, 23 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 72
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prior to deposition. As the flow develops at slope angle θ, the
large grains rise in the flow. For all cases, contact forces, grains
position, and velocity are computed and known. Simulations
were performed varying the grain size ratio D/d from 1.5 to 5,
the volume fraction of large grains ΦL from 0.2 to 0.6 (in the
case of mixtures), and the slope from 20◦ to 23◦, as summarised
in Table I.

III. SINGLE LARGE INTRUDERS

A single large intruder carried along by a flow of smaller
grains forms a specific case of segregation, as it relies only on
interactions with a uniform granular matrix, without resorting
to cooperative mechanisms with fellow big grains. For this
reason, it offers an interesting insight into the nature of the
forces exerted by a flow of small grains on bigger objects, as
a starting point to understand the dynamics of segregation.

In the following, we thus consider a single large grain ini-
tially buried in a bed of smaller grains allowed to flow under
gravity at an angle θ (for which a stationary regime is reached).
The intruder is left free to move along with the mass of smaller
grains, namely, none of its degree of freedom is suppressed.
Accordingly, its vertical position evolves in time in response to
the forces exerted by the smaller grains on it. Discrete numer-
ical simulations give us access to all contact forces so that we
can accurately follow the resulting force acting on the intruder
and explore the existence of a lift force.

A. Rising dynamics

We consider granular beds of width L = 100d, and height
H ' 60d, made of small grains of mean diameter d = 0.052 m
(uniformly distributed between 0.044 and 0.06) (see Fig. 1).
A large intruder of diameter D is buried in the granular bed
at an initial vertical position H/3. The intruder diameter D
is alternatively D = 1.5d, 2d, 2.5d, 3d, 3.5d, 4d, 4.5d, and
5d. The granular bed is tilted at an angle θ for which a sta-
tionary flow develops (θ = 20◦, 21.5◦, and 23◦). The dura-
tion of the simulations is set to 500 s, for which nearly all
intruders eventually reach the free surface (but for two cases
with D = 1.5d). For each value of D and θ, 5 to 10 inde-
pendent runs are performed (for a total of 144 independent
simulations).

FIG. 2. Vertical position of the intruder zI (normalised by d) as a function of
time for D/d = 1.5 for a slope angle θ = 23◦ and D/d = 4 for a slope angle
θ = 20◦. The horizontal dashed line shows the averaged position of the free
surface.

As a result of the flow, the intruder moves up and down. Its
instantaneous vertical position zI is recorded in the course of
time. Figure 1(c) shows the case of an intruder with D/d = 3.5:
we observe a fluctuating motion which eventually leads to the
free surface. In less favorable cases, as shown in Fig. 2, the
intruder reaching the free surface may be sucked down again in
the bulk (here for D/d = 4), or its motion may exhibit larger fluc-
tuations which impede the segregation process (for D/d = 1.5,
for instance). These sinking episodes are reminiscent of the
diffusive mechanisms described in Ref. 47 and leading to
remixing. However, eventually, most intruders are segregated
by the flow for the simulation duration considered.

The instantaneous resultant vertical force f z ,I (t) resulting
from all the intruder contacts with their neighbours is defined
as

fz,I (t) =

nαI∑
α=1

~f αI (t).~z, (1)

where nαI is the number of contacts in which the intruder is

involved at time t and ~f αI is the force transmitted at the contact
α. The example displayed in Fig. 1(c) (D/d = 3.5) shows that
f z ,I (t) undergoes large fluctuations. These force fluctuations do
exist for all the simulations performed and for all size ratios
D/d. They can reach above 60× the intruder weight and are
generally of large amplitude. Their role in the rising dynamics
is thus expected to be important.

FIG. 1. An intruder of diameter D is initially buried in a
bed of grains of diameter d [panel (a)]; as the flow devel-
ops at slope angle θ as a result of gravity, the intruder
rises to the free surface [panel (b)]. The intruder verti-
cal position and the vertical force resultant exerted on it
evolve in time as shown in (c); the horizontal dashed line
shows the averaged position of the free surface. In this
example, D/d = 3 and θ = 23◦.
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B. Forces applied to the intruder

We probe the existence of a lift force by simply averaging
the instantaneous vertical force on the intruder f z ,I (t) over the
duration of the simulation,

