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Numerical simulations of the collapse and spreading of granular columns onto a
horizontal plane using the Contact Dynamics method are presented. The results
are in agreement with previous experimental work. The final shape of the deposit
appears to depend only on the initial aspect ratio a of the column. The normalized
runout distance has a power-law dependence on the aspect ratio a, a dependence
incompatible with a simple friction model. The dynamics of the collapse is shown to
be mostly controlled by a free fall of the column. Energy dissipation at the base of
the column can be described simply by a coefficient of restitution. Hence the energy
available for the sideways flow is proportional to the initial potential energy E0. The
dissipation process within the sideways flow is approximated well by basal friction,
unlike the behaviour of the runout distance. The proportion of mass ejected sideways
is shown to play a determining role in the spreading process: as a increases, the same
fraction of initial potential energy E0 drives an increasing proportion of the initial
mass against friction. This gives a possible explanation for the power-law dependence
of the runout distance on a. We propose a new scaling for the runout distance that
matches the data well, is compatible with a friction model, and provides a qualitative
explanation of the column collapse.

1. Introduction
Although they have been an important subject in recent research, granular flows

remain intriguing in many aspects of their behaviour (see e.g. Rajchenbach 2000;
Goldhirsch 2003). The understanding of such flows has obvious application in
industrial processes, which often handle all kinds of powders and granules. But it is
also crucial in the geophysical issue of catastrophic flows. Rock avalanches, landslides
and pyroclastic flows all involve a granular solid phase, and can become dramatic
in their behaviour. In the absence of a clear physical background for the modelling
of these large-scale natural granular flows, their characterization relies mainly on
the observation of the final deposits, and in particular, of the final runout distance
(Iverson, Schilling & Vallance 1998; Dade & Huppert 1998). A simple effective basal
friction µe is often advocated as the most convenient description of the dissipation
process. This allows an in-situ quantification of the mobility of the flow, knowing
the runout distance and the initial height of the material. Moreover, basal friction
is easily incorporated in continuous modelling, such as shallow-water equations for
instance (Savage & Hutter 1989; Mangeney-Castelneau et al. 2004; Kerswell 2005).
However, the dependence of this effective friction on the nature of the material, on the
characteristics of the collapse and on the dynamics of the flow, has yet to be found.
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Systematic studies of the frictional properties and the spreading of granular flows
on inclined planes have been carried out (Pouliquen 1999; Pouliquen & Forterre
2002). However, until recently, the simple case of a granular mass collapsing onto
a horizontal plane had not been addressed. Experiments have now investigated this
problem, and studied the collapse and spreading of a suddenly released column of
grains onto a horizontal plane (Lube et al. 2004; Lajeunesse, Mangeney-Castelneau &
Vilotte 2004; Balmforth & Kerswell 2005). Essentially, the effect of the initial geometry
of the column on the geometry of the final deposit has been studied. The main result
consists of scaling laws for the runout distance. In particular, when the initial aspect
ratio of the collapsing column is large enough, the runout distance normalized by the
initial radius of the column shows a power-law dependence on the initial aspect ratio.
Moreover, this dependence varies with the conditions of the experiment, in particular
between axisymmetric and quasi-two-dimensional configurations. Although simple
models relying on a Coulomb-failure analysis or a shallow-water approximation for
the flow have been proposed, no clear physical understanding of the granular collapse
process has yet been achieved. In particular, the scaling laws obtained for the runout
distance are incompatible with a simple basal friction model, and this brings into
question the mode of energy dissipation occurring in the successive steps of the
collapse dynamics.

In this context, the use of computer simulations to reproduce numerically the
collapse of a granular column is expected to give interesting new insights into the
problem. Discrete element methods allow the simulation of each grain forming the gra-
nular mass, giving access to each grain’s trajectory. We can thus hope to access a
picture of the collapse phenomena that would be otherwise very difficult to obtain in
experiments. The aim of the present work is to determine the mechanisms controlling
the spreading dynamics: fall of the column, dissipation at the base, ejection of mass
sideways and dissipation in the outflow. Therefore, we have applied the Contact
Dynamics algorithm (Moreau 1994; Jean 1994) in two dimensions. The numerical
procedures are explained in § 2. A similar numerical method has been used recently
by Zenit (2005). After briefly recalling and commenting on the experimental results
obtained by other authors (Lube et al. 2004; Lajeunesse et al. 2004; Balmforth &
Kerswell 2005) in § 3, the different regimes of spreading are qualitatively described
and scaling laws are established in § 4. We observe a very good agreement between
the experiments and the simulations. Details of the dynamics of the vertical fall and
of the sideways spreading are presented in § 5. The dissipation of energy and the
transfer of energy from vertical fall to horizontal motion are examined in § 6. We
show that the energy available for the spreading is simply proportional to the initial
potential energy of the column and that basal friction is a very good approximation
for the dissipation within the sideways flow. We conclude that the ability of the
column to eject the grains sideways is a major factor in the dynamics. This leads us to
question the scaling laws obtained for the runout distance as perhaps fortuitous and
corresponding to a transient regime. A new empirical fit, compatible with a friction
law, and qualitatively describing the collapse phenomenology, is proposed in § 7. A
summary of the results and further discussion are given in § 8.

2. Numerical procedures
2.1. Simulation method

The numerical methods used for the simulation of granular material are known under
the generic name of discrete element methods (DEM). They take into account the
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individual existence of each discrete grain forming the medium, and usually neglect the
role of the interstitial fluid filling the space between the grains. Such an approximation
makes these methods appropriate for the modelling of dry granular matter. In the
absence of any influence of the interstitial fluid (air in the present case), the behaviour
of the collection of grains is entirely driven by the standard equations of motion, and
the contact laws describing the collisions between the grains.

Modelling the contact phenomena consists in finding relations between the contact
force and various quantities referring to the physical and/or chemical processes taking
place at the surface of the two bodies in contact. These microscopic interactions can
be of different types. They can involve for instance elastic or plastic deformation of
asperities, adhesion due to Van der Waals forces, ageing processes, etc. In any case,
the complexity of these phenomena cannot be directly incorporated in the contact
models, due to practical reasons of numerical feasibility or efficacy, and also because
such complex models may not be realistic. Basically, DEM assume small elastic
deformation, with possible viscous effects, and frictional dissipation as contact pheno-
menology (Cundall & Stack 1979).

