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Abstract. By means of contact dynamics simulations, we analyze the stress state in a granular bed slowly
tilted toward its angle of repose. An increasingly large number of grains are overloaded in the sense that
they are found to carry a stress ratio above the Coulomb yield threshold of the whole packing. Using this
property, we introduce a coarse-graining length scale at which all stress ratios are below the packing yield
threshold. We show that this length increases with the slope angle and jumps to a length comparable to
the depth of the granular bed at an angle below the angle of repose. This transition coincides with the
onset of dilation in the packing. We map this transition into a percolation transition of the overloaded
grains, and discuss it in terms of long-range correlations and granular slope metastability.

PACS. 45.70.-n Granular systems – 45.70.Ht Avalanches – 81.40.Lm Deformation, plasticity, and creep

1 Introduction

The science of granular materials was initiated by
Coulomb’s analysis of the equilibrium and failure of a
granular talus [1]. The well-known Coulomb’s failure cri-
terion was later incorporated in the framework of a rigid-
plastic behaviour based on experimental testing of granu-
lar samples with homogeneous boundary conditions [2–4].
Two centuries after Coulomb, the slope failure phenom-
ena continues to interest scientists from various fields with
evident applications to geological processes and industrial
handling of granular materials [5,6]. The main reason is
that the phenomena involved in the evolution of a gran-
ular slope are richer than what might be expected from
a mean macroscopic analysis [7–9]. On the other hand,
the mechanisms leading to slope failure are not yet well
understood from a grain scale standpoint [11–14].

New investigation tools, such as fine imaging tech-
niques and discrete numerical simulations, have shown
that granular media are very inhomogeneous at the grain
scale, and the micro-structure, i.e. the organization of the
grains and their contacts in space, can evolve in many dif-
ferent ways in response to external loading and boundary
conditions [15–19]. Large fluctuations are often observed
in the course of shearing [20]. Several observations suggest
that surface failure may occur at slope angles well below
the angle of repose [21], and that metastable states exist
in the vicinity of the angle of repose [9,10].
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In this context, a closer look at the micro-structure
and spatio-temporal scales governing the behaviour of a
granular slope cannot be avoided. The query is which in-
ternal variables or order parameters represent the evo-
lution of a granular slope toward surface failure [22].
Even under “quasi-static” conditions, the grains in a
cohesionless granular medium exhibit a high degree of
mobility. Both dynamical instabilities and collective rear-
rangements occur frequently in response to slightest load
increments [23,24,14]. This observation shows that, even
in a granular medium far from macroscopic failure, the
failure conditions are often fulfilled locally. Such effects
may be observed by looking at grain displacements or con-
tact forces at different scales.

In this paper, we focus on the scaling of local stresses in
a two-dimensional granular bed simulated by the Contact
Dynamics method. The bed is tilted slowly toward its
angle of repose θc at which slope failure occurs. This
slow gravity loading gives rise to grain rearrangements
that harden the bed. Such a hardening, or plastification,
process is necessary for the bed to reach its angle of re-
pose. For example, a bed prepared initially by pouring the
grains onto a rough horizontal plane, when tilted suddenly
to a finite slope θ, will fail immediately. Hence, the evo-
lution of local stress states as a function of loading is im-
portant for understanding how the failure limit is reached
and in which respects it is controlled by the details of the
micro-structure.

The analysis of stresses at different scales requires
a quantity that plays the same role as the Cauchy
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stress tensor in continuous media. It can be shown that
the concept of “internal moment tensor”, introduced by
Moreau [23], generalizes consistently the Cauchy stress
tensor to discrete media and, what is more, its mechani-
cal content with respect to Newton’s equations of motion
remains the same whether applied to a single grain or to
a collection of grains inside a control volume.

