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Using a discrete simulation method, we investigate numerically two-dimensional
bi-disperse chute flows formed of a layer of larger grains overlaid by a layer of
smaller grains, and analyze their evolution for different slopes and different volume
fraction of large beads. As size segregation occurs, the vertical position of the centre
of mass of the large beads is shown to increase exponentially with time with a typical
time scale decreasing with their volume fraction. A simple model balancing lift and
drag forces acting on large particles recovers this dynamics, successfully predicts the
typical time scale of segregation, and permits to relate this typical time scale to the
flow dynamics. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867253]

I. INTRODUCTION

Size segregation in granular systems is a frequent phenomenon easily observed once the dis-
tribution of grains sizes is sufficiently large, and the system undergoes a sufficiently rapid, or
long-lasting, shear motion. In this situation, larger grains raise to the surface while smaller ones
sink to the bottom as a result of “kinematic sieving,” leading to heterogeneous patterns and spa-
tial ordering.1, 2 Its occurrence is relevant to a wide variety of contexts. In industrial applications
handling raw material in the shape of grains, or pharmaceutical processes handling powders with
different properties, segregation forms a serious obstacle to efficient mixing, and a long-lasting issue
for engineers. In geological processes, where the sorting of grains by size in deposits—river beds,3, 4

volcanic flows,5, 6 debris, and rock avalanches for instance7—contains the signature of the systems
dynamics, the mechanisms dominating segregation are a key element towards better understanding
of the geophysical processes. An improved physical characterization of the physics of grain size
segregation is thus a highly desirable scientific objective.

However, in spite of its generic interest, and the facility with which the phenomenon can be
observed, this characterization remains lacking due to many difficulties. First, simple mono-disperse
granular beds are already complex systems: the puzzles they have consistently opposed to scientific
investigation are necessarily present in the case of bi- or poly-disperse systems. This includes the
difficulty of accessing dynamical quantities (stresses and velocities) experimentally. Precise and
fundamental insight was gained from the study of a single intruder in a mono-disperse packing;8

however, generic segregation is a collective phenomena. The relevance of a single intruder’s behavior
to many large grains flowing in a matrix of smaller ones is not entirely clear. Finally, segregation is
by essence a transient phenomenon. It starts as a result of shear when large grains are at the bottom,
and stops when they have risen to the top; meanwhile, the local volume fraction of large and small
grains varies in space and time, and the shear rate is likely to vary locally accordingly. Relating the
force allowing large grains to rise to the system’s state and dynamics is thus uneasy.

However, steady progress has been made using a combination of experimental, numerical, and
theoretical approaches.9–17 It was shown for instance that the rheological properties of bi-disperse
flows fall in the same framework as mono-disperse flows, although the actual quantitative effects
of segregation on flow mobility (or frictional properties) was not unambiguously established.18–22

In this respect, it can be noted that the difference between three-dimensional and two-dimensional
dynamics is of fundamental significance, segregation inducing the formation of patterns in the
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system: channelizing, layering, thus adding difficulty to the understanding of the problem.5, 7, 23, 24

With respect to modeling, much progress has been made using shallow-layer approximations for
bi-phasic flows incorporating an effective separating force induced by partial pressures and a viscous
drag force,9, 25 allowing for the recovery of various experimental observations.7, 24, 26 In this context,
an explicit relation between segregation rate, segregation velocity, and the flow dynamics would be
of interest.

In the present study, we are interested in characterizing the rise of the larger beads as a result
of the flow dynamics, and in understanding what controls the efficiency of the mechanism, i.e., the
typical time scale of segregation. To this purpose, discrete numerical simulation is a helpful tool,
first because it allows for perfectly well-controlled “experimental” conditions (contact properties,
flow geometry, flow duration), but mostly because it provides direct knowledge of the state of the
system (velocities, forces, volume fraction).

Simulating two-dimensional bi-disperse chute flows formed of larger and smaller grains, we
analyze their evolution for different slopes and different volume fraction of large grains. As size
segregation occurs, the mean vertical position of the large grains is shown to rise exponentially with
time with a typical time scale decreasing with their volume fraction. A simple model balancing
effective lift and drag forces leads to the recovery of this dynamics, yields successful prediction for
the typical time scale of segregation, and allows for relating the latter to the flow dynamics. The
results are discussed in relation to existing theoretical modeling of the segregation mechanism and
previous experimental studies of the segregation time-scale.9, 11