It is beyond the scope of this paper to give a detailed account of the numerical
method used, and further information will be found in references cited. Hence we will
just specify the main hypotheses governing the behaviour of the numerical grains.
In the absence of a clear physical background for modelling of contact phenomena,
a possible strategy is to assume that grains are interacting only through hard-core
repulsion and non-smooth Coulombic friction. This model is adopted in the Contact
Dynamics (CD) algorithm (Moreau 1994; Jean 1994) that we have applied in the
present work. This implies that two grains have to touch for the contact force to
be non-zero, and no distant interaction is permitted. Once in contact, two grains
cannot become closer, and any normal relative motion is repulsive: the grains are
perfectly rigid. A microscopic coefficient of friction µ characterizes the Coulombic
friction threshold ±µN , where N is the normal force, and µ describes the frictional
dissipation at grain scale. The tangential force T between two grains in contact can
either be below the Coulombic friction threshold, and in that case no tangential slip
motion is possible, or it can be exactly equal to the Coulombic friction threshold,
and in that case slip motion will dissipate energy. These contact laws allow for
multiple collisions between the grains, when the grains are in contact with one or
more neighbours while they are undergoing collisions with others. The simple case
of a binary collision must also be fully described by the algorithm: a Newtonian
coefficient of restitution ρ is introduced, which gives the velocities of the grains after
a collision from their velocities before the collision. This coefficient of restitution
appears in the calculation of the velocity of all the grains. These contact laws are
simplistic with regard to the microscopic reality of contact phenomena. Nevertheless,
they are sufficient to reproduce the collective dynamics of a collection of grains.

2.2. Numerical experiments

Using the CD method, we have simulated two-dimensional collections of non-adhesive
rigid circular grains. The diameter d of the grains is uniformly distributed in a small
interval such that dmin/dmax = 2/3. This slight polydispersity of grain size is mainly
introduced to break any crystal-like ordering of the grains which might have a non-
negligible effect in two-dimensional simulations. However, the range of grain size is
sufficiently narrow for the polydispersity not to produce segregation and not to affect
the runout results. In the following, d denotes the mean grain diameter. The influence
of the grain size was not systematically investigated here; experiments by Lajeunesse
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et al. (2004) show that its role in the collapse dynamics is very weak. We have ensured
that the size of the grains was small compared to the length scales of the column. The
coefficient of restitution ρ for collision is the same between the grains and between
the grains and the bottom plane, and was chosen ρ = 0.5. The microscopic coefficient
of friction is the same at all contacts and set at µ = 1. The values of these parameters
are a reasonably good approximation to the properties of glass beads. The systematic
investigation of the influence of the value of ρ and µ is beyond the scope of this
paper, and will be the subject of further work. However, it can be shown that the
sensitivity of the system to these values is weak, at least in the neighbourhood of the
values chosen for the present work. This was also found by Zenit (2005) in the case
of the coefficient of friction µ. For ρ close to 1, many particles escape through strong
bouncing, which completely changes the behaviour.

The numerical experiment consists in releasing a column of grains in the gravity
field onto a flat bottom plane, and studying the collapse and the resulting spreading
dynamics of the granular mass. The bottom plane in our experiment is perfectly
smooth. Laboratory experiments carried out on rough and smooth surfaces have
shown that the general behaviour of the mass of grains (in particular the final
runout distance) is not affected by the roughness of the plane, apart from a slight
transformation of the deposit final shape (Lajeunesse et al. 2004).

The initial columns are prepared by means of a random rain of grains between
two vertical walls. The compacity of the packing is c0 � 0.82. The dimensions of the
column are its radius R0 and its height H0, and a = H0/R0 is the initial aspect ratio.
We have considered four different values of R0 such that R0/d = 10, 20, 30 and 40,
and twenty values of H0 were used, with H0/d varying between 50 and 175. At time
t = 0, the vertical walls are instantaneously removed, and the column collapses due
to gravity. The dimensions of the final deposit are the final runout distance R∞, and
the final height H∞. The compacity of the final deposit is c∞ � 0.78, i.e. close to the
initial compacity in spite of a slight loosening of the packing of grains. The successive
steps are illustrated in figure 1. We have carried out 25 simulations with a ranging
between 0.21 and 17 using between 1000 to 8000 grains.

3. Comments on the experimental results
Recent experiments by Lube et al. (2004) and Lajeunesse et al. (2004) have investi-

gated the axisymmetric collapse of a column of grains onto a flat horizontal plane.
The main result consists of scaling laws for the runout distance. Using the notation
mentioned above (namely H0 and R0 are the initial height and radius of the column
respectively, a the initial aspect ratio, and H∞ and R∞ respectively the height of the
final deposit and the runout distance), Lube et al. (2004) find

R∞ − R0

R0

�
{

1.24 a, a � 1.7

1.6 a1/2, a � 1.7,

while Lajeunesse et al. (2004) find

R∞ − R0

R0

�
{

1.35 a, a � 0.74

2.0 a1/2, a � 0.74.

Moreover, quasi-two-dimensional experiments were carried out by Lube et al. (2005)
by releasing granular columns confined between two vertical sidewalls. The following



Discrete simulations of the collapse of granular columns 5

(a)
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(c)

Figure 1. Preparation of a column of grains by a random rain of grains in the gravity field
(a). The column is characterized by its initial radius R0 and it initial height H0 (b). After the
collapse, the final deposit is characterized by the runout distance R∞ and the height H∞(c).

scalings were found:

R∞ − R0

R0

�
{

1.2 a, a � 2.3

1.9 a2/3, a � 2.3.

Quasi-two-dimensional experiments were also carried out by Balmforth & Kerswell
(2005), where the influence of the gap between the two vertical walls confining the
column collapse was also addressed. Their results indicate that the exponent of the
power law depends on the size of the gap:

R∞ − R0

R0

�
{
λa0.65, narrow gap

λa0.9, large gap.