FI =
1
Nt

Nt∑
t=1

fz,I (t), (2)

with f z ,I defined in (1). The dependence of FI (normalised by
msg cos θ, ms = ρπd2/4) with the intruder size D (normalised
by d) is shown in Fig. 3. For each pair (D/d, θ), the mean value
averaged over all the independent runs is shown; error bars
indicate the range of results over all the independent runs. We
have moreover included the case D/d = 1. For a given value of
D/d and θ, simulation results are scattered. Nevertheless we
observe

FI ' cos θ ρπ
D2

4
g, (3)

namely, the averaged contact forces applied by the small
grains on the intruder seem to be merely balancing the
intruder weight, following the action-reaction principle (as was
observed in numerical simulations of same size granular flows
in Ref. 48). No additional positive contribution allows us for
the identification of a net lift force, by contrast with Ref. 32.
This means that if a lift force builds up, it is nearly entirely
balanced by the drag induced by the intruder rising motion,
and the net upward contribution is very small compared to the
intruder weight and compared to the force fluctuations. This
is not surprising in view of the typical rising dynamics dis-
played in Fig. 1(c). In this example, it takes about 200 s for
the intruder to cover a distance of about 50d and reach the
free surface, namely, a nearly zero acceleration. On the con-
trary, a sustained measurable lift force would send the intruder
very quickly to the surface, a case never observed in our
simulations.

On the other hand, the force fluctuations seen by the
intruder are very important. It seems reasonable to suppose
that these fluctuations, rather than a very small lift force, are
dominating the intruder dynamics. We may suppose that over
short time intervals, when upward/positive force fluctuations
become much higher than the typical reaction to the weight of

FIG. 3. Time-averaged vertical force resultant on the intruder FI (normalised
by the projected weight of a small grain msg cos θ) as a function of the nor-
malised intruder diameter D/d for different slopes. The error bars are showing
the range of results for all independent simulations. We observe that the vertical
force exerted on the intruder balances its weight.

the intruder, the upward motion of the latter is made possible.
The accumulation of such upward jumps results in the rising
motion of the intruder.

On average, however, the vertical force resultant reduces
to the intruder weight. Accordingly, the negative/downward
force fluctuations do balance the positive ones. Although we
observe the intermittent downward motion of the intruder, its
amplitude does not counterweight the upward motion. In other
words, while the upward and downward force resultants on the
intruder are symmetrical, their effect in terms of motion is not.

We propose that this asymmetry proceeds from the fact
that the resistance of a granular bed to an intruder motion is
strongly dependent on whether the motion is upward or down-
ward, even at important depths. This asymmetry was evidenced
in Refs. 42–45, where intruders of different sizes and shapes
were alternatively plunged or withdrawn from a static granular
bed. It shows that for intruders of different shapes (including
spherical), the force necessary for plunging the intruder in
a granular bed (with no lateral confinement) is one order of
magnitude larger than the force necessary for withdrawing it.
This can be explained by the asymmetry created by the grav-
ity gradient (as identified by Refs. 31 and 32) and, above all,
by the different boundary conditions formed by the free sur-
face on the one hand and the rigid bottom on the other hand,
studied in detail in Ref. 44. In the context of the present sim-
ulation, this asymmetry is enough to account for the rising
dynamics of the intruder without the contribution of a net lift
force. In this scenario, the agitation, or “temperature,” induced
by the flow, generates large force fluctuations on the intruder,
which is thereby allowed to explore both upward and down-
ward motion in the packing and meeting much less resistance
in the first case.

It would be of great interest to quantify precisely how
resistance to motion itself is affected by the intruder size. The
results in Ref. 42 report smaller resistance for larger intrud-
ers and a discrepancy between upward and downward motion
increasing with the intruder size, which would imply that larger
intruders tend to segregate better.

In a fluid-like picture of granular flows, it could be rele-
vant to use an equivalent buoyant force instead of the simple
weight of the intruder.33 However, this would require the com-
putation of the local solid fraction around the intruder, which
depends strongly on the size ratio through the Voronoi calcula-
tion. This would introduce a geometrical bias in the analysis of
our results and compromise their interpretation, the size ratio
being an independent parameter of our study. Hence, we pre-
fer the straightforward comparison with gravity forces, as in
Ref. 32.

It is worthy to note that attempts at varying the time win-
dow over which FI is computed (for instance, considering the
rising dynamics only and filtering out time spent at the free
surface) did not change the results in a significant way. At any
rate, it did not help disclosing a different trend with the intruder
size.

