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Sorbonne Université, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Pierre-Yves Lagrée, Lydie Staron
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Discrete 2D simulations of cohesive granular collapse are carried out with a focus on the failure
process. The existence of a reliable criterion to characterize the failure orientation is discussed. A
criterion based on the distribution on the grains cumulative displacement over the duration of the
failure is elected. Questioning its reliability, it appears that a criterion based on grains displacement
is fragile in the face of variations of systems geometry and stability. Nevertheless the measure
of failure plane orientation appears fairly robust against moderate variations of the displacement
criterion, and against fluctuations of cohesive states close to stability limit. This suggests that the
measure of the failure orientation at stability limit is a robust information. However this work
stresses the elusive nature of cohesive granular failure, and the important role of fluctuations in
granular matter in general.

I. INTRODUCTION

The complexity of granular material is probably
best summarised in their ability to behave both like a
solid or a liquid, and to coexist either static or flowing
within a distance of few grains diameters [1, 2]. This
phenomenology has provided engineers and researchers
alike with a long-lasting issue, that of the formation of
shear-bands: their width, their orientation, the force
distribution within, among other questions [3–5].
Most commonly, shear bands are associated with triaxial
shear tests. These tests are commonly used to derive
the mechanical properties of soil samples, and predict
the behaviour of soils on a larger scale [6, 7]. But
shear-banding is also an inexhaustible source of findings
in the study of model granular matter [8–12]. The
addition of adhesion at contacts is an occasion for
further questions [13, 21].
Be it in a triaxial test or in a Jenike shear cell, the onset
of a shear band, namely the failure of the sample, occurs
in a controlled environment [15]. Either the volume, or
the stress, or the strain is monitored, and the onset of
the failure may be made visible by the evolution of the
stress-strain curve.
However, granular failures do not happen only in labs
and controlled environments. They may be unwanted
occurrences in a manufacturing line, or a roadside
collapsing rocky bank, or any breaking under gravity of
a cohesive agglomerate as can be amply found around
us.
Yet, the gravity-driven failure of cohesive granular
system has attracted a somewhat moderate interest,
though opening interesting research alleys. In [16],
Restagno et al (2004) develop a simple model based on
cohesion and friction and show how maximum angle
of stability, heap height and cohesion are related; the
work suggests how a thorough study of the failure plane
localisation would provide information on the properties

of adhesion forces.
In [17], Gans et al (2023) investigate experimentally the
failure of cohesive granular columns, measuring failure
angles and stressing the difficulty of the characterisation
of a failure mode. In [26], Staron et al (2023) investigate
numerically the failure of cohesive columns, and attempt
to measure the orientation of the failure plane. They
propose that approaching incipient failure would allow
for a measure of the internal friction properties of the
material. They also underline the difficulty of the
measure and the dispersion of the data.

In this contribution, we apply 2D discrete simulations
to investigate thoroughly the failure of cohesive granular
columns. We try to disentangle the effect of system
geometry and contact adhesion in the signature of the
failure. In particular, we question the distribution of
grains displacements, and its interpretation in terms of
provider of a reliable criterion to identify failure onset.
A displacement criterion based on the discrimination of
diffuse bulk motion and failure-induced motion is first
proposed. Exploring different system size, the robust-
ness of the criterion can be discussed in the light of the
influence of the geometry. Approaching incipient failures
is then undertaken, which provide further discussion
on the robustness of the displacement criterion against
contact adhesion and system stability.

The numerical method and simulations settings are
presented in section II. The grains displacement distri-
bution, and its interpretation are presented in section III,
together with a tentative chronology of the failure. The
influence of the columns height is discussed in section
IV. Section V explores the approach of stability limit.
Finally, section VI discusses the results, concluding on
the elusive nature of cohesive gravity-driven failure in
granular systems, yet on the robustness of the measure
of failure characteristics. It also stresses the need for a
comprehensive description of stability limit in terms of
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systems state.

II. NUMERICAL FAILURES
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FIG. 1. A granular step with height H = 60d and base
R = 160d, counting 10 070 grains, early after the right-hand-
side wall was removed (at 0.046

√
H/g). The grey intensity

features the grains velocity.