In the following, we first introduce the numerical pro-
cedures and the concept of stress tensor in terms of inter-
nal moments which will be used throughout the paper. We
analyze the evolution of the total stress in the course of
the tilting evaluating explicitly the effect of the boundary
conditions. We show that the behaviour of our granular
samples is consistent with a rigid plastic behaviour. In-
dependently of the boundary conditions, no signature of
the incoming instability can be identified from the total
stress state. To gain further insights on the destabilisation
process, we investigate the stress state from a local point
of view. Analysing coarse-grained stresses as a function of
the tilt angle allows us to draw an analogy with percola-
tion. These results are discussed in terms of metastability
and the emergence of long-range correlations.

2 Numerical procedures

2.1 Simulation method

For a discrete simulation of the dynamics of a collection
of cohesionless rigid grains, two strategies can be adopted,
differing mainly in the implementation of contact repul-
sion and friction. In the popular Molecular Dynamics
(MD) method a repulsive potential is introduced as
a function of contact interpenetration and the friction
force obeys an elastic or viscous law up to a Coulomb
threshold [25–27]. The equations of motion are explic-
itly integrated according to different classical schemes.
As an interesting alternative to the MD method, the
Contact Dynamics (CD) approach deals directly with in-
finitely stiff contact laws or, more generally “non-smooth”
laws [28–33]. Hence, in contrast with MD methods, no
elastic stiffness or viscous regularization of the Coulomb
friction law are to be introduced at the contact level. This
allows for larger time steps and thus for a substantial
reduction of computational time. At the same time, no
purely computational parameters are introduced, the only
parameters being the inter-grain coefficient of friction µ
and the normal and tangential coefficients of restitution
that account for dissipation in the advent of collisions be-
tween the grains. In application to quasi-static deforma-
tions of a granular packing, one expects similar behaviors
from both methods as far as large time scales (beyond the
elastic response time) and plastic deformations are con-
cerned. In the present work, we applied the CD method.

2.2 System characteristics

We consider circular grains in two dimensions, with diam-
eters uniformly distributed in the interval [Dmin, Dmax]

Fig. 1. Schema of the simulation: a granular bed with wall
boundary conditions (WBC) is tilted in the gravity field to
bring the slope of the free surface θ from originally 0 up to the
angle of avalanche θc.

with Dmax/Dmin = 1.5. This slight polydispersity reduces
long-range crystal-like ordering in the packing. The grains
interact only through frictional cohesionless contacts with
a coefficient of friction µ = 0.5. The same value is used for
grain-wall contacts. Moreover, we assume zero coefficients
of restitution between grains. Slightly larger coefficients of
restitution do not influence the mechanical behaviour in a
dense granular packing where multiple contacts dissipate
efficiently the kinetic energy.

The granular beds are prepared by random deposi-
tion of grains on a horizontal plane in the gravity field.
The plane was made rough by sticking grains of diame-
ter D, D being the mean diameter of the grains in the
packing. Two different boundary conditions were imple-
mented: wall boundary conditions (WBC) where the bed
is confined between two vertical walls, and periodic bound-
ary conditions (PBC) in the horizontal direction. We pre-
pared different beds having all the same depth H � 40D,
but different lengths L. In the following, we will analyze
WBC systems with L = 100, 150, 200, 250 and 300D, cor-
responding to 4000, 6000, 8000, 10 000 and 12 000 grains
respectively. The PBC system analysed is composed of
8000 grains with L = 200, where L refers in that case to
the length of the simulation cell.

The general features of the packings are the same inde-
pendently of the boundary conditions. They have a solid
fraction ρ � 0.8 and a coordination number z � 3.5, corre-
sponding to a random close packing. Despite the polydis-
persity introduced in the grain size distribution, privileged
directions of contact normals at 0◦, 60◦ and 120◦ with re-
spect to the horizontal direction can still be observed.

The granular beds are tilted at a constant rotation
rate ω = 1◦ s−1 in the gravity field. The slope of the free
surface θ increases monotonically from θ = 0 to the angle
of repose θ = θc (Fig. 1). At this point, the stability limit
of the packing is reached and a surface flow is triggered.
Analyzing a set of 50 independent simulations, we checked
that both the average and local behaviours that will be
discussed in this paper are highly reproducible.
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Fig. 2. Polar distribution of the contact direction in the pack-
ing in its initial state (plain line): privileged directions at 0◦,
60◦ and 120◦ with are visible. The dotted line shows the cor-
responding uniform distribution.