II. THE NUMERICAL FLOWS

The numerical experiment is in its principle similar to those reported in previous studies:20, 27 a
granular free surface flow over an incline allowing for steady flow regimes involving different grain
sizes. In this contribution, we adopt a perfectly two-dimensional geometry; we consider a granular
layer made of two species of grains of circular shape, on an incline of slope θ , and subjected to
gravity. The contact dynamics algorithm was applied.28 By contrast with discrete element methods
(DEM) methods (used, for instance, in Refs. 20 and 27), the contact dynamics method does not
prescribe an explicit mathematical form for the contact force between the grains, but takes into
account the rigidity of the grains and the existence of a friction threshold through the introduction
of discontinuities for velocities and forces in the mathematical solver. Perfectly rigid grains are thus
assumed. They interact at contact through solid friction: locally, the normal and tangential contact
forces satisfy ft ≤ μfn, where μ is the coefficient of friction at contact. Moreover, a coefficient of
energy restitution e set the amount of energy dissipated in collisions. The numerical values of μ and
e control the effective frictional properties of the flow in a given configuration. They are strictly the
same for all contacts between large and small grains. In the present work, we are not interested in
understanding how they may affect the segregation process, hence, their value was set to μ = 0.5
and e = 0.25, and were not varied. The value e = 0.25 is a low coefficient of restitution and coincides
with a dense packing. Note however that as long as e < 0.8, the dynamics of the flow is marginally
affected, collisions remaining very efficient at dissipating energy. Choosing e → 1 would induce a
bouncing dynamics dominated by binary collisions; this however is not a case we are interested in
at present. Importantly, the value of e does not affect the accuracy of the computation by the contact
dynamics algorithm, which considers non-smooth contact interactions.

Figure 1 shows a typical system. The large beads have a mean diameter dL and the small
beads have a mean diameter dS. To prevent geometrical ordering, likely to happen in 2D for strictly
mono-sized packings, both large and small grains have diameters uniformly distributed around their
mean value: if we denote dmin

L and dmax
L (respectively, dmin

S and dmax
S ) the lower and upper bounds

of the size distribution of large grains (respectively, the size distribution of small grains), we chose
� = (dmax

L −dmin
L )

dL
= (dmax

S −dmin
S )

dS
= 0.4 in most of the simulations presented here; thus, the systems are

not strictly bi-disperse. The effect of the dispersion � of grains sizes around their mean value on the
degree of segregation was systematically investigated. The ratio dL/dS was not varied, and we chose
dL/dS = 2.
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FIG. 1. A periodic bi-disperse granular bed in its initial state: a layer of large grains is overlaid by a layer of small grains.

To ensure long flow durations, periodic boundary conditions were implemented; the width of
the simulation cell is 50dS. The basal boundary is made of a row of fixed beads of diameter dS. In the
initial state, a layer of large beads is overlaid by a layer of small beads. This is achieved by random
deposition under gravity. We denote ξ the volume fraction of large beads, i.e., the ratio of the volume
of large beads to the total volume of grains: ξ = VL/(VS + VL ). Accordingly, the volume fraction of
small beads is given by (1 − ξ ). In the simulations, ξ was varied between 0.08 and 0.89; accordingly
the number of grains varies between 900 and 2000. The height of the granular bed in the initial state
is H. Irrespective of ξ , H was kept constant and equal to H � 45dS (later when the flow develops,
the height of the flow may vary slightly as a result of both shear motion and segregation). The initial
height of large beads is thus ξH, and the initial height of small beads is thus (1 − ξ )H. The slope
of the granular bed θ was varied between 17.5◦ and 22◦ to the horizontal, allowing different flow
velocities.

The numerical values used for the simulations are the following: dS = 5 × 10−3 m, ρ = 1
kg m−2, g = 9.8 m s−2. Table I shows a summary of all runs performed with varying volume fraction
of large grains ξ , slope angle θ , and grain size distribution’s width �.

III. AN EXPONENTIAL EVOLUTION

Figure 2 shows four successive snapshots of a flow with slope θ = 18◦ and ξ = 0.37: initial
state, two intermediate stages, and final (stationary) state. As was observed in Refs. 20 and 27, the
segregated state is characterized by a pure layer of large grains at the top, a pure layer of small grains
at the bottom, and a large intermediate bi-disperse layer. We compute the vertical position of the
centre of mass of the large beads yG:

yG = 1

nL

nL∑
i=1

yi ,

TABLE I. Table of simulations performed.

Simulations Volume fraction of large beads Slope Grain size distribution width Number of runs
set ξ θ � n

Set 1 0.08 ≤ . . . ≤ 0.93 18◦ 0.4 55
Set 2 0.5 18◦ 0.08 ≤ . . . ≤ 0.32 4
Set 3 0.16 17.5◦ ≤ . . . ≤ 22◦ 0.4 15
Set 4 0.34 17.5◦ ≤ . . . ≤ 22◦ 0.4 15
Set 5 0.5 17.5◦ ≤ . . . ≤ 22◦ 0.4 15
Set 6 0.67 17.5◦ ≤ . . . ≤ 22◦ 0.4 15
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(a) (b)

(c) (d)

FIG. 2. Four snapshots of the segregation process in a granular flow of slope θ = 18◦ with a volume fraction of large beads
ξ = 0.37, from initial to steady state.

where nL is the total number of large grains, and yi is the vertical position of the grain i. For the
example shown in Figure 2, yG is plotted as a function of time in Figure 3: it exhibits an exponential
increase towards a saturated segregated state which corresponds to the stationary regime.