Finally, computing the relative velocity in the flow direc-
tion between the intruder and the smaller grains at the same
height showed the existence of very small lags of fluctuating
sign so that the analysis in terms of a viscous-inertial Saffman
effect33 seems not relevant here.
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FIG. 4. Positive contribution F+
I of the time-averaged vertical force resul-

tant on the intruder FI (normalised by the projected weight of a small grain
msg cos θ) as a function of the normalised intruder diameter D/d for different
slopes. The error bars are showing the range of results for all independent
simulations. The dotted lines show quadratic fits.

C. Focusing on upward force fluctuations

The rising motion results from a succession of upward
jumps, presumably occurring when the resulting vertical force
on the intruder undergoes a large positive fluctuation. Hence,
we focus now on the positive values of f z ,I ,

F+
I =

∑Nt
t=1 H( fz,I )fz,I∑Nt

t=1 H( fz,I )
, (4)

where H is the Heaviside function and the summation is made
over all the time steps t of the simulation. We compute F+

I
for all 96 independent simulations with D/d varying between
1 and 5 and the slope θ alternatively set to 20◦, 21.5◦, and 23◦.
The results are presented in Fig. 4, where F+

I /(msg cos θ) is
plotted as a function of the size ratio D/d (ms = ρπd2/4). We
observe that the value of F+

I is scattered for larger values of θ,
i.e., for very dynamical flows (e.g., θ = 23◦). For slower flows
(θ = 20◦ and θ = 21.5◦), F+

I follows a clearer trend. In all cases,
quadratic fits are acceptable,

F+
I

msg cos θ
' λI

(
D
d

)2

+ C, (5)

where λI ' 1.5 for θ = 20◦ and θ = 21.5◦, λI ' 2.5 for θ = 23◦,
and C ' 6 for all slopes investigated.

Essentially, F+
I scales like buoyancy forces, as observed

in Ref. 32. Larger intruders are pushed upwards with a force
increasing with their weight, giving them more power to dis-
place the smaller grains covering them. Smaller intruders,
including the grains forming the granular bed, also see large
forces pushing them intermittently toward the free surface. But
in these cases, segregation is less (or not) efficient, namely, the
rising motion is counterbalanced by sinking episodes.

IV. BI-DISPERSE MIXTURES

A single intruder rises in a granular bed uniform in com-
position, and the system thus formed is accurately described
by the knowledge of the intruder diameter D and that of the
smaller grains forming the granular bed d. In a bi-disperse
mixture, each large grain can be seen as an intruder, yet mov-
ing through a matrix of varying composition and undergoing
forces from contacts with both small and large grains. While it
flows, the granular bed changes geometry as each large grain
tends to rise at the surface in a highly transient dynamics.
Hence, we no longer speak of “intruders,” but of the phase of
large grains and the phase of small grains.

A. Rising dynamics

The systems studied are formed by a mixture of small
grains (diameter d = 0.04) and large grains (diameter D) ini-
tially in a mixed state, as shown in panel 5. The volume fraction
of large grainsΦL may take the values 0.2, 0.4, or 0.6 (±0.02),
and the large grain diameter is alternatively set to 1.5d, 2d,
2.5d, 3d, 3.5d, 4d, 4.5d, and 5d, as in the case of the single
intruder. The systems thus formed are tilted at an angle θ for
which they develop into steady flows (θ = 20◦, 21.5◦, and 23◦).
As a result, the initially well-mixed phases of large grains and
small grains separate, with the larger grains rising at the sur-
face, as shown in Fig. 5. A total of 72 independent runs are
performed.

FIG. 5. Example of a mixture of smaller grains and larger
grains such that D/d = 3 and ΦL ' 0.4 (a) in the initial
state and (b) after segregation occurred due to flow under
gravity at slope θ = 21.5◦; the position of the center of
mass of the larger grains zL is shown in the course of time
in (c) (normalised by the flow thickness H). The dashed
line shows an exponential fit. In (d), the instantaneous
mean vertical force seen by large grains Fp(t) is shown
for all time steps (dotted line) and averaged over 25 time
steps [〈Fp(t)〉 full line]; the dashed line shows the weight
of a large grain.
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The rising dynamics may be described by the position
of the centre of mass of the larger grains zL and its evo-
lution in the course of time [Fig. 5(c)]. As observed else-
where,15,24,35,38 the segregation is not complete, namely, few
larger grains remain in the bulk as a result of diffusion and
remixing.47

B. Resulting force on large grains

The instantaneous vertical force resultant seen by each
large grain p at a given time t is simply given by the projection
of the forces ~f αp transmitted at each contact α involving p,

fz,p(t) =

nαp∑
α=1

~f αp (t).~z, (6)

where nαp is the number of contacts in which the grain p is
involved. An estimate of the instantaneous mean vertical force
seen by large grains p is obtained by averaging f z ,p(t) over all
the large grains,

Fp(t) =
1

NL

NL∑
p=1

fz,p(t), (7)

with NL being the total number of large grains. Figure 5(d)
shows an example of the large fluctuations exhibited by Fp in
the course of time.