3 The stress tensor

The dynamics of a granular system is naturally described
in terms of grain degrees of freedom (velocities) and con-
tact actions, including normal and tangential forces as
well as contact torques (in a cohesive granular medium).
This vectorial description is, however, unsuitable in a
macroscopic formulation of the rheological behaviour
where the material has to be described as an effective con-
tinuous medium where the stress and strain variables are
stress tensors σ and strain tensors ε defined over represen-
tative volumes (in contrast to forces and velocities which
act over points).

In principle, it is not difficult to evaluate the stress
components in a control volume by simply calculating the
surface density of forces applied by the grains located at
one side of a surface (a line in 2D) to the grains located on
the other side (Fig. 3). In this sense, the Cauchy stress ten-
sor is as well defined as in other materials (with or without
a granular structure). In the case of dilute granular mate-
rials, the convection of grain momenta is the main mech-
anism of stress transmission as in a classical gas. Here,
we are concerned only with quasi-static deformations of a
granular material for which contact actions play the main
role in stress transmission. Using the above operational
definition, namely calculating the surface density of forces
applied by the grains on a surface, it is possible to extract
an expression for the stress components σij in terms of
contact forces {fα} and the branch vectors �α joining the
particle mass centers:

σij =
1
V

∑

α∈V

fα
i �α

j , (1)

where V is the control volume and α denotes the con-
tacts in V . Several authors have proposed different meth-
ods to demonstrate this or similar relations [34–36]. Such

Fig. 3. The stress tensor in the volume bounded by the dashed
line can be evaluated as the surface density of the forces exerted
by the external grains on the grains located inside the volume.

expressions are well-defined if evaluated over a large vol-
ume containing many contacts.

There is, of course, no reason for not using the expres-
sion 1 at smaller scales down to a single grain if the volume
V is properly adjusted. However, strictly speaking, the re-
sult will not be a stress tensor in the operational sense de-
fined above. This means that the problem should be posed
in reverse order: is there a quantity whose physical con-
tent remains the same whether applied to a single grain or
to a collection of grains inside a control volume and that
tends to the Cauchy stress tensor at large scales? Moreau
showed that the concept of internal moment tensor fulfills
these conditions [23]. For clarity, we briefly introduce this
concept below.

In the framework of the virtual power formalism, a
force (in the general sense) experienced by a bounded por-
tion S of a material system is defined through the expres-
sion of the power P that it develops when subjected to a
virtual velocity field v(r). Let v(r) be an affine field,

vi(r) = vi(0) + bijrj , (2)

where we assume Einstein’s summation rule over sub-
scripts. By definition, the power Pint(v) of internal forces
is linear in v. This means that there exist R and M
such that

Pint = Rivi(0) + Mijbij . (3)

In the particular case of a rigid body motion, b is antisym-
metric (bij = −bji) and Pint = 0 by virtue of Newton’s
third law. This implies that R = 0 and M is a symmet-
ric tensor of rank 2 and independent of the choice of the
reference frame. Following Moreau, we will refer to M as
the internal moment tensor of the system [23].

By definition, the internal moment tensor makes sense
at all scales. In particular, we may evaluate the internal
moment tensor of a grain within a granular system. The
simplest example occurs when the system is in static equi-
librium. In this case, the total power P = Pint + Pext,
where Pext is the power associated with external forces, is
zero independently of the choice of the virtual velocities.
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If the only forces fα acting on a grain p are those exerted
at its contact points rα by neighboring grains, then the
internal power is Pint(p) = −Pext(p) = −∑

α∈p vi(rα)fα
i

(Fig. 4). Identifying this with the general expression 3 of
the internal power, we get Mij(p) = −∑

