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Friction and the oscillatory motion of granular flows
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CNRS—Université Pierre et Marie Curie Paris 6, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

(Received 10 July 2012; published 17 October 2012)

This contribution reports on numerical simulations of two-dimensional granular flows on erodible beds. The
broad aim is to investigate whether simple flows of model granular matter exhibit spontaneous oscillatory motion
in generic flow conditions, and in this case, whether the frictional properties of the contacts between grains may
affect the existence or the characteristics of this oscillatory motion. The analysis of different series of simulations
shows that the flow develops an oscillatory motion with a well-defined frequency which increases like the inverse
of the velocity’s square root. We show that the oscillation is essentially a surface phenomenon. The amplitude of
the oscillation is higher for lower volume fractions and can thus be related to the flow velocity and grains’ friction
properties. The study of the influence of the periodic geometry of the simulation cell shows no significant effect.
These results are discussed in relation to sonic sands.
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I. INTRODUCTION

Granular flows have long been the subject of sustained
interest due to their surprising properties: the existence of an
internal yield stress allowing them both solidlike and fluidlike
behaviors, and more generally their elusive rheology [1–9],
their ability to segregate according to grain size or mass
[10–14], their similarities with glassy systems [15–18], and
their nonlocal properties [19–22], to cite only a few examples
among many. While most of the features listed above have
been the subject of careful laboratory experiments, some
peculiarities of granular systems express themselves best in
nature: This is the case of musical (or sonic) sands, and
most famously, of booming dunes [23–29]. Booming dunes,
when a surface flow is triggered at their flank, can emit
a surprisingly loud sound which has proven a long-lasting
challenge to experimentalist and theoretician alike. In spite
of numerous advances, including experimental investigation,
modeling, and field measurements, the mechanisms at play
in the booming phenomena remain controversial (see the
recent review by Ref. [30] and references therein). However,
converging observations have emerged. It was observed that
the granular surface flow alone can produce the sound, without
the dune being a necessary ingredient. Then, both laboratory
experiments and field measurement show that a minimum
flow velocity is needed for sound to be emitted. Moreover,
sonic sand grains need specific contact properties, ensured in
nature by a mineral coating reproduced in the laboratory by
successive baths in complex salty solutions [28]. Based on
these observations, two questions arise: Can a simple granular
flow spontaneously exhibit oscillatory motion with a well-
defined frequency? If so, how do frictional contact properties
affect the oscillatory dynamics? These two questions are
the subject of the present contribution. While intermittent
motion close to jamming transition was already observed and
discussed in relation to sonic sands [31–33], we place ourselves
in the case of rapid flows, corresponding to the observation of
a minimum velocity threshold for sound emission. Applying
discrete numerical simulation in two dimensions (2D) [34,35],
we simulate model granular flows on erodible beds; we analyze
the dynamics of the simulated flows while varying the grains’
frictional properties over a range difficult to attain in laboratory

experiments. Doing so, we show the existence of a spontaneous
oscillation developing rapidly and exhibiting a well-defined
frequency which increases like the inverse of the velocity’s
square root. The amplitude of the frequency is higher for
lower volume fraction and can thus be related to both flow
velocity and grains’ friction properties. Finally, we investigate
the influence of the spatial periodicity of the simulations on the
above results and observe no significant effect. These results
are discussed in relation to sonic sands.

II. THE CONTACT DYNAMICS SIMULATIONS

The simulations reported in this contribution were per-
formed using the contact dynamics algorithm [34,36]. The
grains are assumed to be perfectly rigid, which translates in a
strict nonoverlap condition at contact. They interact through
a Coulombic friction law, relating the tangential force at each
contact ft to the normal force at the same contact fn through
the following inequality:

|ft | � μfn,

where μ is the coefficient of friction at contact. In the advent
of slip motion, the equality is satisfied: |ft | = μfn. The value
of μ thus controls the amount of energy dissipated by the flow
through frictional contacts. Note that a single coefficient of
friction at contact is introduced: We do not distinguish static
and dynamical friction. In addition, a coefficient of restitution e