Averaging over the whole duration of the simulation, we
compute the average vertical force resultant seen by each ele-
ment of the phase of a large grain during the whole segregation
process,

FL =
1
Nt

1
NL

Nt∑
t=1

NL∑
p=1

fz,p(t) =
1
Nt

Nt∑
t=1

Fp(t), (8)

where N t is the number of simulation time steps. We com-
pute FL for all 72 simulations with different composition
ΦL, different slope angle θ, and different size ratio D/d. The
dependence of FL (normalised by msg cos θ, ms = ρπd2/4)
with the size ratio D/d is shown in Fig. 6. We exactly
recover

FL = cos θ ρπ
D2

4
g, (9)

FIG. 6. Mean time-averaged vertical force resultant on large grains FL (nor-
malised by the projected weight of a small grain msg cos θ) as a function of
the normalised intruder diameter D/d for different slopes. We observe that on
average, the vertical force exerted on the large grains exactly balances their
weight.

namely, on average, contact forces exactly balance the weight
of the large grains. As for single intruders, we do not measure
any net lift force.

On the other hand, larger grains are submitted to very
important force fluctuations, as visible from Fig. 5(d). As for
single intruders, we may suppose that the rising dynamics is
dominated by these large force fluctuations, coupled with the
asymmetry of the resistance to upward motion (toward the free
surface) and downward motion (toward the bottom) described
in Refs. 42–45. Accordingly, large positive force fluctuations
induce upward jumps toward the free surface, without being
counterweighted by “sinking episodes” when negative force
fluctuations come into play.

C. Focusing on positive force fluctuations

Analyzing the rising motion of large grains is made diffi-
cult by the fact that grains do not move in a synchronised way,
and while some move up, other may sink down. Nevertheless,
we can suppose that the rising dynamics can be understood
from the analysis of the positive contribution of the mean ver-
tical force Fp(t) seen by the phase of large grains. Hence, we
compute

F+
L =

∑Nt
t=1 H(Fp)Fp∑Nt

t=1 H(Fp)
, (10)

where H is the Heaviside function and the summation is
made over all the time steps t of the simulation. The value
of F+

L is computed for all simulations with different composi-
tion ΦL, different slope angle θ, and different size ratio D/d.
From their analysis, a non-trivial dependence between F+

L and
the size ratio D/d emerges. We observe the following form
(Fig. 7):

F+
L

msg
' λ

(
D
d

)a

.

(
〈d〉
d

)b

, (11)

where 〈d〉=ΦLD + (1−ΦL)d is the mean grain diameter for the
mixture. The proportionality coefficient λ and the exponents
a and b vary with the slope θ, and their value is summarized
in Table II.

The scaling (11) can be rearranged into a buoyancy-like
force

FIG. 7. Positive contribution of the vertical force resultant on the phase of
large grains F+

L (normalised by the projected weight of a small grain msg cos θ)

as a function of (D/d)a(〈d〉)/d
)b, where a and b vary with the slope θ (see

text for values). Dashed lines show linear fits.
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TABLE II. Parameters for scaling (11).

Slope angle (deg) λ a b c = 2 � (a + b)

20 5.89 0.98 0.89 0.134
21.5 7.28 0.89 0.98 0.124
23 8.92 0.72 1.20 0.078

F+
L = λ

(
〈d〉
D

)b

.

(
d
D

)c

× ρπ
D2

4
g, (12)

where b and c = 2 − (a + b) are, respectively, of the
order of 1 and 0.1 (see Table II for exact values). The pre-
factor formed by (〈d〉/D)b.(d/D)c exhibits an explicit depen-
dence on the composition through the mean grain diameter
〈d〉 = ΦLD + (1 − ΦL)d. Accordingly, for a given grain size
ratio, higher volume fractions of large grains favor large pos-
itive force fluctuations, hence presumably segregation. This
holds at least in the range of volume fractions investigated; for
larger values of φL, however, the scaling (12) is likely to break
down, when smaller grains do no longer form a continuum but
are trapped in the matrix of large grains.