α∈p rα
i fα

j . If the
condition of equilibrium does not apply, the total virtual
power is given by

∫
γ(r)dm, where γ(r) is the acceleration

field and dm denotes the mass measure.
In the case of circular grains with moment of inertia

I about the grains centers, the general expression of the
internal moment tensor of a grain p becomes [23]

Mij(p) = −
∑

α∈p

rα
i fα

j − 1
2
Iω2δij , (4)

where ω is the rotation velocity and δij is the Kronecker
symbol. It can be shown that the expression 4 holds also
in the presence of bulk forces (gravity) acting at grain
centers if the origin of coordinates for each grain is placed
at its center.

The internal moment M(p1 ∪ p2) of two grains p1 and
p2 sharing a contact is the sum of their respective inter-
nal moments M(p1) and M(p2) because opposite reaction
forces of equal magnitude act on the two grains at the
same contact point. This additive property implies that
the total internal moment M(S) of a system S is simply
the sum of the internal moments of all grains included
in S. On the other hand, if the number of grains in S is
sufficiently large, it makes sense to evaluate the Cauchy
stress tensor σ for S. Assuming the same test field as 2,
the corresponding internal power by definition of σ is

Pint =
∫

V

σij∂ivjdV. (5)

Then, according to 3, we have

Mij(S) =
∫

V

σijdV = 〈σij〉V. (6)

This shows that the internal moment tensor of S per unit
volume (M/V ) tends to the average Cauchy stress tensor
〈σij〉 at larger scales or for an increasing number of grains
contained in S.

The internal moment tensor has all the required prop-
erties for a scaling analysis of stress transmission in gran-
ular media. Conceptually, the internal moment tensor per
unit volume in a discrete system plays the same role as
the Cauchy stress tensor in a continuous medium. For
this reason, we will refer to the internal moments of the
grains as grain stresses. In the following, we will be more
specifically interested in stress ratios, i.e. the ratio of the
deviatoric part of grain stresses normalized by the corre-
sponding spherical part.

4 The packing stress

In this section, we study the total stress of the granular
bed as a function of the tilt angle θ. In the absence of

Fig. 4. Force fα applied on a grain p at the contact point rα

by a neighboring grain.

plastification, i.e. for a rigid-plastic behaviour without re-
arrangements, the average stress tensor σ follows directly
the rotation of the bed with respect to the direction of
gravity (and the volume of the bed remains constant) [22].
Here, we check whether the simulations yield a picture
close to this prediction in spite of rearrangement phenom-
ena. The packing stress tensor is evaluated for the whole
packing by simply adding up the grain stresses and di-
viding by the total volume of the packing. We consider
more specifically the ratio of the normal component σN

of the stress tensor along the direction of the free sur-
face to the tangential component σT. Alternatively, we
evaluate the stress ratio Γ defined as the stress deviator
Q = (σ1 − σ2)/2, where σ1 and σ2 are the eigen values,
normalized by the average stress P = (σ1 + σ2)/2:

Γ =
Q

P
· (7)

The Coulomb criterion implies Γ = Γc = sin θc at incipi-
ent failure, where θc is the angle of repose.

Figure 5 displays the evolution of the normalized shear
stress σT/σN as a function of tan θ for all samples. It is
initially zero in all cases, and increases linearly with tan θ,
but with different slopes depending on the length L of
the granular bed. For all WBC systems, the slope is be-
low that of the PBC system, but increases with L. The
angle of repose θc, for which surface failure is initiated,
varies between ≈19◦ and ≈21◦ for the WBC and the PBC
systems.

In order to evaluate the influence of the walls, we con-
sider Euler’s equations for a medium in static equilib-
rium [37]. In a reference frame attached to the box (see
Fig. 1), we have

∂xσxx + ∂yσyx = w sin θ, (8)
∂xσxy + ∂yσyy = w cos θ, (9)

where w is the specific weight of the medium. The stresses
are zero at the free surface. Since the stresses are evaluated
for the whole bed, we have σN = 〈σyy〉 and σT = 〈σyx〉,
where 〈. . . 〉 denotes averaging over the whole bed.