sets the amount of energy dissipated in the advent of a collision
and thus controls the amount of energy dissipated by the flow
through collisional contacts. The precise contribution of the
two modes of dissipation (collisional and frictional) within
a given granular flow is not straightforward to estimate, the
multicontact dynamics particular to dense granular packings
being characterized by disorder and complexity [37]. In the
following, however, we will not be interested in the particular
role of the coefficient of restitution e, and we will fix the value
of the latter to e = 0.5 coinciding with dense systems. On the
contrary, our interest focuses on the role of the coefficient
of friction μ on the flow dynamics. Hence, its value was
alternatively set to μ = 0.05 (very small), μ = 0.5 (a typical
value for glass beads is μ = 0.2 [38], while 0.5 < μ < 0.9
for singing sand grains [28]), and μ = 2 (high). Note that
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FIG. 1. (Color online) A 2D periodic flow on erodible bed tilted at
an angle θ simulated by contact dynamics. The height of the flowing
layer is denoted h and the length of the simulation cell is L. The
yellow-red shade of the grains stands for their velocity; the darker
grey shade shows images of the flowing grains through the periodic
boundary condition.

by precluding the use of spring-dashpot models for the
contact law, the contact dynamics algorithm prevents the
introduction of mechanical oscillators in the treatment of
grains interactions, and thereby prevents artefact oscillations
which may occur in the soft-sphere limit [33]. Details on the
numerical method can be found in Refs. [34–36].

The flow configuration investigated is a 2D periodic
flow on an erodible bed tilted at an angle θ (see Fig. 1).
The grains show a slight size dispersity to avoid ordering
effects, too small, however, to induce segregation: We chose
(dmax − dmin)/d = 0.4, where d is the mean grain diameter
(d = 500 μm). The packing is obtained by random rain under
gravity. The flow has a periodicity in the longitudinal (x)
direction; the size L of the simulation cell was set to 45d in the
greater part of the simulations reported here, corresponding to
3967 grains. However, a specific study of the effect of the
value of L on the flow dynamics, and more specifically on
the flow oscillatory motion, was performed and is reported in
Sec. VI.

The erodible bed condition is achieved by trapping grains
between vertical walls at the boundary of the simulation
cell, thus allowing the upper layer only to flow in response
to gravity. The height of the vertical walls is fixed and is
30d; the height of the unconstrained (i.e., free to flow) layer
is h; depending on the volume fraction (i.e., depending on
the velocity), h varies between 40d and 49d. The vertical
position of the grains z is counted positively following the
upward position; the origin is set where the vertical walls
stop (i.e., at the bottom of the unconstrained layer). For each
value of μ, the tilt angle was varied so as to achieve different
flow velocities: θ ranges from 16◦ to 22◦ for μ = 0.05, from
22◦ to 28◦ for μ = 0.5, and from 26◦ to 30◦ for μ = 2. In
every case, stationary regime is reached. The mean charac-
teristics of the flow thus simulated are detailed in the next
section.

 θ=30˚

θ=16˚
θ=22˚

θ=26˚

θ=20˚

θ=28˚

(a)

(b)

bagnold profile

FIG. 2. (Color online) (a) Mean velocity of the grains u (nor-
malized by

√
gd) as a function of time t (normalized by

√
d/g) for

different values of the coefficient of friction at contact μ = 0.05, μ =
0.5, and μ = 2.0, and for different tilt angles θ . (b) Corresponding
velocity profiles time-averaged over the stationary regime; the dotted
line shows a Bagnold profile [see Eq. (1)]. Inset: Velocity profiles
in semi-log scale; the dotted line shows an exponential decay with a
typical length λ = 2.5d .

III. MEAN VELOCITY AND VELOCITY PROFILE

Figure 2(a) shows the time evolution of the mean grain
longitudinal (following x) velocity u(t) (computed over the
total number of grains in the simulation) for the three values
of the coefficient of friction at contact μ (namely, 0.05, 0.5,
and 2) and for different values of the tilt angle θ . In each
case, stationary regime is reached after a transient regime; we
do not study the latter but focus on the stationary regime in
the following. For the corresponding runs, Fig. 2(b) shows
the velocity profiles time-averaged over the duration of the
stationary regime. We observe well-developed surface flows
with a velocity vanishing at the depth corresponding to the
upper end of the vertical walls at the boundaries of the
simulation cell. We observe that the velocity profiles can
be reasonably approximated by a Bagnold scaling [39,40][see
Fig. 2(b)]:

u(z) ∝
√

g

d
[h3/2 − (h − z)3/2], (1)