The exponential rise of the large beads in the flow is a robust feature: the position of the centre
of mass of the large grains yG obeys the following evolution:

yG(t) = y0 + (y∞ − y0)

(
1 − exp(− t

τ
)

)
, (1)
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FIG. 3. Position yG of the centre of mass of the large beads (normalized by the flow height H) as a function of time t
(normalized by

√
H/g) for a granular flow of slope θ = 18◦ and volume fraction of large beads ξ = 0.37. The dotted line

shows the exponential fit. Inset graph: same evolution with respect to initial and final position (y∞ − yG)/(y∞ − y0) in a
log-lin graph.
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FIG. 4. For θ = 18◦ and different values of ξ , (y∞ − yG(t))/(y∞ − y0) is plotted as a function of time (normalized by
√

H/g)
in a log-lin representation. The different slopes of the exponential fits (dotted lines) show a typical time τ decreasing with
increasing ξ .

where y0 and y∞ are, respectively, the initial and final value of yG, and τ is the typical time scale
characterizing the segregation process. Plotting (y∞ − yG(t))/(y∞ − y0) as a function of time in a
log-lin representation for θ = 18◦ and ξ = 0.08, ξ = 0.42, and ξ = 0.75 (series 1 of simulations,
Table I), we observe that the typical time τ decreases with increasing ξ (Figure 4): for large ξ , large
grains go through a thinner layer of small grains, resulting in smaller raising times.

If segregation was complete, all large grains would go through the whole layer of small grains,
and we would observe y∞ − y0 = (1 − ξ )H. From both Figures 2 and 3, however, it is apparent that
the segregation process saturates: not every large grain rises through the layer of small grains, and
we observe

y∞ − y0 = α(1 − ξ )H , α < 1.

Interestingly, the numerical value of the final degree of segregation α is not dependent on ξ , nor on
the slope θ : varying ξ for θ = 18◦ (series 1 of simulation, Table I) or varying θ for ξ = 0.34 and ξ

= 0.67 (series 4 and 6 of simulations, Table I), we find α � 0.789 (Figure 5). We conclude from this
observation that the final degree of segregation is not affected by the flow dynamics in the range of
slopes investigated here, nor it is affected by the composition of the flow.

Among the factors that may influence the value of α which are not investigated in this paper is
the ratio of the grain sizes dL/dS. We may expect a larger ratio to increase the level of segregation,
although the role of dL/dS was shown to be non-monotonous and more complex than suggested by
intuition.11, 22, 27 In the present contribution, dL/dS = 2 and the dependence of the system behavior
on this value is not investigated. However, both large and small grains exhibit a size distribution of
width � around the mean values dL and dS. The results discussed so far were obtained for � = 0.4. It
is worth assessing the influence of � on the segregation dynamics. Therefore, we consider narrower
distributions: � = 0.32, � = 0.24, � = 0.16, and � = 0.08, in the case ξ = 0.5 and θ = 18◦

(series 2 of simulations, Table I). The corresponding data are reported in Figure 5: we observe that
decreasing �, that is narrowing the grain size distribution for each grain species, induces a higher
degree of segregation, i.e., enhances the efficiency of segregation mechanisms.

IV. A LIFT-AND-DRAG MODEL

Size segregation and the raising of the larger grains to the surface of the flow can be understood
as resulting from kinematic sieving: while the layer is sheared, spaces open into which smaller grains
have a higher probability to fall, gradually forcing the larger grains to rise. Although this picture
conveys a clear and certainly faithful picture of how segregation proceeds, it tells us little about the
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FIG. 5. Final displacement of the centre of mass of the large beads during the segregation process y∞ − y0 normalized by
the flow height as a function of the volume fraction of small grains (1 − ξ ) for different slopes θ , compositions ξ , and grain
size dispersion �. The effect of grain size dispersion � is specifically displayed in the inset. The dotted line shows a linear
fit with slope 0.789.

actual upwards force applied to the larger grains. In Ref. 9, it is assumed that the smaller grains, as
they fall through the matrix of larger ones, are partly screened from the mean stress applied to the
system, which as a result is mostly supported by large grains. This departure from a homogenous
pressure field creates effectively an upward motion of the large grains and downward motion of the
smaller grains, without resorting to an explicit lift force. The idea is appealing; it was indeed shown
that the mechanical strength of a poly-disperse packing is mainly sustained by the larger grains.29

However, the computation of partial (computed over the whole volume of the flow) or intrinsic
(computed over the volume occupied by each species) pressure in discrete simulations is unlikely
to reflect more than either the volume fraction ratio, or the grain size ratio, as a straightforward
consequence of the stress tensor expressions, unless the difference in the amplitude of the forces
transmitted by each species is unreasonably large.