In these experiments, the prefactor λ varies depending on the material used, whereas
previous authors found a universal prefactor, perhaps due to a narrow range of experi-
mental materials. However, scalings found for quasi-two-dimensional experiments
in the narrow gap configuration give similar results for Lube et al. (2005) and
Balmforth & Kerswell (2005), giving roughly (R∞ − R0)/R0 ∝ a2/3. Zenit (2005) has
reported results of numerical discrete simulations in which he finds similar values for
the runout, but no clear transition in its behaviour depending on a.

The origin of the exponents is still under discussion. No model has yet achieved a
comprehensive explanation of the collapse dynamics. In particular, a simple friction
model cannot account for them. Supposing that the initial potential energy of the
column is completely dissipated by the work of the friction forces along the runout
distance leads to

µem0g(R∞ − R0) = m0gH0, (3.1)
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Figure 2. Grain movement in squat columns. The snapshots show successive times t/T∞ = 0,
0.25, 0.37 and 1, where T∞ is the duration of the collapse. The initial aspect ratio is a = 0.37.
Shown in black are the grains with an accumulated horizontal displacement exceeding the
mean grain diameter d . The scale in the four pictures is the same.

i.e.
(R∞ − R0)

R0

∝ a1, (3.2)

where m0 is the total mass of grains, and µe is the effective coefficient of friction
(constant by definition). The existence of different exponents in the experiments thus
suggests that the dissipation process in the collapsing columns cannot be interpreted
as a simple basal friction, and that the overall dynamics of the spreading must be
more complex than usually postulated.

4. Scaling laws for the final deposit
4.1. Qualitative description

From a simple qualitative observation of the dynamics of the collapse, two different
regimes can be distinguished depending on the value of the initial aspect ratio a. In
the first regime, for small a, the flow simply consists of the fall of the edges of the initial
column. The motion propagates from the edges inward, while a slope progressively
builds up, along which the grains eventually stabilize. In this regime, only the grains
situated at the sides of the columns fall, and as a result flow; by contrast, the grains
situated inside the column have no motion and play no role at all in the spreading.
This situation is illustrated in figure 2, where four successive snapshots of a collapsing
pile with a =0.37 are displayed. We have represented in black the grains with an accu-
mulated horizontal displacement exceeding the mean grain diameter d . We observe
that a majority of grains experience smaller displacement or none at all, and that
most of the upper surface remains undisturbed.

The second regime, namely for high a, is radically different. In that case, the whole
column falls in a vertical motion in response to gravity, causing most of the grains to
take part in the dynamics. Four snapshots of the collapse of a column are shown in
figure 3 for a = 9.1. Again, the black grains are those whose accumulated horizontal
displacement exceeds d . Only a small fraction of grains situated in the centre of the
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Figure 3. Grain movement in tall columns. The snapshots show successive times t/T∞ = 0.1,
0.25, 0.37 and 1, where T∞ is the duration of the collapse. The initial aspect ratio is a = 9.1.
Shown in black are the grains with an accumulated horizontal displacement exceeding the
mean grain diameter d . The scale in the four pictures is the same, and the deposit has been
truncated in the last picture.

column remain undisturbed. When a tends to ∞, this fraction is expected to tend to
zero.

An intermediate case between these two regimes is shown in figure 4, for a = 0.9;
the entire upper surface is affected by the sideways flow, but a well-defined inner cone
remains static. The shape of this inner cone is likely to be related to the frictional
properties of the material, as suggested by Lajeunesse et al. (2004). In figure 5, final
deposits are presented for columns with a = 0.9, 0.73, 0.55 and 0.37. To characterize
better the properties of the granular packing, we include in the representation of the
static inner cone the shear bands along which the flow develops. To do so, we no
longer consider the grains which remain strictly static, but include also the grains
which are involved in the shear dynamics. Hence, we represent in black grains with
an accumulated horizontal displacement of more than 5d . The slope of the cone
obtained in this way gives the orientation of the shear bands, i.e. the orientation of
the failure planes characterizing the flow of the edges. This allows an estimation of
the frictional properties of the packing. We observe that the slope of the inner cone
remains nearly constant, namely around 35◦, independently of a. It is tempting to
assume that this slope reflects the mean frictional properties rather than the flow
dynamics, and that the collapse, at least for small values of a, results from a Coulomb
failure as suggested by Lajeunesse et al. (2004). In this case, assuming hydrostatic
stress gives us an effective angle of internal friction ϕ � 20◦ for the packing of grains,
equivalent to a coefficient of friction 0.36. We note that this value is different from
the coefficient of friction acting at the contacts between grains, µ = 1, and will also
be different from the effective coefficient of basal friction evaluated later in § 6. For
greater values of a, the static inner cone is destroyed by the vertical dynamics of the
upper grains and can no longer be observed in the final deposit.

The general observations on the shape of the collapsing columns described above
are very close to previous experimental descriptions of the collapse.
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Figure 4. Grain movement in intermediate size columns. The snapshots show successive times
t/T∞ = 0, 0.25, 0.37 and 1, where T∞ is the duration of the collapse. The aspect ratio is a = 0.9.
Shown in black are the grains with an accumulated horizontal displacement exceeding the
mean grain diameter d . The scale in the four pictures is the same.

Figure 5. The inner static cone. Final deposits of columns with a = 0.9, 0.73, 0.55 and 0.37.
The inner grey cone is the grains whose cumulated horizontal displacement is smaller than 5d ,
and has a slope � 35◦ in all cases. The scale in the four pictures is the same.