where h is the thickness of the flowing layer and z is the
vertical position of the grains (counted positively in the upward
direction). The Bagnold-like shape of u(z) is in contradiction
with experimental and numerical observation of linear profiles
for granular flows on erodible beds [41–45]. Yet the semi-log
plot of the velocity profiles shows the existence of creep
motion with an exponential decay over a typical length
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λ = 2.5d, in agreement with experimental findings [41,42]
[Fig. 2(b), inset]: We conclude that the erodible bed condition
implemented in the numerical simulations reproduces the
dissipative properties of a real erodible bed configuration.
However, an important difference exists: In real erodible bed
conditions, the height of the flowing layer is selected by the
flow itself, while in our numerical simulations, the height of
the flowing layer is set by the height of the sidewalls. We can
show that in our numerical setup, the shape of the velocity
profile is strongly dependent on the relative heights of the
flowing layer and the erodible bed. This aspect, although of
interest in connection with granular flow rheology, is beyond
the scope of the present paper. We will assume that the erodible
bed implemented in the simulations, by allowing creep motion
to occur, partly reproduces a real erodible flow configuration.

Averaging over the duration of the stationary regime, and
considering only the grains in the flowing layer (i.e., grains
with a positive z), we compute the mean flow velocity U .
For the different values of the coefficient of friction at contact
μ, U is reported as a function of the slope θ in Fig. 3. The
numerical flows obey the chute flow phenomenology observed
in Ref. [1]:

tan θ = tan θ1 + (tan θ2 − tan θ1) exp

(
−βh

�d

√
gh

U

)
, (2)

where tan θ identifies with the effective frictional properties
of the flow, θ1 and θ2 are typical angles dependent on the
frictional properties of the grains, � is a nondimensional length
scale, and β = 0.136 (from Ref. [1]). This approximation is
reported in Fig. 3 for all values of the friction coefficient at
contact μ. Each value of μ induces different effective frictional
properties of the macroscopic flow. Hence we find θ1 = 14.0◦
and θ2 = 28.7◦ for μ = 0.05, θ1 = 18.8◦ and θ2 = 34.4◦ for
μ = 0.5, and θ1 = 19.5◦ and θ2 = 35.2◦ for μ = 2.0; we find
� = 2.30, 2.26, and 2.29, respectively. The numerical values
corresponding to μ = 0.5 are quantitatively consistent with
the experimental observation for glass beads [1].

Alternatively, we can show that the flow satisfies the μ(I )
dependence by defining I = dU/(

√
gh3/2) [3,5]:

tan θ = tan θ1 + tan θ2 − tan θ1

I0/I + 1
. (3)

FIG. 3. (Color online) Mean flow velocity U of the grains in the
flowing layer averaged over the duration of the stationary regime, as
a function of θ for μ = 0.05, μ = 0.5, and μ = 2. The dotted lines
shows the experimental relation (2) from Ref. [1].

The best fist gives I0 = 0.33, and θ1 = 11.03◦ and θ2 = 33.02◦
for μ = 0.05, θ1 = 15.38◦ and θ2 = 38.83◦ for μ = 0.5, and
θ1 = 16.17◦ and θ2 = 39.35◦ for μ = 2.0.

The analysis of the mean velocity and velocity profiles
of the numerical flows thus shows that the latter behaves
accordingly to experimental evidence [1,3].

IV. OSCILLATORY MOTION:
FREQUENCY AND AMPLITUDE

The mean normal velocity V of the grains (i.e., in the z

direction), averaged over time, is expectedly zero, or the flow
would expand infinitely and eventually be turned into a dilute
gas. However, the instantaneous normal velocity v, plotted
as a function of time, shows clear rapid oscillations around
zero, revealing an oscillatory motion implying successions of
dilation phase and compaction phase. Figure 4(a) shows, as
an example, the time variation of the instantaneous normal
velocity of the grains v(t) over a short time interval for
μ = 2.0 and θ = 30◦. To establish whether this oscillatory
dynamics involves a characteristic frequency, we compute the
Fourier transform of v(t) over the duration of the stationary
regime [Fig. 4(b)]: A well-defined peak frequency emerges;
we denote this peak frequency f in the following. The inset
in Fig. 4(b) shows the Fourier transform of the instantaneous
normal velocity at different depths in the flowing layer. We
observe that the amplitude of the peak frequency rapidly
decreases and eventually vanishes as we go deeper in the flow,
whereby we conclude that the oscillatory motion is a surface
phenomenon rather than a bulk one.

