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Preavalanche Instabilities in a Granular Pile
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We investigate numerically the transition between static equilibrium and dynamic surface flow of a
2D cohesionless granular system driven by a continuous gravity loading. This transition is characterized
by intermittent local dynamic rearrangements and can be described by an order parameter defined as
the density of critical contacts, i.e., contacts where the friction is fully mobilized. Analysis of the spatial
correlations of critical contacts shows the occurrence of ‘‘fluidized’’ clusters which exhibit a power-law
divergence in size at the approach of the stability limit. The results are compatible with recent models
that describe the granular system during the static/dynamic transition as a multiphase system.
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� � 0:5 and collisions are perfectly inelastic. contacts and the total number of contacts in V at slope
Avalanches and debris flows are of special interest both
for industrial and natural processes. Although many ad-
vances have been made in the physical understanding of
granular flow both from a microscopic and a continuum
point of view (see, for example, [1–6]), the mechanisms
leading to the transition of a granular material from a
static equilibrium to a dynamic state are still unclear, and
difficult to analyze experimentally. A recent hydrody-
namic model based on phase transition theory describes
the granular material as a two-phase material with a
‘‘solid’’ (static) and a ‘‘liquid’’ (flowing) phase [7]. This
transition, also advocated in others conditions [8,9], is
important for the understanding of avalanche instability
in the context of risk assessment.

The purpose of this paper is to investigate numerically
this static to dynamic transition in a minimal model
configuration, e.g., a 2D cohesionless granular medium
driven by continuously loading body force, here a con-
tinuous tilt under gravity. We find that the evolution is
chacterized by intermittent local instabilities and can be
described by the fraction of contacts where friction force
is completely mobilized. A more detailed description
involves ‘‘fluidized’’ areas which percolate when the sys-
tem reaches the stability limit. These results would be in
favor of a description in terms of a multiphase system
undergoing a phase transition.

The contact friction is described by the classical
Coulomb’s law. Relative slip between two particles in
contact can occur only when the friction force is fully
activitated, i.e., ft � ��fn, where ft and fn are, respec-
tively, the tangential and normal forces at the contact and
� is the contact friction coefficient. This defines the
Coulomb threshold. Otherwise, no slip can occur and
ft 2 ���fn;�fn�. The numerical simulations were per-
formed using the contact dynamics method [10,11], based
on a fully implicit resolution of the contact forces. This
allows for an accurate determination of the ratio ft=fn
independently of any numerical regularization parameter.
In all the simulations, the contact friction coefficient is
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The initial configuration of the pile is generated
by random deposition of Np � 4000 disks in a rectangu-
lar box; the disks have a uniform distribution of diame-
ters within the range �Dmin; Dmax�. We used the ratio
Dmax=Dmin � 1:5, but we checked that for a polydisper-
sity as large as Dmax=Dmin � 10 the results remain essen-
tially unchanged. The granular samples prepared by
random deposition have a rectangular shape with a nearly
flat surface, a thickness of 30D, and a width of 120D,
where D is the mean disk diameter. The initial coordina-
tion number, i.e., the mean number of contacts of a
particle, is z ’ 3:6. It shows only weak fluctuations (up
to 5%) in the course of tilting. The results presented below
were obtained from 15 independent runs in which
the random processing of grain sizes is the only source
of noise.

The granular bed is slowly tilted with a constant rota-
tion rate (0:001� per time step). The slope increases from
� � 0� to the maximum angle of repose �c ’ 20� at
which a surface avalanche occurs. Within the picture of
ideal Coulomb’s material, �c is related to the internal
coefficient of friction of the pile �eff through the relation
�eff � tan	�c
 ’ 0:35 [12]. However, the evolution of the
pile towards �c is not monotonous. Indeed, we observe the
occurrence of local instabilities owing to the mobiliza-
tion of friction between particles. Initially ft at the con-
tacts is only partially activated, namely jftj<�fn. But
upon tilting, a number of contacts reach the Coulomb
threshold, i.e., jftj � �fn. These contacts cannot sustain
further shear force increment and can lead eventually to a
slip instability or the disappearance of the contact. We
call them critical contacts. We describe the evolution of
the pile in terms of the fraction � of critical contacts over
a volume V and as a function of �:

�	�; V
 �
�
Nc

N

�
V
; (1)

where Nc and N are, respectively, the number of critical
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angle �. Since the density of contacts remains almost
constant due to close-packing (N / V), � also represents
the density of critical contacts. It characterizes the plastic
state of the pile.