4.2. Scaling laws for the final deposit

The shape of the final deposit resulting from the collapse and the spreading of the
granular column is first characterized by the final runout distance R∞. For each
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Figure 6. Final normalized runout distance (R∞ − R0)/R0 as a function of
the initial aspect ratio a.

experiment, R∞ is evaluated from the position of the grains connected to the main
mass by at least one contact. In other words, grains ejected from the flow, and
undergoing a solitary trajectory independent of the collective behaviour of the flow,
will not be taken into account. The reproducibility of the collapse is very good across
independent realizations. The error when evaluating the runout is less than 3%. The
final height of the central conical region H∞ is also evaluated; it corresponds to the
highest point of the deposit. We also evaluate the mean height of the deposit H ∞
from the total area covered by the grains; this is equivalent to a measure of the final
potential energy of the deposit.

The evolution of the runout distance of the grains normalized by the initial radius
of the column (R∞ − R0)/R0 is plotted in figure 6 as a function of a. We observe the
following dependence:

R∞ − R0

R0

�
{

2.5 a, a � 2

3.25 aα, a � 2,

where α = 0.705 ± 0.022. As observed in laboratory experiments, the runout distance
has two different behaviours depending on the value of a. For small values of a, a
linear dependence is observed, while for larger a, the dependence is a power law. The
scalings we obtain are in good agreement with the scalings observed from quasi-two-
dimensional laboratory experiments, for which the exponent observed for sufficiently
large a is 2/3 (Lube et al. 2005; Balmforth & Kerswell 2005), and the transition
between the two behaviours occurs at a =2.3 (Lube et al. 2005). The prefactors
2.5 and 3.25 obtained in the numerical simulations are higher than those observed
experimentally by Lube et al. (2005), namely 1.2 and 1.9. This difference is very
likely due to the respective frictional properties of the material; the circular shape of
the numerical grains must enhance their mobility. Moreover, the dissipation induced
by the friction with the two vertical walls confining the grains in the quasi-two-
dimensional configuration, and the fact that the grains in a quasi-two-dimensional
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Figure 7. Final maximum height of the deposit normalized by the initial radius H∞/R0 (a),
and mean height of the final deposit normalized by the initial height H ∞/H0 (b) as functions
of the initial aspect ratio a.

configuration are nevertheless arranged in a three-dimensional packing, are certain to
affect the value of the prefactors.

The normalized final height H∞/R0 is plotted against a in figure 7; we observe

H∞

R0

�




1.0 a, a � 1

0.65 a0.35, 1 � a � 10

1.45, a � 10.

The two-dimensional laboratory experiments show a similar behaviour, with an expo-
nent 0.4 in Lube et al. (2005) and 0.5 in Balmforth & Kerswell (2005), but no transi-
tion is observed for a � 10. Moreover, the behaviour observed in the case a � 1 is
in agreement with the observations of Lajeunesse et al. (2004) in three-dimensional
experiments.

The increase of the number of grains spreading sideways appears clearly when plott-
ing the mean height of the deposit normalized by the initial height H ∞/H0 against
the initial aspect ratio a. From figure 7 the dependence is

H ∞

H0

�
{

1, a � 0.8

0.8 a−0.7, a � 0.8,

as can be expected from the scaling of the runout distance and the mass conservation
R∞H ∞ =R0H0. This relation shows the increasing transfer of potential energy to
side-ways spreading motion and the decrease with a of the potential energy of the
final deposit. As discussed in the introduction, these scaling laws are incompatible
with a simple frictional behaviour, which would give R∞/R0 ∝ a and H ∞/R0 ∝ a−1.
A first hypothesis is that the dynamics of the grains at the bottom of the column is
responsible for a complex dissipation process dependent on the initial aspect ratio a.
As a consequence, the energy available for spreading would also depend on a, and
possibly cause the dependence of (R∞ − R0)/R0 on a to be a power law. This aspect
will be discussed further in § 6.
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Figure 8. Dependence of (tf /t0)
2 on the initial aspect ratio a, where tf is the time of free

fall of the top of the column and t0 = (2R0/g)1/2.

5. Dynamics of the collapse and spreading
5.1. The vertical fall

The dynamics of the collapse is first induced by the vertical fall of the grains. However,
as stressed in § 4.1, different behaviour can be observed depending on the value of a.
Computing the position h of the top of the column over time, we are able to compare
h with the free fall position given by H0 − 0.5gt2, and to evaluate the time tf during
which the top of the column is in free fall. The criterion used for the free fall to
cease is |h − (H0 − 0.5gt2)| > d (where d is the mean grain diameter). In figure 8 we
have plotted (tf /t0)

2 as a function of the aspect ratio a, where t0 = (2R0/g)1/2. For
small values of a, the time of free fall tf is nearly zero. However, as a increases, the
following relation is satisfied: (

tf

t0

)2

� 0.95a − 2.5,

i.e.

tf �

√
2(H0 − 2.5R0)

g
.

This means that the top of the column undergoes free fall over a height H0 − 2.5R0.
In other words, columns with a � 2.5 have a period of free fall, while columns with
a � 2.5 do not. We believe this transition in the vertical dynamics at a � 2.5 to be
at the origin of the transition observed in the scaling law for the runout distance in
§ 4.2 and figure 6.

The fact that the top of the column is in free fall implies that the upper part of the
column is not affected by the complex spreading process occurring at the bottom. As
a consequence, two columns with the same initial radius R0, but two different initial
heights H 1

0 and H 2
0 , should behave in the same way as long as the top of the smallest

column remains above ≈ 2.5R0. The spreading at the base should not affect on the
column above, and the top of the column should not see the spreading process
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underneath. Once the limit height 2.5R0 is reached, the small column will rapidly
spread out, while the taller column will accelerate further. This behaviour is clearly
visible in the series of pictures shown in figure 9, representing the simultaneous
collapse of two columns with heights H 1

0 and H 2
0 � 2H 1

0 respectively, and same initial
radius R0. In the taller column, the grains initially situated above the height H 1

0 are
represented in black to allow comparison of the two dynamics. From the beginning
until H 1

0 � 2.5R0 (first four pairs of pictures), the top of the two columns remains
undisturbed, and the spreading process occurring at their bases is identical. We then
observe, in the respective evolution of the mass of grains initially situated under the
height H 1

0 represented in grey, the effect of the fall of additional grains in black over
the underlying deposit. In particular, the dynamics of pushing aside grains that would
otherwise remain in the vicinity of the bottom of the column is obvious. Eventually,
the black grains cover the underlying grey ones.