In the PBC case, the bed is invariant through trans-
lation along the free surface, so that ∂xσxx = 0 and
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Fig. 5. Evolution of the normalized shear stress σT/σN as a
function of tan θ for all WBC and PBC systems.

Fig. 6. Evolution of the stress ratio Γ and of the normalized
shear stress σT/σN as a function of the slope angle θ for the
PBC system. The dotted line corresponds to the analytical fit
σT/σN = tan(θ).

∂xσxy = 0. Then, Euler’s equations yield σyx = w sin θ y
and σyy = w cos θ y, so that

σT

σN
=

σyx

σyy
= tan θ. (10)

This classical result fits perfectly the behaviour of the
PBC pile (Fig. 6).

In the WBC case, the translational invariance is bro-
ken in the presence of the walls. In order to close Euler’s
equations, we need to make an assumption on the stress
state. Our data show that the main effect of the walls is
to introduce a globally nonzero gradient of the xx com-
ponent along the bed (as a function of x). Figure 7 shows
that this effect is localized in the vicinity of the walls as
θ is increased. At the same time, the other components of
stress may be considered as nearly independent of x up to
wall effects.

In order to capture the influence of a stress gradient
along the bed in an analytical approach, let us simply as-
sume that σxx has a constant gradient along the bed and
∂xσxy = 0. From Figure 7, this assumption is not exactly
satisfied; yet we are concerned here only with the simplest
level of description, and the influence of higher order gra-
dients will not be evaluated. Together with equation (9), a

Fig. 7. Evolution of the σxx component of the stress tensor
computed over successive sections of a WBC granular bed (L =
100D) as a function of the distance x of the section to the left
wall, and for 3 values of the slope angle θ.

constant gradient implies that σyy = w cos θ y. We intro-
duce two coefficients k0 and kL to specify the boundary
values of σxx:

σxx(x = 0) = k0w sin θ, (11)
σxx(x = L) = kLw sin θ. (12)

These two coefficients might depend on θ. In the PBC
case, we have k0 = kL = 1, and their values in the pres-
ence of the walls reflect small perturbation to translational
invariance. We naturally expect that the normal stress
σxx(x = L) on the lower wall is larger than the normal
stress σxx(x = 0) on the upper wall when θ > 0, so that
kL > k0. Given these boundary conditions, and since σxx

is assumed to have a constant gradient, we have

σxx =
{
k0 +

x

L
(kL − k0)

}
w sin θ y. (13)

Then, from equation (8) we get

σT

σN
= tan θ

{
1 − kL − k0

3
H

L

}
· (14)

This equation, with basically one fitting parameter kL−k0,
captures the features observed in Figure 5. In particular,
since kL − k0 > 0, the ratio increases with L and it tends
to tan θ as H/L → 0. Figure 8 shows the variation of
(σT/σN)/ tan θ for θ = θc as a function of L from the
numerical data, together with the analytical form (14).
The latter reasonably fits the data with kL − k0 � 2.5,
although a slight deviation can be observed.

The evolution of the total stress, when explicitly ac-
counting for the walls effects, is consistent with a rigid
plastic behaviour. Independently of the boundary condi-
tions, no signature of the incoming instability can be iden-
tified from the total stress state. To gain further insights
on the destabilisation process, we now investigate how the
macroscopic stress state builds up when analysing stress
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Fig. 8. Ratio (σT/σN)/ tan θ for θ = θc as a function of L for
the WBC system (black circles). The dotted line represents the
analytical form given by equation (14), with kL − k0 � 2.5.

from a local point of view. In the forthcoming sections,
we focus on the PBC system; all the observed features are
robust with the boundary conditions.