The evolution of �	�; Vpile
, where Vpile is the volume of
the whole packings, is reproducible from run to run even
though there are rapid fluctuations of � within the system
[see Fig. 1(a)]. When averaging the evolution of � over 15
independant realizations [inset graph in Fig. 1(a)], we
observe a regular increase of �	�
 from an intial value
� � 0 to a maximum value � ’ 0:08 at the maximum
angle of repose �c. This indicates that a partial plastifi-
cation occurs well before the stability limit of the pile.
Such a transition is, however, characterized by rapid
fluctuations of �. They are the signature of intermittent
instabilities during which loss of critical contacts occurs
through local dynamical rearrangements, as can be seen
in the fluctuations of the mean kinetic energy in Fig. 1(b).
This suggests that even though the density of critical
contacts increases in the mean during the mobilization
stage of the system, the population of critical contacts is
renewed by these intermittent instabilities and a single
critical contact is only of short lifetime due to its meta-
stable state. During the intermittent evolution, the system
can explore extreme � states as seen in Fig. 1(a). When
averaging over small � size windows the extremal states at
each � and for all independant realizations, their evolu-
tion exhibits a well-defined limit envelope [see Fig. 1(c)].
It shows a roughly exponential convergence towards an
asymptotic limit characterized by a critical state �c ’
0:08, corresponding to the stability limit. The granular
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FIG. 1. (a) Density � of critical contacts in the pile as a
function of the tilt angle � for a single run (main curve) and
averaged over 15 independant runs (inset curve); (b) Mean
translational kinetic energy Ek (kg�m2 � s�2) of particles as a
function of � for the same single run; (c) mean envelope of the
maximum values of � evaluated over the 15 runs.
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system can therefore be described in terms of an order
parameter � � �=�c which varies from zero to one and
characterizes the partially fluidized transition.

Owing to the intrinsic geometrical and stress fluctua-
tions of each individual realization, each pile can explore
rare extremal states beyond the critical limit �c in the
course of its evolution. These states are metastable and
followed eventually by local dynamical rearrangements,
the size of which can be characterized by the fraction
�N=N of contacts lost in that event. When analyzing the
size of the local rearrangements as a function of the
�-state explored by the system prior to the event (see
Fig. 2), we found that the pile evolution is characterized
by frequent weak rearrangements, less than 1%, that
correspond to � states of the system below �c, and rare
and strong rearrangements corresponding to extremal
states � > �c. The intermittent rearrangements during
the mobilization occur both in the bulk and close to the
free surface.

The evolution of � may be also interpreted in terms of
the mean separation distance �	�
 between two critical
contacts

�	�
 �

������������������
2

z	�
�	�


s
D; (2)

where z	�
 is the coordination number. During the mobi-
lization, � decreases from 1 when � � 0 to �c � 2:5D
when � � �c. For � < �c, i.e., � > �c, the packing under-
goes large-scale instabilities due to spatial correlations
among critical contacts (see Fig. 2).

To investigate the distribution of critical contacts, we
introduce the probability density function (pdf) P	�
 of
finding a local state � in the neighborhood of a contact.
The size of this neighborhood must not be smaller than
the minimum length separating two critical contacts, of
the order of D, nor larger than the typical size of spatial
heterogeneities of � (to be analyzed later). In particular,
we introduce the pdf Pc	�
 at critical contacts and the pdf
Pnc	�
 at noncritical contacts. The distributions Pc and
Pnc time averaged over all the loading phase from � � 0
to �c are displayed in Fig. 3. The range of local states � is
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FIG. 2. Proportion �N=N of contacts lost in the packing
during rearrangements as a function of �.
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FIG. 3. Probability density function (pdf) of local states � in
the neighborhood of critical contacts (filled circles) and non-
critical contacts (opaque circles), for a neighborhood radius
r � 6D.
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FIG. 4. Mean state ��� in the neighborhood of a critical contact
as a function of the size r of the neighborhood (a) in linear
scale for three values of the tilt angle � � 6� (solid line), � �
8� (dashed line), and � � 12� (dotted line); and (b) in loga-
rithmic scale for � � 6� (solid line) shown with a line with a
slope � � �1:5 (dot-dashed line).