5.2. The sideways propagation

In the course of time, the sideways flow propagates outward; we denote by r the front
position at any time t; eventually, r reaches the final value R∞. The total duration
of the collapse, until the sideways propagation stops and the whole deposit comes to
rest, is denoted T∞. In order to compare the dynamics of the spreading for different
values of a, we plot on the same graph in figure 10 the evolution of the position of
the front normalized by the final runout distance (r − R0)/(R∞ − R0) as a function of
the time normalized by the total duration of the propagation t/T∞, for a = 0.9, 1.8,
3.1, 7.7, 10.7 and 15.7. The plots collapse nicely onto a master curve, showing first
a period of acceleration of the front, followed by a regime of constant propagation,
and then a period of deceleration.

From the initial geometry of the column two characteristic times t0 = (2R0/g)1/2

and T0 = (2H0/g)1/2 can be formed, corresponding to the time of free fall over the
distance R0 and H0 respectively. The collapse duration T∞ is plotted against T0 in
figure 11. We observe a linear relation

T∞ � 2.25T0 = 2.25

(
2H0

g

)1/2

,

implying that the duration of the experiment is controlled by the free fall of the
column of initial height H0. This is in agreement with experimental results, for which
the duration of the experiments is found to be ≈ 3T0 (Lube et al. 2005).

However, although the time T0 characterizes the spreading, it does not correctly
capture the acceleration phase as can be seen in figure 12: the period of acceleration is
well characterized by plotting, for different values of a, the normalized front position
(r − R0)/R0 as a function of the normalized time t/t0, instead of t/T0. For high values
of a, we clearly distinguish the acceleration phase followed by a constant velocity
propagation phase. This evolution is not as obvious for small values of a, for which
the deceleration phase occurs early and leaves less time for a constant velocity regime
to establish. When plotting (r − R0)/R0 against a in a log-log representation, we see,
up to t/t0 � 1.5, and for a � 1.8, that the following relation fits:

r − R0

R0

� 0.68

(
t

t0

)2

,

i.e.

r − R0 � 0.34gt2.
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Figure 9. Simultaneous collapse for a = 8.8 and a = 17.4. The upper pairs of pictures show
the lack of dependence of the spreading on the height of the columns during the free fall. The
lower pairs of pictures at later times show how the additional material in black pushes aside
and eventually covers the underlying material in grey.
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Figure 10. Position of the front normalized by the final runout distance, (r − R0)/(R∞ − R0),
as a function of the time normalized by the total duration of the collapse, t/T∞, for different
values of a.
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Figure 11. Total duration of the collapse T∞ as a function of T0 = (2H0/g)1/2 normalized by
(d/g)1/2. The linear relation is T∞ � 2.25T0.

Although this approximation is made over a very short time interval, it suggests
that the onset of the spreading is driven by the free-fall dynamics. Where a constant
velocity regime can be observed, the following relation is satisfied:

r − R0

R0

� 3
t

t0
− 3,

which is equivalent to

r � 1.5 v0t, r > 2R0,

where v0 = (2gR0)
1/2 is the front propagation velocity, once a constant velocity regime

is reached, after the front position has already run a distance 2R0.
Since the column is undergoing free fall for a � 2, the accumulated mass of grains

m(t) expelled as a result of the collapse is given by m(t) ∝ ρsR0gt2, where ρs is the areal
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different values of a as a function of the normalized time t/T0 in linear scale (a), and as a
function of the normalized time t/t0 in linear (b) and logarithmic (c) scales.

density of the grain packing. As the greater part of the front propagation involves a
constant velocity, r ∝ v0t , the increasing mass debit at the bottom of the column can
only be accommodated by an increase of the height of the sideways flow. Moreover,
the grains reaching the bottom, after they have been accelerated in the gravity field,
have a greater momentum than the grains preceding them. This effect is responsible
for the existence of a wave propagating outwards, transferring the mass from the
centre towards the margin of the spreading for high values of a. An extreme case
of this ‘mass propagation’ phenomenon is illustrated in figure 13 where the sideways
flow is represented for a =70.

This effect is more important in two-dimensional configurations than in axisym-
metric ones, for which the increase of the surface area available for the spreading is
quadratic with the front position, while the front propagation has been shown to obey
the same behaviour r ∝ v0t (Lajeunesse et al. 2004). This suggests a purely geometrical
explanation of the difference observed in the scaling laws between axisymmetric
and two-dimensional experiments. Indeed, the typical front velocity v0 = (2gR0)

1/2,
and the typical time of the experiment T0 = (2H0/g)1/2, give for the runout distance
the straightforward scaling law:

(R∞ − R0) = v0T0 = (H0R0)
1/2,

corresponding to the observation (R∞ − R0)/R0 � a1/2 in axisymmetric collapses. The
difference with the two-dimensional case (namely (R∞−R0)/R0 � a2/3) could be due to
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Figure 13. Successive snapshots of the spreading of a column with a very high aspect ratio
a = 70. We observe the transfer of mass from the centre of the collapse towards the front of
the flow. The scale is the same on all pictures.

the increase of mass in the sideways flow, whose effect would be to lengthen the
deceleration phase. The contribution of the deceleration phase to the runout distance
is not negligible in two-dimensions. Three examples of the contribution of the decelera-
tion phase to the final runout distance are displayed in figure 14; up to one third of the
total runout distance is achieved during the deceleration. This effect is presumably
more important than in the axisymmetric configuration, for which the mass flux
is more easily accommodated by the expanding surface area of the flow. This
could also explain the difference of the exponents (1/2 in axisymmetric and 2/3 in
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function of the normalized time t/t0 for different values of a. The linear evolution is stressed
by the dashed line. Dashed-dotted lines indicate roughly the period of deceleration for each
curve.

two-dimensions) in the scaling laws. A systematic analysis of the deceleration phase
should help to solve this issue; however it is not undertaken in the present paper.