A. Simulation method and protocol

a. The CD algorithm The columns are simulated
with a Contact Dynamics algorithm applied in 2D, mod-
elling rigid disks interacting through adhesive contacts
[18, 19, 26]. The disks/grains have a diameter randomly
chosen in the interval [4.10−3m; 6.10−3m], and a mean
diameter d = 5.10−3m. This slight size dispersion pre-
vents crystalline ordering.
Contacts are made adhesive through the introduction of
a negative force threshold −Fc in the Signorini’s contact
graph. This threshold specifies the acceptable values of
the contact normal force N . Either the distance δ at
contact is positive, i.e. corresponding to a gap, and the
contact force N is zero. Either δ 6 0, implying a contact,
and N can take any values such that N ≥ −Fc compati-
ble with the equations of dynamics. The adhesive forces
are short-ranged, meaning that a cohesive contact is lost
as soon as it opens. In other words, we do not assume the
existence of a debonding or rupture distance at contact
for cohesion to be lost, as is the case for capillary bonds
[20, 21].
In addition, an Amontons-Coulomb friction law is imple-
mented. The contact friction is set by the microscopic
friction coefficient µm. The tangential force threshold
is supplemented with the adhesive force threshold: slid-
ing is permitted when the tangential force has reached
µm(N + Fc). The microscopic coefficient of friction is
not varied: µm = 0.2. The grains interact through in-
elastic collisions, with a coefficient of restitution e = 0.
Their volumetric density is ρ = 0.1 kg.m−2.
The adhesive force threshold Fc is given in number of
grains mean weight through the introduction of a granu-
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FIG. 2. Signorini’s condition supplemented with a contact
adhesive threshold Fc, giving the domain of non-zero contact
normal force N depending on the inter-grains gap δ (left), and
Amontons-Coulomb law relating tangential force T to contact
slip velocity v (right).

lar Bond number Bog [22, 23]:

Fc = Bog mij g, (1)

with mij = 2( 1
mi

+ 1
mj

)−1, and i and j are the two

grains in contact. The adhesive force threshold gives the
maximum resistance of adhesive contacts compared to
grains mean weight, which seems a sensible option for
gravity-driven failures. By varying the Bond number
Bog = Fc/mg, we thus tune the intensity of the mean
cohesive properties of the simulated systems. However,
the physical process by which microscopic contact
adhesion relates to the macroscopic cohesive stress τc
are not yet entirely clear [20, 24].
A comprehensive presentation of the CD method will be
found in Radjai & Richefeu [19].

b. Generation of initial states The systems are gen-
erated by rain deposition of np grains in a rectangular
container; np varies from 4 711 for the smallest columns
to 20 133 for the tallest ones. The deposition is carried
out with a reduced gravity (divided by 10) to prevent
large velocities inducing undue overlap at contacts. Con-
tacts are initially adhesion free, with a friction coefficient
µm = 0.2, permitting grains to form a dense packing with
a volume fraction φ ' 0.82. When systems have reached
equilibrium, and all grains are at rest, a large adhesive
contact force is applied at every contact in order to allow
for the sintering of the structure (Bog = 200).

The diameter d of the grains is randomly chosen in
the interval [4.10−3m; 6.10−3m]. The random function
assigning the sequence of diameters allows for the
generation of different initial states in terms of grains
and contacts arrangement. Following this procedure,
3 independent initial states allowing for 3 independent
simulations were performed for each set of (H,Bog)
studied.
The columns are bounded on the left-hand side by
a rigid vertical wall (Figure 1). They have a width
R ' 160d, and an initial height H ranging from 30d to
120d. For all values of H, the geometry is squat enough
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so that failures remain unaffected by the presence of
the left wall. In the following, we denote H̄ =H/d the
non-dimensional height, and more generally, L̄ = L/d
any length made non-dimensional by division by d.

B. Collapse simulations

At the start of each simulation, the right wall contain-
ing the system is removed, a failure develops and material
starts flowing. The present work focuses on failures and
their onset, but not on the ensuing spreading. We hence
concentrate on the first instants of the collapse evolution,
recording the system state every ∆t = 2.10−4s, namely
at every computational time step dt.

Our main objective is to question the existence of a ro-
bust criterion to capture the characteristic of the failure,
based on simple physical quantities, and which would be
valid over a large range of experimental conditions: dif-
ferent system geometry, different grains adhesion. The
existence of such a criterion is first discuss in section III;
a proposition is made, to be explored in the following.

In a first series of simulations, the Bond number is set
to Bog = 50, and the height H̄ is varied between 30 and
120 (section IV). We focus on the occurrence of failures,
in particular their orientation. We relate the failure ori-
entation to the column height, and compare our results
with experimental findings by Gans [17]. We can then
discuss the validity of the criterion identified in section
III regarding the columns geometry.