While the larger grains rise in the flow, the computation of the force resultant may provide an
insight in the lift action they are submitted to. However, this signature is extremely noisy—grains
rising intermittently, competing in the process, and exhibiting large fluctuations in their behavior—
hence difficult to interpret in terms of effective lift and/or drag forces.

We seem thus to have little information on the forces seen altogether by the large rising grains,
beside the observation that shear rate is a strong control on segregation. Nevertheless, there are
simple assumptions one can make on the mechanism driving the large grains upwards. Assuming the
existence of an effective lift force, it will depend on the degree of mixing of the bi-disperse mixture;
it will be maximum when all the large grains lie at the bottom, but will tend to zero as they all rise
at the surface. The degree of mixing is quantified by the position of the centre of mass of the large
beads respective to its initial and final positions. Hence, a possible form for the lift force is

Flift = C
y∞ − yG

y∞ − y0
, (2)

where C is a function with the following dimension: [C] = ρL3T−2 in a two-dimensional problem.
We do not know a priori the form of C, beyond the fact that it is expected to depend on the shear
rate (and on the size ratio between the grains, but this aspect is not investigated in this study). Note
that although we use the terminology lift classically referring to Bernoulli effects, we do not imply
any analogy between the effective segregation lift force discussed here and the former.

Due to the segregation lift force Flift, the large grains rise in the flow through the layer of small
grains at an average rate which can be described by the velocity of the centre of mass of the large
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beads ẏG(t). As a result, the large grains experience an effective drag applied by the smaller grains.
By analogy with the drag in viscous fluids, and in agreement with experimental studies on the form
of drag forces in fluidized granular media,30–32 the mean vertical velocity of the flow being zero, the
drag force is given by

Fdrag = D ẏG, (3)

where D is a function with the following dimension [D] = ρL2 · T−1 in a two-dimensional problem;
again, we do not know a priori the form of D.

Finally, both large and small grains having the same density, and forming packings of identical
packing fraction, no buoyant forces due to density gradients are active. Assuming that the vertical
acceleration experienced by the large grains is negligible, the force balance is simply given by

Flift − Fdrag = 0, (4)

C
y∞ − yG

y∞ − y0
− D ẏG = 0, (5)

which can be rearranged into

ẏG + C

D(y∞ − y0)
yG − Cy∞

D(y∞ − y0)
= 0. (6)

A straightforward solution to this differential equation is

yG(t) = y0 + (y∞ − y0)

(
1 − exp(− C

D(y∞ − y0)
t)

)
. (7)

The model thus recovers the behavior exhibited by the simulations.
Following this formulation, the typical time scale τ characterizing segregation depends on both

lift and drag functions C and D, and on the trajectory of the center of mass of the large grains y∞ −
y0. The model yields

τ = D(y∞ − y0)

C
= α

D

C
(1 − ξ )H, (8)

where α ≤ 1 quantifies the final degree of segregation (α � 0.79 for our numerical flows, Figure 5).
We have little constraints on the form of the effective lift force during the segregation of a

granular layer, beside the observation that segregation is driven by shear. Moreover, the presence
of gravity is clearly a key ingredient in the segregation process; we may thus expect C to depend
explicitly on g. In our flow configuration, however, g and ‖γ̇ ‖ are not independent quantities, and
their respective contributions cannot be unambiguously disentangled. Since we are interested in
connecting segregation to flow dynamics, we chose ‖γ̇ ‖ rather than g as typical time-scale for our
systems. From purely dimensional considerations, a possible dependence is thus

C ∝ ρd3
L‖γ̇ ‖2. (9)

Large shear also increases diffusive motion of the grains, hence limiting segregation: therefore C
should not be a purely increasing function of the shear rate. For instance, a proposition could be:
C ∝ ρd3

L‖γ̇ ‖2e(−‖γ̇ ‖/γ0) where γ 0 is a characteristic value of the shear rate for which diffusion starts
hindering segregation. However, for the moderate values of the shear rate simulated in the present
work, we will assume that the expression (9) is an acceptable description.