6. Energy transfer and dissipation
6.1. Time evolution

Basically, three successive stages can be identified in the history of a grain falling
within the column. In a first stage, its initial potential energy is converted into vertical
motion, and if the initial height of the grain allows for it, it will be accelerated down
to the bottom. There, in a second stage, the grain will undergo collisions with the
bottom plane or the surrounding grains, and its vertical motion will be converted into
horizontal motion. In a third stage, the grain eventually leaves the base area of the
column and flows sideways. Of course, this process involves collective dynamics of
collisions and momentum lost and transfer, whose complexity makes the prediction
of the trajectory of any grain difficult. For the same reason, a high initial potential
energy is no guarantee, for a single individual grain, that it will travel a long way
sideways. As an illustration of the complexity of the vertical to horizontal motion
transfer, successive snapshots of the deformation of a collapsing column with a � 9.1
are displayed in figure 15. The grains initially situated at the margins of the column,
in the central area, and at the top, are represented in black. In the course of time, we
observe that the grains travelling furthest are not those initially at the top. On the
contrary, grains which started at a middle height or even lower finish nearer to the
spreading front area. This behaviour is also visible in the deformation of the inner
black slice.

The conversion of momentum from vertical to horizontal is likely to depend on
the value of a. In figure 16, we have plotted for two collapsing columns with a = 2.6
and a =15.7 the time evolution of the potential energy Ep , the vertical kinetic energy
Eky

and the horizontal kinetic energy Ekx
normalized by the initial potential energy
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Figure 15. Deformation of a collapsing column with a = 9.1, at t/T∞ = 0, 0.2, 0.28, 0.35,
0.45, and 0.75.

E0, with

Ep =

Np∑
p=1

mpghp,

Eki
=

1

2

Np∑
p=1

mpv2
p,i,

where i = x or y, Np is the total number of grains, mp their mass, hp their height
and vp their velocity. From these graphs we first see that a higher proportion of
the initial energy is eventually dissipated by the column with a = 15.7, in agreement
with the scaling of H ∞/H0 in figure 7(b), which is equivalent to the ratio of the final
potential energy to its initial value. Then, we observe that the conversion of energy
from potential to kinetic in the vertical direction is much more efficient for a = 15.7.
By contrast, a greater proportion of vertical kinetic energy is transferred into the
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Figure 16. Time evolution of the potential energy Ep (continuous line), the vertical kinetic
energy Eky

(dotted line) and the horizontal kinetic energy Ekx
(dashed line) of the column for

a = 2.6 (a) and a = 15.7 (b).

horizontal direction for a = 2.6. This suggests that the ability of the column to use
its initial energy for spreading might depend on a.

6.2. Conversion from potential to kinetic energy

The total proportion of energy lost when the grains reach the bottom, and the
conversion from vertical to horizontal momentum, are not obvious properties. Yet
their role is fundamental in the spreading dynamics. Hence we define the vertical
coefficient of restitution ρy (respectively the horizontal coefficient of restitution ρx)
as the ratio of the total vertical (respectively horizontal) kinetic energy, averaged
over the total duration of the collapse T∞, to the initial potential energy E0. These
coefficients of restitution give an averaged picture of the energy dissipation over the
whole collapse dynamics; by definition they do not capture the details of the highly
unsteady and non-uniform dissipation process.

For each value of a, we thus compute the kinetic energy of the system averaged
over the total duration of the collapse T∞ in the vertical and horizontal direction:

〈Eki
〉 =

1

T∞

∫ T∞

0

1

2

∑
p=1

Npmpv2
p,i dt, (6.1)

where i = x or y.
For a theoretical comparison of the mean kinetic energy, we consider a partial

column kR0 < y < H0 − 1
2
gt2 in free fall at velocity gt during Tf = (2(H0 −kR0)/g)1/2.

Thus,

E
thy
ky

=
1

T∞

∫ Tf

0

1
2
ρsR0

(
H0 − kR0 − 1

2
gt2

)
g2t2 dt.

Setting T∞ = 2.25T0 with T0 = (2H0/g)1/2 (see figure 11), and E0 = 1
2
ρsgR0H

2
0 the initial
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Figure 17. Vertical kinetic energy 〈Eky
〉 averaged over the total duration of the collapse T∞

and normalized by E0, as a function of the initial aspect ratio a.

potential energy, we obtain

E
thy
ky

E0

= 0.1185

(
1 − k

a

)5/2

. (6.2)

From the analysis of the free fall in § 5.1, we will use k = 2.5 in our comparison below.
In other words, the above estimation of the energy holds for columns with aspect
ratios a > 2.5 only.

We observe in figure 17 that over the range of aspect ratios studied, the numerical
simulations have more vertical kinetic energy than our simple prediction (6.2). Equa-
tion (6.2) ignores any vertical motion below y = kR0 and any motion after the free fall
time Tf . Figure 17 suggests that at higher aspect ratios than those studied, our simple
prediction may overestimate the mean vertical kinetic energy, which may be due to the
grains not being in free-fall at height above y = kR0. The results from the numerical
simulations can be fitted empirically to

〈Eky
〉

E0

� 0.1185(1 − a−0.022). (6.3)

The coefficient of restitution ρy = 〈Eky
〉/E0, characterizing the transfer of initial

potential energy into vertical motion, is given by ρy = 0.1185(1 − a−0.022), and is an
increasing function of a. For a → ∞, ρy → 0.1185, meaning all the potential energy
is converted into vertical motion following an ideal free fall. For intermediate values
of a, potential energy conversion into vertical kinetic energy becomes more efficient
with a. Similar behaviour in the dynamics of the sideways flow is discussed in the
next section.