In a second set of simulations, we set the height to H̄=60,
and try to capture the stability limit, or incipient failure,
by varying the Bond number Bog (section V). This al-
lows for discussing the robustness of the identification of
the failure regarding the relative stability of the column.

III. DISCRIMINATING DIFFUSE MOTION
FROM FAILURE ONSET

This section discusses the existence of a rational crite-
rion to capture the onset of a gravity-driven failure, and
describe its main characteristics. The existence of two
types of motion in the collapse dynamics are considered,
namely the diffuse motion accompanying small deforma-
tion within the bulk, and larger motion accompanying
the failure itself and ensuing spreading. Focussing on
the distribution of grains individual displacement during
collapse, and showing the existence of a cut-off value be-
tween bulk diffuse motion and failure-induced dynamics,
we draw a chronology of the failure process, and accord-
ingly, propose a criterion to characterise the failure onset.

To investigate this phenomenology, a single geometry is
first considered as a benchmark test. We choose a cohe-
sive step with H̄ = 60 in height and R̄ = 160 in width,

composed of np =10 070 grains (displayed in Fig 4). The
adhesion level is set to Bog =50. Three independent sim-
ulations, generated from three different initial states, are
carried out. At the start of each simulation, the system,
initially kept stable by the right-hand-side wall now being
removed, loses equilibrium and starts flowing.
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FIG. 3. Evolution of the normalised mean grains velocity
〈V 〉/

√
gd with normalised time t/T during the collapse of a

step with H̄ = 60 and np = 10070 (T =
√
H/g). Independent

runs and the corresponding average are shown. Instants Ti =
0, T1 =0.046, T2 =0.675, T3 =1.286, T4 =1.829 and Tf =3.465
are also displayed (see Figure 4 )

A. Collapse Dynamics

Figure 3 shows the time evolution of the normalised
mean grain velocity 〈V 〉/√gd = ( 1

np

∑np

i=1 vi)/
√
gd for

each of the 3 simulations, together with the averaged
value. Starting from 0, the velocity steadily increases
until the peak value is reached at time ' 1.3T . Then
the systems decelerate until reaching rest at ' 3.5T .
(T =

√
H/g ' 0.175s.).

To achieve a comprehensive decomposition of the
system motion, five representative instants of the
evolution are considered: after the first computa-
tional time step Ti = ti/T ' 0, soon after the initial
state T1 = t1/T ' 0.046, during the velocity increase
T2 ' 0.675, at the maximum velocity T3 ' 1.286, during
the slowdown T4'1.829 and when rest is being reached
Tf ' 3.465. All these instants are shown on the time
evolution of 〈V 〉/√gd in Figure 3. The corresponding
snapshots of the state of the system are displayed in
Figure 4 for one given run. Grain’s velocity is encoded
in a grey scale based on the instantaneous value of the
mean velocity 〈V 〉(t). Accordingly, at each moment t,
grains with velocity larger than 〈V 〉(t) are coloured in
black, while a linear grey scale is set to grains with
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FIG. 4. Snapshots of the collapse dynamics for H = 60d at
different instants: Ti = 0, T1 = 0.046, T2 = 0.675, T3 = 1.286,
T4 = 1.829 and Tf = 3.465. Grains with velocity higher than
the average level are coloured in black. A linear grey colour
scale is set to grains falling in the interval [0 : V ].

velocity in the interval [0 : 〈V 〉(t)].

At Ti, despite no motion being noticeable to the naked
eye and 〈V 〉 being very low, the bulk exhibits a uniform
motion, yet very small: almost all grains are coloured in
black, except for those near the wall and bottom. This
velocity distribution shows the existence of a diffuse mo-
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FIG. 5. Distribution F of the total displacement of grains at
T = 3.5, with rd ∈ [0 : 5d] (interval not shown completely).
For each value r̄d, F (r̄d) gives the proportion of grains which
have been displaced of a greater distance than r̄d at T = 3.5.
The outcome of 3 independent run (symbols) and the average
(solid line) are shown.

tion involving the whole bulk but for the boundaries held
by rigid walls.
Nearly immediately afterwards, at T1, the mean displace-
ment concentrates on the right upper corner. At T2, a
visible fracturing has emerged, followed by visible system
deformation. A collapsing motion starts unfolding, and
develops from T2 to Tf , during which diffuse motion be-
comes invisible, and collapsing dynamics dominates.
The mean velocity decreases as spreading develops and
a ”deposit” forms. Finally the whole system reaches rest
at ' Tf . Diffuse motion still occurs at Tf as packing
rearrangements take place in the bulk.
We see here how the failure flow is combined with diffuse
motion (or ”plastic motion” as termed by [25]), charac-
terised by a much smaller displacement amplitude. Since
this work focuses on the macroscopic motion related to
the failure onset, a displacement threshold needs be cho-
sen to distinguish the two kinds of grains motion.