The drag force experienced by an intruder moving in a granular packing is comparatively easier
to investigate experimentally, and several studies (using static granular beds or fluidized ones) have
been carried out to identify its form.17, 33, 34 Beside a linear dependence on the velocity, it was shown
to be proportional to the frictional force felt by the moving intruder. Therefore, the relevant time
scale to describe the drag function is set by gravity. We propose the following form for the drag
function D:

D ∝ μρg1/2d3/2
L . (10)
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FIG. 6. Examples of velocity profiles for ξ = 0.5 and θ = 19◦ and θ = 22◦ averaged over the duration of the segregation process

(i.e., 3τ ). The dotted lines show the corresponding classical Bagnold scaling: u(z) = A
√

g/dL (H
3
2 − (H − z)

3
2 ) + u0.

As for the lift function C, the typical length scale adopted to describe the drag function D is the
mean grain diameter dL, rather than the system thickness H. This means that we do not describe
explicitly the possible dependence of the lift force on the mean pressure. This again derives from
the flow configuration; an extended discussion on this specific aspect ensues in Sec. V.

Following these simple assumptions, and supposing moderate shear, we can make a prediction
for the typical time scale of segregation:

τ̄ ∝ μ
y∞ − y0

dL
‖ ¯̇γ ‖−2 = μ α(1 − ξ )

H

dL
‖ ¯̇γ ‖−2

, (11)

where τ̄ = τ/
√

dL/g and ‖ ¯̇γ ‖ = ‖γ̇ ‖/√g/dL .
To test the prediction against the simulations behavior, we need to evaluate the mean shear rate

during the segregation process. Therefore, the mean velocity profile is computed over a duration of
3τ , such that (yG − y0)/(y∞ − y0) = 95%. Example profiles are shown in Figure 6: in spite of the
segregation happening, it is consistent with the classical Bagnold scaling: u(z) − u(0) � A

√
g(H

3
2 −

(H − z)
3
2 )/dL .35 Accordingly, the mean shear rate is given by 〈‖γ̇ ‖〉 � 5

3 (〈u〉 − 〈u0〉)/H , where 〈u〉
is the mean flow velocity averaged in space over the flow thickness H and in time over the duration
3τ , and 〈u0〉 is the bottom velocity (given by the grains flowing at a height smaller than 1dL from
the bottom) averaged in time over the duration 3τ . Because both segregation and flow dynamics
may cause variations in the compaction of the granular packing, the thickness of the flow used to
evaluate the shear rate is also averaged in time over 3τ , rather than simply taken equal to the initial
packing thickness. Considering simulation series 1 (i.e., varying ξ for a fixed slope θ = 18◦) and
simulation series 3, 4, 5, and 6 (i.e., varying θ for ξ alternatively fixed to 0.16, 0.34, 0.50, and 0.67)
we compute the mean shear rate ‖γ̇ ‖, and relate it to the time-scale τ in Figure 7. The data points
collapse onto a single curve corresponding to the following scaling:

τ̄ � y∞ − y0

dL

(
‖ ¯̇γ ‖−2 + 75

)
, (12)

� 0.789(1 − ξ )
H

dL

(
‖ ¯̇γ ‖−2 + 75

)
, (13)

where τ̄ = τ/
√

dL/g and ‖ ¯̇γ ‖ = ‖γ̇ ‖/√g/dL . The general behavior of the numerical flows is thus
compatible with the prediction (11), provided that the possible variations of μ induced by the
variations of ξ are small compared to the variations of ξ and ‖γ̇ ‖. The existence of an offset which
sets a lower bound value for the segregation time scale was not predicted by the model; this offset
implies that segregation cannot occur during a time interval shorter than 75

√
dL/g. This can be

compared with the typical time needed for a small grain to percolate through a loose bed of large
grains proceeding by successive jumps from one layer to the other: if that single bead was to fall

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

86.221.227.76 On: Fri, 07 Mar 2014 17:59:11



033302-9 L. Staron and J. C. Phillips Phys. Fluids 26, 033302 (2014)

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

 = 18°, 0.08  0.93
17.5°  22°,  = 0.16
17.5°  22°,  = 0.34
17.5°  22°,  = 0.50
17.5°  22°,  = 0.67

 /    (1- )
dL

H–

–

—

FIG. 7. The normalized typical time-scale of segregation τ̄ / H
dL

(1 − ξ ) as a function of the normalized shear rate ‖ ¯̇γ ‖ for

simulation series 1, 3, 4, 5, and 6. The plain line shows (1/‖ ¯̇γ ‖2 + 75).

down H � 22 rows of large beads one after the other, without accelerating, then it would take 22
times the elementary fall duration

√
dL/g, hence 22

√
dL/g. The existence of an offset for τ may

be related to a similar mechanism: while shear deformation allows large and small grains to explore
the space, a small grains still need to jump down a finite number of layers of large grains within
successive time intervals each scaling like

√
dL/g.