The mean horizontal kinetic energy 〈Ekx
〉, normalized by E0, is plotted in figure 18

as a function of a. We observe
〈Ekx

〉
E0

� 0.16, (6.4)

for a � 2.5, which leads to a constant coefficient of restitution ρx = 〈Ekx
〉/E0 = 0.16

characterizing the transfer of initial potential energy into horizontal motion in this
range of aspect ratios. In other words, in spite of the complexity of the process taking
place at the bottom of the column, the energy available for the horizontal motion is
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Figure 18. Horizontal kinetic energy 〈Ekx
〉 averaged over the total duration of the collapse

T∞ and normalized by E0, as a function of the initial aspect ratio a.

simply proportional to the initial potential energy. Hence we can no longer suspect
the dissipation process at the bottom of the column to be at the origin of the failure
of the simple friction model described by equation (3.2). We have seen in § 3 that the
scaling laws imply that the relation E0 = µem0gR∞ is not satisfied. Since 〈Ekx

〉 = ρxE0,
we cannot have 〈Ekx

〉 =µem0gR∞ either. This would indeed lead to R∞ = 0.16H0/µe,
which is not observed. We may thus suppose that the assumption of a basal friction
controlling the energy dissipation in the sideways flow is wrong. This question is
tackled in the next subsection.

On computing the maximum kinetic energies in the vertical and horizontal
directions during the collapse, the evolution of these two quantities as a function
of a is found to be very similar to the evolution of the corresponding mean quantities
in figures 17 and 18. The maximum values are about three times the mean values,
as could be anticipated from the time evolution of Eky

and Ekx
shown in figure 16.

Characterizing the ability of the columns to convert vertical kinetic energy into
horizontal kinetic energy by the ratio ρx/ρy , we obtain a decreasing function of
the aspect ratio, suggesting the existence of a transient regime in the dynamics of
spreading.

6.3. Basal friction

The basal friction is the dissipation mechanism most often postulated for dense flows
of granular media, and has proven to be a reasonable description (Dade & Huppert
1998; Pouliquen 1999; Pouliquen & Forterre 2002). It implies the definition of an effec-
tive coefficient of friction µe, which is an average phenomenological representation
of the more complex processes taking place at smaller scales through collisions and
contact friction. In the case of the collapse of granular columns, the unsteady and
non-uniform dynamics of the spreading makes any attempt to relate the value of
the coefficient of friction to the properties of the flow difficult and uncertain. Hence,
we define the effective coefficient of friction simply as the relationship between
the energy dissipated and the distance run by the mass considered. We thus compare
the energy made available for the flow with the work done by the mass of grains
moving over the distance they eventually run. To do so, we define two vertical sections
S situated at −R0 and R0, as shown in figure 19. Integrating over the total duration
of the collapse T∞, we compute the energy ES crossing the sections S, and thus
taking part in the flow, and the mass of grains mS going through S. The energy ES
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mS

ES
RS

Figure 19. During the collapse, the energy ES and the mass of grains mS crossing the
sections situated at −R0 and R0 are evaluated. The centre of mass of the sideways flow is
at RS .

is computed from both potential and kinetic energies of the grains. In the case of a
simple effective friction process in the sideways flow, we should observe, independently
of the dynamics occurring within the interval [−R0, R0],

ES = µemSg(RS − R0),

where RS is the position of the centre of mass of the mass mS of grains in their final
position, and µe is constant and independent of a.

The energy ES normalized by the work mSgR0 of the moving mass mS over a
distance R0 is plotted as a function of the non-dimensional flow distance (RS −R0)/R0

in figure 20(a) for all the collapse experiments. We obtain a clear linear dependence
establishing that energy dissipation is very well approximated by basal friction. The
value of the effective coefficient of friction µe is given by the slope of the linear
relation and is found to be µe � 0.47. If we assume that all the grains travel the final
runout distance R∞ − R0, we again obtain a linear dependence, as seen in figure 20(b),
but with a much smaller effective coefficient of friction µe � 0.16 expressing the
maximum mobility of the flow. In all cases, the following relation is satisfied:

ES = µemSg(R∞ − R0). (6.5)

In figure 21(a), the plot of ES/E0 as a function of a shows that as soon as a � 3,
ES/E0 � 0.44. As could be inferred from the evolution of the mean horizontal energy
(previous section), the energy available to the flow is simply proportional to the initial
potential energy. The relation (6.5) can be rewritten

0.44E0 � µemSg(R∞ − R0), (6.6)

or equivalently,

0.44m0gH0 � µemSg(R∞ − R0). (6.7)

Finally, this leads to the following expression:

(R∞ − R0)

R0

∝ a
m0

mS

, a � 3.

This relation suggests that the disagreement between the scalings observed experi-
mentally and the simple friction model (3.2) might rest in the definition of the mass
of grains flowing sideways.

The normalized mass of grains crossing the section S and taking part in the side-
ways flow mS/m0 is plotted in figure 21(b) as a function of a. There exists a function
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f of the aspect ratio such that

mS

m0

� 1 − f (a), a � 3, (6.8)

with f (a) → 0 when a → ∞. No argument for the empirical fit f (a) = 4.8/(a + 6) is
proposed; the main feature is that it captures a major aspect of the flow pheno-
menology, the ejection of grains sideways. For small values of a, a small fraction of
grains flows sideways, and most of the mass remains trapped in the interval [−R0, R0]
at the bottom of the initial column. In this range of aspect ratios, the fit (6.8) does
not hold. However the fraction of grains flowing increases with a. When a becomes
large, this fraction tends towards 1, as can be seen in figure 13 for a =70. The increase
of the proportion of mass taking part in the sideways flow might be related to the
increase of mean vertical kinetic energy relatively to the initial energy. The increase
of mass flowing sideways causes the friction dissipation process to be more efficient:
as a increases, the same fraction of initial potential energy E0 is driving more mass
against friction. This additional dissipation may explain why an exponent lower than
1 appears in the scaling law.

This progressive increase of the mass flowing, bounded above by the initial mass
m0, also suggests that the dynamics of the collapse, in the range of a experimentally
investigated, is transitional.