B. Diffuse motion and failure motion

To direct and support a choice, we consider displace-
ment values r̄d = rd/d in the interval [0.01 : 1.00]. For
each value of r̄d, we count the number nd of grains i
whose cumulative displacement at Tf , r̄if , exceeds r̄d:

nd = Card{i | r̄if > r̄d}.

Then we form the function F (r̄d) = nd/np which is a sort
of complementary function of the cumulative distribution
function over the time interval [0 : Tf ] characterising the
grains displacement. Accordingly, for each value of r̄d,
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FIG. 6. Time-derivative ∆Nth(t) = Nth(t + ∆t) − Nth(t)
of the number of grains having overpassed the displacement
threshold Rth = 0.15d (full line), and corresponding mean
grains velocity 〈V 〉 (dashed line) in the course of time.

F (r̄d) gives grains probability to have been displaced be-
yond r̄d at time Tf , namely at the end of the collapse.

Applying this definition, we compute F (r̄d) for the three
runs featured in Figure 3; the corresponding mean evolu-
tion of F with r̄d is also shown (Figure 5).

We observe a very reproducible behaviour. Two distinct
trends in the evolution of F with r̄d are visible. First, a
sharp decrease shows how the detection of small motion
is sensitive to the choice of the displacement criterion:
increasing r̄d makes a number of grains weakly displaced
suddenly invisible. This trend characterises the domain
of small displacements, which includes the domain of dif-
fuse motion.
Next, after a smooth transition, F becomes weakly sen-
sitive to the value of r̄d: the grains displaced beyond one
given value are likely to go further in their displacement.
This trend characterises larger displacements, a domain
in which failure dynamics is expected to fall.

The evolution characterising small displacements can be
extrapolated up to the value of r̄d for which virtually
no displacement being part of diffuse motion can be de-
tected, namely for which F = 0 (Figure 5). For the sys-
tem considered here (H̄ = 60 and a=H/R= 0.375) this
occurs for r̄d ' 0.15. We chose this value as a displace-
ment cutoff value, or threshold, allowing for detecting
the onset of the failure. We denote this threshold value
Rth = 0.15 d in the following. The value of nd evaluated
at r̄d = R̄th is then denoted Nth.
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FIG. 7. Chronology of a failure for one example simulation
with H̄ = 60, using the evolution of ∆Nth; the instants τz are
represented for z = 0, z = 60 and z = 80.

C. Failure chronology

The choice of R̄th was directed to filter out diffuse mo-
tion and to detect failure-related displacement only. The
time variations of Nth, reflecting the number of grains
involved in failure-related motion, are also expected to
reflect failure onset.
Following this idea, we denote ∆Nth(t) the variation of
Nth between two computation times t and t+ ∆t:

∆Nth(t) = Nth(t+ ∆t)−Nth(t). (2)

The evolution of ∆Nth with time and the normalised sys-
tem average velocity V/

√
gd are shown in Figure 6 for one

given run for illustration. This figure, showing both evo-
lutions, allows for connecting the variations of Nth and
the system mean motion.

We observe a clear peak value of ∆Nth, coinciding with
a sudden and large increment of Nth, whereas the aver-
age velocity at this moment is still small. The surge of
∆Nth is short, and ∆Nth decreases to ' 0 well before
the system reaches its maximum average velocity. This
means that the failure and subsequent collapse develops
at a rather constant Nth: nearly all grains involved in
the failure are dragged in the dynamics over a short and
early time span.

A criterion is needed to locate the failure onset in time.
Based on the shape of ∆Nth (as shown in Figure 6 for one
example run), we define different instants to capture the
collective displacement of the grains. In particular, we
focus on the decrease phase of the evolution ∆Nth, after
a large number of grains have suddenly been displaced
beyond the threshold Rth, and the systems seem to be
relaxing (namely the failure develops without involving
new grains).
We introduce ∆Nth,max the maximum value that ∆Nth
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reaches. We define τz the moment when ∆Nth under-
goes a decrease of z% of its maximum value, or equiv-
alently, when it is reduced to ∆Nth,max(1 − z/100) =
∆Nth(τz). Following this notation, the time when the
peak ∆Nth,max occurs is denoted τ0.