V. DISCUSSION

Using a discrete simulation method, we simulate numerical two-dimensional bi-disperse chute
flows formed of a layer of larger grains overlaid by a layer of smaller grains, and analyze their
evolution for different slopes and different volume fraction of large beads. As size segregation occurs,
the position of the centre of mass of the large beads is shown to raise exponentially with time with a
typical time scale decreasing with the volume fraction of large beads. Exponential evolution for grain
size segregation was already observed experimentally by Golick and Daniels in Ref. 11 in a Couette
cell configuration. Because these authors make a qualitative distinction between mixing (i.e., early
stage of the segregation process) and separation of the grains (i.e., following stage of the segregation
process), while we consider it to be a single phenomenon, their evaluation of the typical segregation
time, excluding mixing, is necessarily shorter than our estimation, which includes mixing. Moreover,
rather than measuring the actual position of the large grains, they measure the volume of the packing
from which they infer segregation, which is likely to differ from our measurements (note that in our
unconfined flow configuration, we do not observe dilation as a result of segregation). Finally, the
experimental results were obtained in 3D. In spite of these differences, it is interesting to compare
quantitatively the ratio of the typical time scale for segregation to the inverse of the shear rate
in both studies. While data in Ref. 11 show τ/‖γ̇ ‖−1 � 60 for ξ = 0.5 and dL/dS = 2, we find
τ/‖γ̇ ‖−1 � 150. Considering that a 3D flow is expected to be more efficient in segregating than a
2D flow, and in view of the differences in the measurements performed, these two results seem to
be reasonably consistent.

In this paper, we show that a simple Lagrangian description of the dynamics of the phase of large
grains in terms of lift and drag forces allows for the recovery of the exponential time dependence of
the segregation phenomena. A similar description was proposed in Ref. 9 (in an Eulerian framework),
however, a different mechanism is invoked to explain the physical origin of the lift force: the pressure
screening of the smaller grains. Accordingly, the larger grains are submitted to a larger pressure
gradient than hydrostatic, and rise. In other words, while our model assumes a lift function scaling as
the shear rate, the lift function in Ref. 9 scales as the gravity. The result of this assumption is that the
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segregation velocity is not implicitly related to the flow dynamics. As mentioned in Sec. IV, shear
rate and gravity cannot be independently varied in the chute flow configuration. Indeed, in the simpler
mono-disperse chute flow case, it can be shown that ‖γ̇ ‖ increases like (

√
P/ρ)/d � (

√
gH )/d,

where d is the mean grain diameter.36 The bi-disperse chute flows simulated here obey the same
behavior, exhibiting a velocity profile compatible with the Bagnold scaling (Figure 6). Hence, one
cannot unambiguously discriminate between pressure and shear rate in the expression of lift and drag
forces for these systems. However, considering that the slope interval explored in our simulations
allows to increase the shear rate by a factor 8, and the pressure by a factor 1.03 only, the former
seems indeed to be the relevant ingredient here. Nevertheless, it would be interesting to investigate
how the different partial stress tensors in a bi-phasic flows may be affected by the flow dynamics.

Another way of varying the pressure condition is to vary the flow height H, which was not
explicitly considered when making predictions for the form of the lift and drag forces applied to the
large grains. A first reason is that for the sake of simplicity (trying to keep the number of parameters
characterizing the mean flow to a minimum), all the numerical flows considered here exhibit the
same thickness H (variations due to different compactions being small). A more fundamental reason
is that in the flow configuration considered here, as already discussed, shear rate and flow height
cannot be varied independently. A more general model would require independent variations of both
quantities (as in the Couette cell device used by Ref. 11).

The chute flow however forms a paradigm configuration to study segregation in rapid granular
flows. It exhibits a very robust behavior, whereby segregation progresses exponentially with time,
with a typical time scale which depends on both the volume fraction of large grains and the flow
mean shear rate. A simple model balancing an effective lift force and an effective drag force applied
to the centre of mass of the large grains leads to the recovery of the exponential behavior. Relating the
two forces to the shear rate based on dimensional arguments and experimental findings, the model
yields successful prediction of the segregation time-scale. This prediction forms a framework to
understand the relation between segregation and flow dynamics in which other dependences should
be tested, particularly the effect of the grain size ratio dL/dS. In this respect, the importance of the
grain size distribution around the mean value for each grain species was demonstrated in this study.
A next important step is to understand how segregation affects the flow characteristics; this will be
the subject of future work.

ACKNOWLEDGMENTS

The authors thank C. G. Johnson for interesting comments on this work. This work was supported
by the FP7 European Grant IEF No. 297843.

1 J. Bridgewater, W. S. Foo, and D. J. Stephens, “Particle mixing and segregation in failure zones - Theory and experiment,”
Powder Technol. 41, 147–158 (1985).