FIG. 5. Density of critical contacts in the pile at � ’ 5�

(upper picture) and at � ’ 16� (bottom picture). Areas where
� � �c are in black, whereas the state � � 0 are in white.
Intermediate values of � (� 2 j0; �cj) are represented in gray.
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quite wide for both distributions: Pc has a well-defined
peak at � ’ �c, whereas Pnc is a decreasing function with
a high peak at � � 0. This indicates that critical contacts
tend to appear preferentially in the vicinity of other
critical contacts, and are strongly correlated spatially. It
is worth noting here that the most probable local state is
found to be the critical state �c that characterizes the
whole pile at the stability limit.

We study the spatial correlations by defining the mean
state ��� in a neighborhood of critical contacts as a function
of the neighborhood’s size r and of the inclination angle �
of the pile. In practice, we explore r 2 �1D; 20D�.
Denoting �i the local state in the vicinity of a contact i,
���	�; r
 can be expressed as follows:

���	�; r
 �
1

Nc

X
i2fNcg

�i	�; r
; (3)

where Nc is the number of critical contacts in the pile. The
evolution of ���	�; r
 is displayed in Fig. 4(a) for three
values of �. Regardless of the inclination �, ��� decreases
rapidly as a function of r as long as r & 10D. Beyond this
distance, ��� remains almost constant and equal to the state
of the pile �	�; Vpile
. Such an evolution of ���	�; r
 can be
approximated by [see Fig. 4(b)]:

�	�; r
 �
�
�1	�
�1 A	�
r�	�
� if r � 10D;
�1	�
 if r > 10D;

(4)

where �1	�
 is the state of the pile at �, and A	�
 and �	�

are affine functions of �. The distance L ’ 10D arises
here as the characteristic length of the spatial correlations
between critical contacts.

The spatial correlations can be illustrated when look-
ing at two snapshots of the pile for different values of the
inclination angle � (see Fig. 5). In particular, the system
exhibits clusters of critical contacts where � � �c. These
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clusters can no longer sustain shear load increment and
eventually lead to local rearrangements. They can be
analyzed as ‘‘fluidized’’ zones with � increasing size.

We define rc the mean size of the clusters of critical
contacts characterized by a state � � �c. Equation (4)
yields

rc	�
 �
�

1

A	�


�
�v

�1

� 1

	

1=�	�


; (5)

where �1 is defined as the state of the pile �	�; Vpile

averaged over all the simulations (see inset graph in
Fig. 1). The evolution of rc	�
, displayed in Fig. 6, shows
a slow increase from around 2D to 4D as long as � & 15�.
For larger �, the size increases quickly with a power-law
divergence / 	�c � �
��. That is reminiscent of a perco-
lationlike process. The value � � 15

�
may be related to
204302-3
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FIG. 6. Evolution of the mean size rc of clusters of critical
contacts (see text) as a function of the tilt angle � in linear scale
(main curve) and in logarithmic scale (inset curve), where
�c � 19:96� and the line is drawn with a slope �� ’ 0:5.
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the dynamical angle of repose of the pile, but this would
require further investigation.

The mobilization of the granular pile is related to the
occurrence of ‘‘fluidized’’ clusters of critical contacts.
The size of these clusters increases with �, with a
power-law divergence as � ! �c. This result is in support
of a description of the granular system during mobiliza-
tion as a multiphase system. The transition from a static
equilibrium to a dynamical flow is controlled by the order
parameter � � �=�c, and the stability threshold would
result from a multiphase instability. Detailed analysis of
the phases interaction during transition still requires fur-
ther analysis.

Forces in granular media have been shown to obey a
broad distribution and to define a strong and a weak
contact network. Forces transmitted along the strong
contact network exceed the mean force in the media and
are responsible for the mechanical strength of the me-
dium, with a typical correlation length � ’ 10D [13,14].
By contrast, forces transmitted along the weak contact
network mainly contribute to an average pressure. In an
extended forthcoming paper, we show that critical con-
tacts appear mostly within the weak contact network.
They coincide with areas of lower pressure, screened by
the strong contact network which controls the evolution of
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static stresses. Critical contacts tend to be organized as
‘‘fluidized’’ clusters that eventually destabilize the pile
when their size becomes comparable with the correlation
length of strong forces �. The avalanche instability ap-
pears as a two phase instability triggered by the inter-
action between these correlated clusters and a solid
skeleton made of the strong contact network. The influ-
ence of material parameters such as the coefficient of
friction and the degree of configurational disorder in the
pile are the purpose of further work. The extension of the
problem to three dimensions has to be investigated.
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