An example of this chronology is displayed Figure 7. The
main virtue of this logic is that it can be applied to any
system, possibly failing and flowing with different mo-
mentum, and following a different dynamics. It defines
an alternative measure of time that describes equivalent
state in terms of grains displacement. This is however
true provided the value of Rth remains the same from
one run to the other. This last point, namely the robust-
ness of a choice for Rth, and the validity of its value, is
studied in the following sections.

An obvious choice for locating the failure in time is the
peak value. Indeed, in the specific case H̄ = 60, an incip-
ient failure could be characterised at τ0 (as can be seen
in Figure 8). We will see however that this is not neces-
sarily the case for all values of H, and the distribution
of displaced grains may be less regular. Yet we use the
favourable case of H̄ = 60 to study the evolution of the
spatial distribution of the displaced grains in time.

Deciding which instant τz best characterises the failure is
not a straightforward process. This instant must comply
with the following requirements: (i) it should correspond
to a well-defined interface between displaced and static
grains, (ii) it should correspond to a slow evolution of the
shape of the interface, away from a sharp propagation
episode. These aspects are investigated in the following.

D. Failure onset and propagation

The way grains are set in motion during the desta-
bilisation is displayed in Figure 8 for one example run,
using the displacement threshold Rth/d = 0.15. Grains
displaced beyond Rth/d = 0.15 are coloured in black. We
note that time τ0 is a good candidate for characterising
the failure. Yet we see that it coincides with a small
number of grains: the fact that the increment of Nth

is maximum at this moment does not mean that Nth

is large. We also note that the pattern drawn by the
displaced grains is mostly changing between τ75 and τ90.

To obtain a more quantitative notion of these obser-
vations, and based on the work of [17, 26], we assume
that the interface between static and displaced grains
can be approximated by a linear fit. Considering for
each run the time evolution of ∆Nth, we capture at each
instant τz the orientation of the interface α, and the
error of the fitting procedure, with z varying between 0
and 90. The result is plotted in Figure 9 as a function
of Nth,max(1 − z/100), describing the interval [τ0, τ90].
The three simulations together with the average value
are shown.

τ 0

τ 60

τ 75

τ 90

FIG. 8. Grains displaced beyond Rth = 0.15d (in black) at
instant τ0, τ60, τ75 and τ90 for an example run with H̄ = 60.

A first observation is the scattering of the results
across the different independent runs, which is not
surprising for granular matter, yet to be noticed [26, 27].
All three runs exhibit the same tendencies, and the av-
erage behaviour renders this general trend. We observe
how the interface orientation α remains rather steady
up to τ80 (Figure 9-a). After τ75 is reached (namely
when ∆Nth has decreased up to (1 − 75%)∆Nth,max),
each simulation sees the interface orientation rapidly
decreasing. We may understand this trend as the onset
of an erosive propagation of the failure. The error
associated to the linear regression becomes smaller, with
a significant improvement between τ70 et τ80 (Figure 9-b).

Following all these observations, it becomes apparent
that the gravity driven failure of a cohesive granular ma-
terial is an elusive process. From the analysis of Figure
9, we resolve that the interface is best captured at τ75,
thereby achieving a trade-off between a steady period far
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FIG. 9. a) Evolution of the orientation α of the static/ dis-
placed interface and b) evolution of the corresponding linear
fit error in the interval τ0 to τ80.

from rapid evolution, and a decreasing error and bet-
ter precision. Together with the choice R̄th = 0.15, we
assume that this criterion can deliver a trustworthy sig-
nature of the failure.

The validity of this choice needs nevertheless be ques-
tioned. Is it robust against the geometry of the columns,
in particular their heights? Is it valid for any value of
the contact adhesion Bog, namely for different stability
conditions?
These questions are addressed in the following, question-
ing the value of Rth while investigating the influence of
the systems height, and the approach of stability limit,
through dedicated simulation series.

IV. INFLUENCE OF THE COLUMN HEIGHT

In this section, columns with heights H̄ ranging from
30 to 120 are considered. For each value of H̄, three
independent simulations, ie with a different initial grain
arrangement, are performed. The contact adhesion in-
tensity is set to Bog = 50. We investigate how the failure
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FIG. 10. Influence of the column height H̄ on the displace-
ment distribution F .

process is affected by the system height, and how captur-
ing the failure onset and failure characteristics might be
challenged by the influence of the systems geometry.