(a)

(b)

1100
-0.4

FIG. 4. (Color online) (a) Instantaneous normal velocity v (nor-
malized by

√
gd) as a function of time t (normalized by

√
d/g);

(b) Fourier transform of v(t) over the duration of the stationary
regime showing a peak frequency f . Inset: Fourier transform of the
instantaneous normal velocity at different depth in the flow.
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10
20

FIG. 5. (Color online) Peak frequency f (Hz) of the Fourier
transform of the instantaneous normal flow velocity v(t) as a function
of (

√
gd

U
× g

d
)1/2 (Hz). Inset: Peak frequency f (Hz) of the Fourier

transform of the instantaneous normal flow velocity v(t) as a function
of the shear rate U/h (Hz).

For all simulations, we measure the peak frequency f

characterizing the oscillation over the stationary regime (error
bars are evaluated systematically based on the width of the
frequency peak). We observe values ranging from 10 to 40 Hz,
that is significantly smaller than the typical frequency attached
to the grain size

√
g/d = 140 Hz. The values observed for f

are also below the values measured for sonic sands, typically
of 70 to 110 Hz [29]. A reasonable correlation suggests
that the value of f increases like (

√
gd

U
× g

d
)1/2, although the

range of values explored does not allow for a discussion on
the shape of the dependence (Fig. 5). Hence, we will not
address the possible origin of this correlation in the following.
Interestingly, the frequency characterizing the oscillation does
not identify with the shear rate: Figure 5 shows an inverse
correlation between f and U/h.

The trend relating frequency and velocity displayed in Fig. 5
is not dependent on the value of the coefficient of friction μ:
The latter seems to be playing no particular role in the value
of f . However, oscillatory motion is not characterized only by
the peak frequency f , but also by the amplitude A of the peak.
Figure 6(a) shows the amplitude A (×104) as a function of
the flow mean longitudinal velocity U : We observe a positive
correlation, with larger values of μ inducing larger amplitudes.
High velocities and high friction at contact thus induce larger
oscillations. This double influence can be summed up when
plotting A as a function of the flow mean volume fraction φ =
volume of grains/total volume (computed in the flowing layer
over the duration of the stationary regime) [Fig. 6(b)]: The
data collapse and show that larger amplitudes coincide with
dilute flows, while denser flows induce a smaller amplitude.

V. ON THE ROLE OF FRICTION

The volume fraction φ of a granular flow is dependent on
the dynamics: Rapid flows coincide with dilute states, i.e.,
smaller volume fractions [3,5,21]. The relation between the
two involves the frictional properties of the material: As shown
in Fig. 7 (inset), plotting φ as a function of U reveals three
distinct series of points coinciding with each value of μ. This

(a)

(b)

FIG. 6. (Color online) (a) Amplitude A (×104) of the frequency
peak as a function of the flow mean longitudinal velocity U

(normalized
√

gd). (b) Amplitude A (×104) of the frequency peak as
a function of the flow volume fraction φ.

behavior can be described by the following dependence:

φ = φc(μ) − k
U√
gd

, (4)

where k = 0.00315 and φc is a decreasing function of μ: φc =
0.86 for μ = 0.05, φc = 0.826 for μ = 0.5, and φc = 0.800
for μ = 2 (see Fig. 7). In other words, for a given velocity U ,
higher contact friction implies smaller volume fraction. The
dependence of φ on the dynamics was already reported in
Refs. [3,5] in terms of the inertial number I = dU/(

√
gh3/2):

8 12 16 20 24 28 32

0.04

0.06

0.08

0.10

0.12

µ = 0.05
µ = 0.5 
µ = 2.0

FIG. 7. (Color online) Inset: Flow mean volume fraction φ as a
function of the grains’ mean velocity U (normalized

√
gd) for the

different values of the coefficient of friction at contact μ. Main graph:
φ − φc as a function of U (normalized

√
gd), where φc is a constant

whose value depends on μ [see Eq. (4)]; the dotted line shows a linear
fit with slope 0.00315.
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φ = φM + (φm − φM )I , where φM and φm are extremal values
of the volume fraction.

Relation (4) thus gives a possible explanation for the role
of contact friction in the oscillatory motion of granular flows:
Higher friction at contact between the grains is responsible
for smaller volume fraction, thus leading to larger amplitude
of grains vertical motion. Translated in a natural case, larger
friction (as induced by the mineral coating observed at the
surface of sonic sands) may lead to a larger amplitude of the
oscillatory motion, and possibly due to that, to the emission
of an audible sound. In the same way, relation (4) renders the
fact that larger velocities induce more dilute flows, thus larger
amplitude of grains vertical motion, which may explain why
a minimum flow velocity is necessary for sonic sands to emit
sound [24,25,27,30].