5 Local stresses

5.1 Grain stress distributions

According to the definition of grain stresses (4), one can
attribute to each grain a stress deviator q and a mean
stress p. Figure 9 displays the probability density function
(pdf) P (γ) of the grain stress ratios γ = q/p for θ = 0,
θ = 10◦ and θ = 15◦ in the PBC system. These distri-
butions are wide and cover all possible values of γ in the
range [0, 1]. We define the macroscopic limit stress ratio
Γc = Γ (θc) reached by the granular bed at stability limit
(Fig. 6). We observe that even at low slope angles, a large
fraction of the grains has a stress ratio γ above the limit
stress ratio Γc (represented by a vertical line in Fig. 9).
The initial fraction (at θ = 0) of these “overloaded” grains
is about 30%. Since the largest permissible grain stress ra-
tios are controlled by the immediate environment of each
grain, they can indeed overpass the macroscopic thresh-
old Γc. This fraction grows with θ and eventually reaches
�60% at θc, as shown in Figure 10.

Figure 11 shows successive snapshots of the pack-
ing (in the frame attached to the simulation box) for
θ = 0, 5◦, 10◦, 15◦ and θ = θc. Overloaded grains only
are represented in black. This evolution shows well-defined
clusters of overloaded grains building up while the pile gets
closer to stability limit. For comparison, Figure 12 shows
the clustering obtained from a stochastic process in the
same pile, where black grains represent 60% of the total
number of grains. This snapshot should thus be compared
with Figure 11 for θ = θc, for which overloaded grains are
in a proportion of 60%. We can see that no obvious cluster-
ing can be seen in Figure 12, by contrast with Figure 11.
The existence of clusters of overloaded grains shown in

Fig. 9. Probability density function (pdf) P (γ) of the grain
stress ratios γ = q/p for θ = 0, θ = 10◦ and θ = 15◦ in the
PBC system. The vertical line shows the value of the critical
stress ratio Γc of the packing.

Fig. 10. Evolution of the fraction po of overloaded grains in
the PBC system as a function of the slope angle θ.

Figure 11 and their size evolution when θ → θc suggest
the existence of spatial correlations evolving in the course
of time, and is strongly reminiscent of a percolation pro-
cess. Indeed, these clusters eventually coalesce to form a
connex network spanning the packing from top to bottom.
This questions the apparition of a volume over which the
macroscopic failure criteria Γ = Γc would apply, and thus
would announce the proximity of the stability limit, or at
least the probability of a local failure. The simple analy-
sis of the clusters shown in Figure 11 is not sufficient to
answer this question: indeed, even though the grains all
satisfy γ ≥ Γc, nothing is said on the local orientation
of the stress. We thus need to analyse the evolution of
the stress state at the scale of the clusters, namely at the
meso-scale, and no longer at the scale of the grains.

5.2 Coarse-graining stress

We want to characterise the typical size of the volumes
over which the stress ratio overcomes the macroscopic
limit Γc. To do so, we consider circular neighbourhoods of
diameter � centered on overloaded grains, with � ranging
from the mean size of the grains to the size of the system
(Fig. 13). For each overloaded grain, the stress ratio γ�

is computed over the circular neighbourhood of diameter
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Fig. 11. Maps of the overloaded grains (in black) for succes-
sive values of θ. From top to bottom, θ = 0, θ = 5◦, θ = 10◦,
θ = 15◦ and θ = θc. They form growing clusters which eventu-
ally span the packing from top to bottom.

�. Thereby we determine, for each grain and at different
slope angles θ, the length �c for which γ�c = Γc. We are
thus able to plot the evolution of the maximum value �max

c
and the mean value �mean

c = (1/No)
∑

No
�c as a function

of θ (where No is the total number of overloaded grains).
The length �c measures the size of volumes in the state