7. New scalings for a transient regime
In the range of aspect ratios a investigated in the present work, as well as in

previous experimental work (Lube et al. 2004; Lajeunesse et al. 2004; Balmforth &
Kerswell 2005), the collapses of the columns mainly differ in the mass of grains
ejected sideways. The larger the initial aspect ratio a, the greater the proportion of
grains ejected. Because of this difference, the propagating flows do not involve the
same proportion of the initial mass of grains. For increasing values of a, the increase
of mass will cause the work done by the flow to be more efficient, thus affecting the
runout distance. However, the mass of grains flowing tends towards the initial mass
m0 when a increases, so we anticipate the dependence of the dissipation process on
a ultimately to vanish. In this limit, the amount of energy dissipated by the flow
would only depend on the runout distance. The dependence of the proportion of
mass flowing sideways mS/m0 shown in figure 21(b) reflects this behaviour with an
asymptotic evolution towards a new regime. On the basis of our observations of the
phenomenology of the sideways flow, we thus suggest that there exists a function
f (a), satisfying f (a) → 0 when a → ∞, such as that

R∞ − R0

R0

∝ a

(1 − f (a))
. (7.1)

We present in figure 22 the variation of (R∞ − R0)/R0 with a, the power-law approxi-
mation 3.25a0.7, and the empirical fit a/(1 − f (a)), where f (a) = 4.8/(a +6) describes
the mass ejection. We observe that in the range of aspect ratios investigated, the last
choice is as acceptable as a power-law dependence.

The form of the function f (a) will not be discussed at this stage. Basically, it
represents the additional dissipation entailed in the increase of the proportion of
mass flowing, while the proportion of energy available for the flow is constant, at
least for a � 3 in our simulations. The choice of an approximation of the form
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Figure 22. Final normalized runout distance (R∞ − R0)/R0 as a function of a. Two different
approximations are plotted: the power-law fit in the dashed line, and the function a/(1 − f (a))
in dotted line.

a/(1 − f (a)) for the runout distance has two implications:
(a) for large a, the runout distance should eventually increase like the height of the

column, as expected by simple friction dynamics;
(b) it suggests that the power-law dependence might be fortuitous.
In the absence of a comprehensive model explaining either one or the other

approximation, the proposition discussed here remains purely speculative. Moreover,
subtle transitions in the behaviour of the columns for very large aspect ratios might
occur which are difficult to predict. However, it matches the numerical results well,
and provides a qualitative explanation for the nonlinear behaviour of the runout
distance with a. Finally, it suggests that the key aspect of the collapse problem lies in
the dynamics of ejection of the mass from the initial column itself, rather than in the
characteristics of the sideways flow.

8. Summary and conclusion
We have numerically investigated the collapse and the spreading of two-dimensional

columns of grains onto a horizontal plane using the Contact Dynamics method. This
approach allows a detailed analysis of the dynamics of the collapse taking into account
the energy and trajectory of the individual grains. Our results are generally in good
agreement with previous experimental work carried out in quasi-two-dimensional
configurations (Lube et al. 2005; Balmforth & Kerswell 2005). The collapse is first
described in terms of the shape of the final deposit, and more specifically in terms
of runout distance. A power-law dependence of the normalized runout distance on
the initial aspect ratio of the columns is found for high aspect ratios, and a linear
dependence for low aspect ratios. These scalings, experimentally observed by previous
authors, are incompatible with a simple friction model of the collapse dynamics. We
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show that the collapse is driven by a free fall of the column for sufficiently large aspect
ratios. The existence, or absence, of free fall dynamics can explain the existence of
two different scaling laws for the runout distance depending on the aspect ratio. The
propagation of the front involves a constant velocity phase, followed by a deceleration
phase which contributes significantly to the runout distance. An analysis of the mean
kinetic energy of the grains shows that the dissipation occurring at the bottom of the
column can be simply described by a constant coefficient of restitution. In particular,
the energy avalaible for the sideways flow is simply proportional to the initial potential
energy. A detailed analysis of the energy dissipated in the sideways flow and the work
of the flowing mass clearly establishes that a constant basal friction is a good approx-
imation of the dissipation process. Finally, we point to the dynamics of mass ejected
sideways during the column collapse as playing a dominant role in the spreading
dynamics, and as being responsible for the nonlinear behaviour of the normalized
runout distance. This allows us to suggest that the scaling laws previously discussed for
the runout distance are fortuitous, and should no longer apply when the aspect ratio
increases. A new empirical fit is proposed, which is compatible with a friction model.

This conclusion has the following implications.
(a) Mass ejected sideways is a mechanism strongly dependent on the geometry

of the collapse. In particular, we expect its effects to be more important in a two-
dimensional configuration than in an axisymmetric collapse. This might be the origin
of the difference is the scaling laws for the runout distance observed between two-
dimensional (or quasi-two-dimensional) and axisymmetric configurations. In the limit
of high aspect ratios however, the mass ejected tends towards the totality of the
initial mass. In that limit, differences should no longer be observed between the two-
dimensional and the axisymmetric configuration. In any case, our results suggest that
an analytical expression for the runout distance should account for the process of the
ejection of grains at the bottom of the collapsing column.

(b) The runout distance appears to be strongly dependent on the fall dynamics and
not only on the effective flow properties, namely effective basal friction . Although high
aspect ratios are difficult to find in nature, many rock falls or slope destabilizations
involve a strong acceleration (and possibly free fall), which is a key aspect of the
material ejection. From a geophysical perspective, this suggests that the mobility of a
natural flow, usually defined as the ratio of the runout distance to the initial height
of the material, is related to the early dynamics of the mass release as well as to the
flowing properties of the material.

(c) Since the sideways flow undergoes a simple basal friction dissipation process,
its modelling using shallow-water approaches is possible, but not straightforward. A
difficulty lies in the description of the initial conditions represented by the vertical
column collapse, which intrinsically violates the shallow-water assumptions. The issue
is to achieve a correct description of the mass flux by limiting the energy released
by the fall of the column. The column collapse, until now correctly reproduced only
for low aspect ratios (Mangeney-Castelneau et al. 2004; Kerswell 2005), may also be
recovered for large aspect ratios, provided the energy dissipation at the base of the
column is correctly accounted for (Larrieu, Staron & Hinch 2006).

The influence of the material properties (inter-grain friction µ and restitution at
collision ρ) on the overall dynamics of the collapse and the spreading will be the
subject of further work.
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