VI. INFLUENCE OF THE SIZE OF
THE SIMULATION CELL

The existence of a spatial periodicity in the numerical
systems studied here may be suspected to affect the time
periodicity characterizing the flow dynamics. The length of
the simulation cell being L, and the mean flow longitudinal
velocity being U , the obvious time scale related to the geo-
metrical periodicity of the system is L/U . If the geometrical
periodicity was to affect the time periodicity, then we would
expect the latter to exhibit a frequency scaling like U/L.
This is very different from the frequency f emerging from
the analysis of the oscillatory motion of the numerical flows
and the associated dependence on the velocity U (Fig. 5): f

increases with (
√

gd

U
× g

d
)1/2. Hence, it seems unlikely that the

periodicity of the simulation cell has a significant influence
on the oscillatory motion observed. This, however, needs
clarification.

Therefore, we perform series of simulations where L is
varied: L = 12d, 22d, 32d, 52d, 72d, 102d, and L = 152d.
The coefficient of friction is fixed: μ = 0.5, as well as the
slope θ = 22◦. As previously, we analyze the mean velocity
of the flow and the oscillatory motion visible in the time
fluctuations of the normal velocity v(t). The peak frequency f

is reported as a function of (
√

gd

U
× g

d
)1/2 in Fig. 8(a): Although

scattering occurs, the value of L is not significantly affecting
the dependence already observed in Fig. 5.

Yet, the size of the simulation cell L might play a role in the
amplitude of the oscillatory motion, and possibly influence its
very existence. We denote Amean the amplitude of the Fourier
transform of v(t) at high frequencies (i.e., 100 Hz � f ). The
value of Amean is reported is Fig. 8(b) as a function of L: We
observe indeed that smaller systems favor larger oscillations.
However, the amplitude saturates toward a minimum value for
larger systems, showing that the oscillation is not the result of
the system size. Accordingly, we expect the amplitude A of
the peak frequency f to decrease and saturate for larger values
of L. This is indeed what is observed [Fig. 8(b)].

There is, however, an aspect in the present analysis that
prevents us from interpreting further the amplitude A of the
oscillation: the spatial localization of the latter. Indeed, so far
we have processed the normal velocity v(t) averaged over the
whole flowing layer. If the oscillation is localized in space,

≤≤

4

(a)

(b)

FIG. 8. (a) Peak frequency f of the Fourier transform of the
instantaneous normal flow velocity v(t) as a function of (

√
gd

U
× g

d
)1/2.

(b) Amplitude Amean (×104) of the Fourier transform of the normal
velocity v(t) at high frequencies and the amplitude A (×104) of the
peak frequency f .

part of the information is “watered down” by including the
grains dynamics of the whole flow. This is all the more likely
to happen that the system is large. It is thus probable that
Fig. 8(b) shows not only the effect of the periodicity, but also
the information loss due to averaging over the system size.
We can conclude nevertheless that the system size L plays no
crucial role in the results discussed above.

VII. CONCLUSION

This contribution reports on numerical simulations of 2D
granular flows on erodible beds. The broad aim of this work
is to investigate (i) whether simple flows of model granular
matter exhibits spontaneous oscillatory motion in generic
flow conditions, and in this case, (ii) whether the frictional
properties of the contacts between grains may affect the
existence or the characteristics of this oscillatory motion.
The analysis of different series of simulations show that
the flow develops an oscillatory motion with a well-defined
frequency which increases like the inverse of the velocity’s
square root. We show that the oscillation is essentially a surface
phenomena. The amplitude of the oscillation is higher for
lower volume fractions. It can thus be related to the flow
velocity, higher velocities favoring lower volume fraction.
For the same reason, it is also dependent on grains friction
properties: Indeed, large contact friction is found to induce
lower volume fraction, and thus larger amplitude. The study
of the influence of the periodic geometry of the simulation cell
shows no significant effect.
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Although one should be careful while drawing analogy
between simple numerical models and nature, it is inter-
esting to discuss these results in relation to sonic sands.
Indeed, this work suggests that surface oscillation is likely
to develop during the flow of granular matter, and that
its amplitude is dependent on both velocity and grain

properties, in agreement with observation. How this oscillation
develops into a loud audible sound is beyond the reach
of simple 2D discrete simulations; however, they provide
an interesting insight into basic mechanisms that may be
relevant to the complex question of how sand may produce
sound.
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