Γc, in which the grains stresses lead to a critical macro-
scopic state when added up. The plots of �mean

c and �max
c

as a function of θ are displayed in Figure 14. The mean
radius �mean

c first increases very slowly from 4D to 5D.
Then, from θ = 15◦ onward, it increases rapidly to �7D.
At the same angle θ = 15◦, denoted θd in all the follow-
ing, we observe a spectacular transition in the evolution
of �max

c . The latter first increases continuously from 5D at
θ = 0 to 15D at θ = θd. Here, a sudden jump brings �max

c
from 15D to 30D. The cutoff at 30D is imposed by data
processing for the evaluation of �c. However, this value is
close enough to the depth H = 40D of the granular bed
to be interpreted as corresponding to the system size. The
behaviour of �max

c is very robust from one realisation to

Fig. 12. Snapshot of the pile showing the pattern induced by
a stochastic process based on the random distribution of grains
size. Black grains represent grains with a radius greater than
0.85D so that they represent 60% of the total number of grains.
Their distribution can be compared with Figure 11 for θ = θc.
The scale is the same as in Figure 11.

Fig. 13. Successive circular neighborhoods of diameter � cen-
tered on one overloaded grain (in gray). The stress ratios γ� of
the grain are computed over these neighborhoods as a function
of �.

another as well as with boundary conditions. Slight vari-
ations only are observed in the value of the angle θd at
which the transition occurs.

As previously in Figure 11, it is interesting to map
the growth of �max

c and its nearly discontinuous change
at θ = θd into a percolation process. In this picture,
the transition at θ = θd is a percolation transition for
which the largest cluster size diverges, spanning the whole
system. The fraction of overloaded grains at the transi-
tion is po = 0.48 (Fig. 10). Interestingly, this propor-
tion is close to the percolation threshold for randomly
built-up structures of non-overlapping particles in two
dimensions [38–40].

6 Transition to coherent shearing

The evolution of the packing stress ratio Γ with θ (Fig. 6)
carries no apparent signature of a discontinuous transition
at θd. Irrespective of boundary conditions and for different
values of the aspect ratio H/L, the packing stress follows
closely the loading direction up to slope failure. Such a
signature should thus appear in the volume-change be-
haviour of the packing. Figure 15 shows the volumetric
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Fig. 14. Evolution of �mean
c (a) and �max

c (b) as a function of
θ (see text for definitions).

strain εV = (V −V0)/V0, where V0 is the initial volume, as
a function of θ in the PBC system. We see that the volume
first decreases (negative values of εV) with θ. Then, pre-
cisely at θ = θd, for which transition in the stress state is
observed (Fig. 14), this contractant behaviour transforms
into a dilatant behaviour, with the volume increasing up
to slope failure.

Since packing dilation may occur only as a consequence
of shearing, the transition to dilation at θd can be inter-
preted as the onset of a stable shear mode in the packing.
Before transition, the particle rearrangements occur in a
diffuse and incoherent manner in the whole packing: in the
presence of geometrical disorder and gravity, each grain
tends to occupy a more stable position. Such rearrange-
ments take place mostly in a collective way, but in small
volumes compared to the size of the system [14]. They do
not disturb the overall stability of the slope, neither at the
free surface nor in the bulk.

This behaviour is reminiscent of the contractant be-
haviour observed in the first stages of a shear test per-
formed on soil samples [41]. The extent of volume reduc-
tion depends on the initial solid fraction of the packing.
A transition to dilatancy happens if the initial solid frac-
tion is above the “critical state” solid fraction, i.e. the
solid fraction corresponding to a state reached after long
enough monotonous shearing [3]. This is an interesting
analogy although in a granular slope the gravity behaves
as a bulk force, in contrast to shear testing conditions
where the largest stresses are exerted at the wall bound-
aries.

7 Discussion and conclusion

7.1 Summary

We performed numerical simulations of granular slopes
composed of rigid disks and tilted in the gravity field

Fig. 15. Evolution of the volumetric strain εV = (V −V0)/V0,
V0 being the initial volume, as a function of θ in the PBC
system.