2 S. B. Savage and C. K. K. Lun, “Particle size segregation in inclined chute flow of dry cohesionless granular solids,” J.
Fluid Mech. 189, 311–335 (1988).

3 D. M. Powell, “Patterns and processes of sediment sorting in gravel-bed rivers,” Prog. Phys. Geogr. 22(1), 1–32 (1998).
4 P. Frey and M. Church, “How river beds move,” Science 325, 1509–1510 (2009).
5 G. Félix and N. Thomas, “Relation between dry granular flow regimes and morphology of deposits: formation of levées in

pyroclastic deposits,” Earth Planet. Sci. Lett. 221, 197–213 (2004).
6 P. J. Rowley, P. Kokelaar, M. Menzies, and D. Waltham, “Shear-derived mixing in dense granular flows,” J. Sedimentary

Res. 81, 874–884 (2011).
7 C. G. Johnson, B. P. Kokelaar, R. M. Iverson, M. Logan, R. G. LaHusen, and J. M. N. T. Gray, “Grain-size segregation and

levee formation in geophysical mass flows,” J. Geophys. Res. 117, F01032, doi:10.1029/2011JF002185 (2012).
8 A. Kudrolli, “Size separation in vibrated granular matter,” Rep. Prog. Phys. 67, 209–247 (2004).
9 J. M. N. T. Gray and A. R. Thornton, “A theory for particle size segregation in shallow granular free-surface flows,” Proc.

R. Soc. A 461, 1447–1473 (2005).
10 C. Goujon, B. Dalloz-Dubrujeaud, and N. Thomas, “Bidisperse granular avalanches on inclined planes: A rich variety of

behaviors,” Eur. Phys. J. E 23, 199–215 (2007).
11 L. A. Golick and K. E. Daniels, “Mixing and segregation rates in sheared granular materials,” Phys. Rev. E 80, 042301

(2009).
12 F. Moro, T. Faug, H. Bellot, and F. Ousset, “Large mobility of dry snow avalanches: Insights from small-scale laboratory

tests on granular avalanches of bidisperse materials,” Cold Reg. Sci. Technol. 62, 55–66 (2010).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

86.221.227.76 On: Fri, 07 Mar 2014 17:59:11

http://dx.doi.org/10.1016/0032-5910(85)87033-9
http://dx.doi.org/10.1017/S002211208800103X
http://dx.doi.org/10.1017/S002211208800103X
http://dx.doi.org/10.1177/030913339802200101
http://dx.doi.org/10.1126/science.1178516
http://dx.doi.org/10.1016/S0012-821X(04)00111-6
http://dx.doi.org/10.2110/jsr.2011.72
http://dx.doi.org/10.2110/jsr.2011.72
http://dx.doi.org/10.1029/2011JF002185
http://dx.doi.org/10.1088/0034-4885/67/3/R01
http://dx.doi.org/10.1098/rspa.2004.1420
http://dx.doi.org/10.1098/rspa.2004.1420
http://dx.doi.org/10.1140/epje/i2006-10175-0
http://dx.doi.org/10.1103/PhysRevE.80.042301
http://dx.doi.org/10.1016/j.coldregions.2010.02.011


033302-11 L. Staron and J. C. Phillips Phys. Fluids 26, 033302 (2014)

13 J. M. N. T. Gray and B. P. Kokelaar, “Large particle segregation, transport and accumulation in granular free-surface flows,”
J. Fluid Mech. 652, 105–137 (2010).

14 L. B. H. May, L. A. Golick, K. C. Phillips, M. Shearer, and K. E. Daniels, “Shear-driven size segregation of granular
materials: Modeling and experiment,” Phys. Rev. E 81, 051301 (2010).

15 C. Meruane, A. Tamburrino, and O. Roche, “Dynamics of dense granular flows of small-and-large-grain mixtures in an
ambient fluid,” Phys. Rev. E 86, 026311 (2012).

16 B. Marks, P. Rognon, and I. Einav, “Grainsize dynamics of polydisperse granular segregation down inclined planes,” J.
Fluid Mech. 690, 499–511 (2012).

17 F. Guillard, Y. Forterre, and O. Pouliquen, “Depth-independent drag force induced by stirring in granular media,” Phys.
Rev. Lett. 110, 138303 (2013).

18 J. C. Phillips, A. J. Hogg, R. R. Kerswell, and N. H. Thomas, “Enhanced mobility of granular mixtures of fine and coarse
particles,” Earth Planet. Sci. Lett. 246, 466–480 (2006).

19 E. Linares-Guerrero, C. Goujon, and R. Zenit, “Increased mobility of bidisperse granular avalanches,” J. Fluid Mech. 593,
475–504 (2007).