V. DISCUSSION

Applying the contact dynamics method, we have per-
formed discrete numerical simulations of segregating granular
flows in the case of single free intruders and in the case of
bi-disperse granular mixtures. In both configurations, while
segregation occurs, we did not observe any measurable lift
force acting on the larger grains. On the contrary, we observe
that the large force fluctuations acting on the larger grains
reduce to their weight, following the mere action-reaction
principle.

Experiments consisting of plunging an intruder in a static
granular bed or withdrawing it from an initially buried state
report a strong asymmetry between the forces necessary to
accomplish these two motions. In the work of Hill et al.,42

forces necessary to withdraw a large intruder are about one
order of magnitude smaller than the forces necessary to bury
it (see Fig. 8). These results hold for different intruder sizes
and shapes, different burying depths, and different container
widths. This asymmetry was later corroborated by Schröter
et al.43 for rods (see Fig. 9) and by Martinez Carreaux44 for
spheres and rods, also reporting withdrawal forces at least

FIG. 8. Rescaled plots of the plunging forces, F+, and the withdrawal forces,
F−, for horizontal rods in beds of monodisperse glass beads. Reproduced with
permission from Hill et al., “Scaling vertical drag forces in granular media,”
Europhys. Lett. 72(1), 137–143 (2005). Copyright 2005 EDP Sciences.

FIG. 9. Forces measured during a full cycle of insertion and withdrawal of
an intruder in a granular bed at a volume fraction φ = 0.602. Reproduced with
permission from Schröter et al., “Phase transition in a static granular system,”
Europhys. Lett. 78(4), 44004 (2007). Copyright 2007 Europhysics Letters.

10 times smaller than plunging forces. In the work of Li
et al.,45 similar results are reported and used to explain legged
locomotion in sands.

This asymmetry is not surprising and reflects the differ-
ence of boundary conditions at the top and bottom of the
granular container: while plunging requires pushing aside and
rearranging grains whose motion will be opposed by a rigid
wall, withdrawing motion is easily accommodated by the
freely deforming free surface. It is however interesting that
this effect persists at large depth, implying that the boundary
condition formed by the free surface is felt throughout the sys-
tem. As suggested in Ref. 42, we may suppose the existence
of a cut-off depth at which the difference of forces between
plunging and withdrawing will vanish, in a very large con-
tainer. Meanwhile, such a (symmetrical) regime has not been
observed yet.

Hence, any body buried in a granular flow and submit-
ted to force fluctuations will meet a different resistance when
subjected to upward or downward momentum and should log-
ically rise as a result. We can try to quantify this effect using a
very simple model, based on a frictional representation of the
resistance to motion.42,46 We suppose an intruder (of diam-
eter D), buried in a dense granular flow at a depth (H − zI )
� D and undergoing collisions with its smaller neighbours
so that it alternatively gains momentum in the upward and
downward directions, in a symmetrical way. The correspond-
ing upward and downward motion is resisted by the work of
friction forces µeP(zI )D, where µe is the effective coefficient of
friction and P(zI ) = ρg(H − zI ) is the pressure at depth (H − zI ).
Following Refs. 42–45, the resistance to downward motion is
larger than the resistance to upward motion; hence, we define
two corresponding coefficients of friction µ↓e and µ↑e such that
µ↓e > µ↑e . The energy gained during the collisions is entirely
dissipated by the work of friction forces while the intruder
moves upwards and downwards over∆z↑ and∆z↓, respectively.
If we suppose the same amount of energy to be involved in
upward and downward collisions, and if we moreover neglect
the gain and loss of potential energy due to the intruder ris-
ing and sinking [justified by the fact that D � (H − zI )],
then µ↑e ρg(H−zI )D∆z↑ ' −µ↓e ρg(H−zI )D∆z↓, and we simply
obtain ∆z↑/∆z↓ = −µ↓e/µ

↑
e . If the ratio µ↓e/µ

↑
e is of the order

of 10 (as found in the literature), we immediately see how
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upward motion is favored and how an intruder would rapidly
end up reaching the free surface. The result is less spectacular
if instead of considering the simplified form for the resisting
forces µeρg(H − zI )D we adopt the full dependence given in
Ref. 42 for spheres, namely, µ↑e ρg(H−zI )1.8D−0.8D for upward
motion with µ↑e = 1.2 and µ↓e ρg(H − zI )1.2D−0.2D for down-
ward motion, with µ↓e = 15. In this case, for an intruder buried
at a depth 40 times its diameter under the free surface (namely,
the initial state in our simulations), we find ∆z↑/∆z↓ ' 1.4; this
ratio increases while the intruder rises.