towards stability limit using the Contact Dynamics
method. We showed that a global stress analysis in terms
of Euler’s equations for periodic boundary conditions
along the free surface fits the simulation data. The in-
fluence of side-walls was evaluated as a function of the
total length L of the free surface. We showed that the
evolution of the total stress is consistent with a rigid plas-
tic behaviour. Independently of the boundary conditions,
no signature of the incoming instability can be identified
from the total stress state. To gain further insights on the
destabilisation process, we investigated how the macro-
scopic stress state builds up when analysing stress from
a local point of view. The local stresses are described in
terms of internal moments which allow for an additive
coarse-graining of stresses. We observe a wide distribu-
tion of grain stress ratios involving a significant fraction
of the so-called “overloaded” grains, for which the stress
ratio γ is above the macroscopic limit stress ratio Γc, cor-
responding to the Coulomb yield threshold for the whole
packing. On the ground of the spatial distribution of the
overloaded grains, showing clustering, we define a charac-
teristic length �c as the size of a control volume where the
stress ratio is just equal to the limit stress ratio Γc. The
largest length �max

c is a coarse-graining length evolving in
the course of time. We found that �max

c increases as the
bed is slowly tilted toward its angle of repose θc; at an an-
gle θd below θc, �max

c undergoes a sudden jump to a length
comparable to the depth of the bed. An analogy between
the evolution of the local stresses and a percolation pro-
cess is drawn. In this picture, the discontinuous increase of
the coarse-graining length �max

c at θd corresponds to a per-
colation transition. Remarkably, this transition coincides
with the onset of dilation in the packing.

7.2 Discussion

The above results reveal an unexpectedly rich scaling of
stresses in a granular bed in the vicinity of slope failure.
In particular, when interpreted in terms of a percolation
process, they are consistent with the advent of a “phase
transition” at θd. This transition coincides with the



L. Staron et al.: Multi-scale analysis of the stress state in a granular slope 319

apparition of a volume of size comparable to the system
size, and where the limit stress state corresponding to
stability limit is reached. In addition, it coincides with the
apparition of coherent dilatant shearing. This transition
is all the more interesting that it occurs far enough
from the angle of repose θc to be considered as a strong
precursor of the incoming surface instability.

Although the transition angle θd appears here in the
course of a “quasi-static” evolution of the slope, it is still
tempting to identify θd with the dynamic angle of repose,
i.e. the angle reached when the slope comes to rest after
failure. This is an appealing interpretation in that it
relates the dynamic angle of repose to a static property
of the packing. The order parameter in this description
is the fraction of overloaded grains. Further simulations
are necessary to check this conjecture, but let us simply
consider here an argument in this direction.

The transition observed in the evolution of the local
stress should be discussed in the light of experimental
results showing the increase of the sensitivity of the slope
to perturbation in an interval of slope angle similar to our
interval δθ = θc − θd [9,10]. In other words, the interval
of slope angle [θd, θc] coincides with a metastable state. It
is tempting to relate this metastability to the apparition
of long-range correlations in the system, which may help
propagating an existing perturbation to the totality of the
packing. This is a possible interpretation of the existence
of these large clusters of overloading grains, leading to
the appearance of volumes where the critical stress state
Γc is reached. Indeed, one can expect any perturbation
to degenerate in these volumes once they are of a large
enough size for the macroscopic failure criteria to make
sense. Earlier work on the mobilisation of friction also
hinted at the apparition of large-scale correlations in
the system [14]. However, we did not observe any clear
transition at θd when computing the pair correlation
functions of contact forces and grain stresses. In this
case, the correlation length remains of the order of a
few grain diameters all along the simulation. Further
analysis, including the grains displacements, have thus to
be conducted to conclude to the existence of large-scale
correlations.

The dilation of the bed provides another interesting
insight into the behaviour of a granular bed in the
metastable range. The avalanche can not occur unless
the bed dilates. Since the bed begins to dilate at θd, the
angle θc−θd should be interpreted as the “dilation angle”
of the granular material when plastified as a result of
rearrangements induced by the rotation of the bed [37].
Hence, in a macroscopic approach, the static angle of
repose θc and the transition angle θd, interpreted as
the dynamic angle of repose, may be described in terms
of the Coulomb yield criterion and the dilation angle,
respectively.
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