20 P. G. Rognon, J.-N. Roux, M. Naaim, and F. Chevoir, “Dense flows of bidisperse assemblies of disks down an inclined
plane,” Phys. Fluids 19, 058101 (2007).

21 B. Yohannes and K. M. Hill, “Rheology of dense granular mixtures: Particle-size distributions, boundary conditions, and
collisional time scales,” Phys. Rev. E 82, 061301 (2010).

22 A. Tripathi and D. V. Khakhar, “Rheology of binary granular mixtures in the dense flow regime,” Phys. Fluids 23, 113302
(2011).

23 O. Pouliquen, J. Delour, and S. B. Savage, “Fingering in granular chute flows,” Nature (London) 386, 816–817 (1997).
24 M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, and J. M. N. T. Gray, “Segregation-induced fingering

instabilities in granular free surface flows,” J. Fluid Mech. 709, 543–580 (2012).
25 J. M. N. T. Gray and V. A. Chugunov, “Particle-size segregation and diffusive remixing in shallow granular avalanches,”

J. Fluid Mech. 569, 365–398 (2006).
26 I. Zuriguel, J. M. N. T. Gray, J. Peixinho, and T. Mullin, “Pattern selection by a granular wave in a rotating drum,” Phys.

Rev. E 73, 061302 (2006).
27 A. R. Thornton, T. Weinhart, S. Luding, and O. Bokhove, “Modeling of particle size segregation: Calibration using the

discrete particle method,” Int. J. Mod. Phys. C 23, 1240014 (2012).
28 M. Jean and J.-J. Moreau, “Unilaterality and dry friction in the dynamics of rigid bodies collections,” in Proceedings of

Contact Mechanics International Symposium, edited by A. Curnier (Presses Polytechniques et Universitaires Romandes,
Lausanne, 1992), pp. 31–48.

29 C. Voivret, F. Radjai, J.-Y. Delenne, and M. S. El Youssoufi, “Multiscale force networks in highly polydisperse granular
media,” Phys. Rev. Lett. 102, 178001 (2009).

30 K. Wieghardt, “Experiments in granular flow,” Annu. Rev. Fluid Mech. 7, 89–113 (1975).
31 O. Zik, J. Stavans, and Y. Rabin, “Mobility of a sphere in vibrated granular media,” Europhys. Lett. 17(4), 315–319 (1992).
32 G. I. Tardos, M. I. Khan, and D. G. Schaeffer, “Forces on a slowly rotating, rough cylinder in a Couette device containing

a dry, frictional powder,” Phys. Fluids 10, 335 (1998).
33 R. Albert, M. A. Pfeifer, A.-L. Barabási, and P. Schiffer, “Slow drag in a granular medium,” Phys. Rev. Lett. 82, 205–208

(1999).
34 K. A. Reddy, Y. Forterre, and O. Pouliquen, “Evidence of mechanically activated processes in slow granular flows,” Phys.

Rev. Lett. 106, 108301 (2011).
35 R. G. Bagnold, “Experiments of gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R.

Soc. London, Ser. A 225, 49 (1954).
36 GDR Midi, “On dense granular flows,” Eur. Phys. J. E 14(4), 341–365 (2004).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

86.221.227.76 On: Fri, 07 Mar 2014 17:59:11

http://dx.doi.org/10.1017/S002211201000011X
http://dx.doi.org/10.1103/PhysRevE.81.051301
http://dx.doi.org/10.1103/PhysRevE.86.026311
http://dx.doi.org/10.1017/jfm.2011.454
http://dx.doi.org/10.1017/jfm.2011.454
http://dx.doi.org/10.1103/PhysRevLett.110.138303
http://dx.doi.org/10.1103/PhysRevLett.110.138303
http://dx.doi.org/10.1016/j.epsl.2006.04.007
http://dx.doi.org/10.1017/S0022112007008932
http://dx.doi.org/10.1063/1.2722242
http://dx.doi.org/10.1103/PhysRevE.82.061301
http://dx.doi.org/10.1063/1.3653276
http://dx.doi.org/10.1038/386816a0
http://dx.doi.org/10.1017/jfm.2012.348
http://dx.doi.org/10.1017/S0022112006002977
http://dx.doi.org/10.1103/PhysRevE.73.061302
http://dx.doi.org/10.1103/PhysRevE.73.061302
http://dx.doi.org/10.1142/S0129183112400141
http://dx.doi.org/10.1103/PhysRevLett.102.178001
http://dx.doi.org/10.1146/annurev.fl.07.010175.000513
http://dx.doi.org/10.1209/0295-5075/17/4/006
http://dx.doi.org/10.1063/1.869525
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1103/PhysRevLett.106.108301
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1140/epje/i2003-10153-0