The studies by Hill et al.,42 Schröter et al.,43 Martinez
Carreaux,44 and Li et al.45 were all considering static granular
beds. Generalisation to granular flows hence requires addi-
tional work. In this case, the granular temperature induced
by the shear is expected to decrease the overall resistance to
motion, as reported in Ref. 49. Yet the geometrical asymmetry
formed by the boundary condition remains so that the induced
asymmetry on upward and downward resistance to bottom
should not be suppressed.

Our results are also interesting in the perspective of
understanding the role of temperature gradients in segrega-
tion processes.23,25 In the work of Hill and Tan,25 the gra-
dients of kinetic stresses are introduced to explain the seg-
regation dynamics in addition to the gradients of contact
stresses considered in the model by Gray and Thornton.16

Our simulations suggest indeed that force fluctuations are
playing a greater role than the mean forces, following the
idea of Ref. 25. The force fluctuations exhibit moreover an
explicit dependence on the grain size. The asymmetry of the
granular bed itself in terms of resistance to motion would
be taken into account in the model by Gray and Thorn-
ton16 and its adaptation by Hill and Tan25 through the linear
drag law and the corresponding drag coefficient, which could
include a dependence on the grain vertical velocity (upward or
downward).

Meanwhile, it is difficult to extrapolate our analysis to the
case of very dilute flows, for which granular temperature gra-
dients dominate the dynamics.50–52 For very large agitation,
we may even suppose that the effect described in Refs. 42–45
vanishes and that other factors will take over: contact proper-
ties, side walls, etc.53,54 These cases are however beyond the
scope of this paper.

In Ref. 44, plunging and withdrawing experiments were
carried out while adding a weighting lid at the surface of the
granular bed. The effect of this weighting lid is to impede
grain rearrangements at the free surface. Accordingly, both
withdrawing forces and plunging forces are greatly increased
by its presence, yet the anisotropy of the resistance to motion
in the upward and downward directions is preserved. Hence,
segregation occurring in confined settings such as shear cells,
as studied by Golick and Daniels,55 does not contradict the line
of argument developed in this paper. In Ref. 55, it is shown
that increasing the pressure on the top lid results in a slower
segregation process, which fits the observation by Martinez
Carreaux of an increasing resistance to motion in the granular
packing.

In a different manner, the larger grains which are first seg-
regated in a flowing bi-disperse flow form a lid at the top of the
mixture (see Fig. 5). Since the density of large and small grains

is the same, this lid is not weighting. But because it involves
larger grains and thus a lesser contact density (for geometrical
reasons), we may suppose that it forms a less tractable free
surface, thereby increasing the resistance to upward motion.
If that was the case, this could partly explain why segregation
saturates, leaving larger grains behind in the flow bulk. Rather
than remixing, it could be that upward motion is increasingly
difficult because of the lid of larger grains already cover-
ing the free surface. This would also account for the fact
that segregation in three dimensions is much more efficient
than in two dimensions since grains reaching the free surface
are often redirected in a different area of the flow (forming
levées for instance) and are not given the opportunity to form
a lid.

Segregation processes are often described in terms of the
smaller grains having more chances to fill in the gap opening
in the flow due to shear deformation.11 This is indeed what
one sees when watching the progress of a large grain in a flow
of smaller ones: space opening in the wake of the large grain
and closing behind it so it seems squeezed out. We explain
this mechanism by the fact that the large grain, submitted to
large force fluctuations, is allowed to cut its way through the
matrix of smaller grains in the upward direction, thus leaving
an empty space behind, while the equivalent in the downward
direction is not true. In addition to gravity, the existence of two
different boundary conditions formed by the free surface and
the rigid bottom explains this difference of resistance to motion
in the upward and downward directions.42,44 In this respect,
the mechanism allowing the rising dynamics of larger grains in
granular flows is the same as that allowing legged locomotion
in sand45 and bears little resemblance with its hydrodynamical
counterpart.
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