A. On the distribution of displacement

Higher columns means that grains fall from a higher
point. They reach the ground and come to rest having
been displaced a greater distance with a greater velocity.
This obvious statement signifies that the distribution of
displacement is expected to differ significantly with the
height of the systems.

Applying the same procedure as in section III, ie
varying r̄d in the interval [0.01 :1.00] and counting the
number of grains nd whose cumulative displacement
exceeds r̄d at Tf , we plot the displacement distribution
F for all systems with H̄ ∈ [30:120]. We recall that in all
these cases, the contact adhesion strength is Bog = 50.
The result is displayed in Figure 10. We observe very
clearly how larger height induces larger displacements,
leading to a larger proportion of displaced grains beyond
5d at Tf (rd/d = 5 not shown here). Concomitantly,
the peak characterising the larger probability of small
displacements is flatten.

In section III, we have discussed the existence of a
displacement criterion, based on the identification of
a displacement threshold Rth, to discriminate small
displacements - understood as a signature of diffuse
motion - and larger displacements - understood as the
signature of failure dynamics. Such a criterion is likely
to be affected by the variability of the distribution
shape. This is illustrated in Figure 10 for H̄=40, H̄=60
and H̄ = 80. Extrapolating the peak down to the value
of r̄d for which F would be zero, we derive R̄th for
each value of H̄. We obtain R̄th = 0.087 for H̄ = 40,
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R̄th = 0.151 for H̄ = 60, and R̄th = 0.276 for H̄ = 80.
Namely, the displacement threshold R̄th, based on the
displacements probability function, and meant to serve
as general criterion to identify failures, increases with
H̄.

B. Sensitivity of the measure of failure orientation
on the displacement criterion

The analysis discussed in section III, based on the dis-
placement distribution exhibited by the failure of a step
of height H̄=60, and for a contact adhesion Bond num-
ber Bog =50, led to the conclusion that a correct criterion
to filter out failure dynamics from diffuse motion was a
displacement threshold R̄th = 0.15. Ideally, the same
criterion should be used to characterise the failure of dif-
fering systems, if they are to be compared.
Figure 10 is in immediate conflict with this statement:
how could a criterion, based on the displacement dis-
tribution during failure, remain a consistent choice for
systems with a configuration coinciding with a different
displacement distribution?
To answer this sensitive question, we consider the
columns with H̄ = 40 and H̄ = 80. For each value of H̄,
we either chose R̄th = 0.15, as was suggested by the anal-
ysis presented in III for H̄ = 60 (Figure 5), or we chose
the consistent value suggested by the displacement distri-
bution at the corresponding height, namely R̄th = 0.087
for H̄ = 40, and R̄th = 0.087 for H̄ = 80 (Figure 10).
Applying the procedure described in III, we then mea-
sure the failure angle adopting the two different values of
R̄th for each value of H̄.
The result is displayed in Figure 11, showing the failure
angle α depending on R̄th for the two heights H̄ = 40
and H̄ = 80. For each H̄, the results stemming from
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FIG. 12. Failure angle α as a function of the column height
H/d, for Bog = 50.

three independent runs and the mean value are given.

We observe for each height how changing the displace-
ment criterion affect the estimated value of the failure
angle. However, the difference remains smaller than the
dispersion of the data. Moreover, changing the displace-
ment criterion does not change the behaviour of the mean
values, namely the decrease of the failure angle with in-
creasing height. Hence, the sensitivity of the measure on
the displacement criterion, although being visible, is not
significant here.

Therefore, in the following, we do adopt a single dis-
placement criterion R̄th for characterising the failure of
all systems. We stick to the criterion that emerged from
the analysis of the failure of a column with height H̄ = 60
(section III), namely R̄th = 0.15.

C. Questioning failure’s linear shape

Now that we have opted for a single failure criterion
(R̄th = 0.15) independently of H̄, we measure the orien-
tation of the failure angle α for each system including
all values H̄ ∈ [30 : 120]. The results are shown in
Figure 12, where α(H) is plotted for each independent
run, together with the average value. We observe a
well-defined regular decrease of α with increasing height,
from ' 63 deg for H̄=30 to ' 45 deg for H̄=120.

A similar trend is observed experimentally by Gans
et al in [17, 28], using PIV pictures of the failure of
cohesion-controlled cohesive columns. Note that the use
of PIV technics also implies a constant displacement
threshold for all height, set by the definition of the
pictures and/or the acquisition frequency of the camera.
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This observation, namely the decrease of the failure
angle with the step height, is of no obvious practical use.
Yet if one assumes the cohesive granular matter to be an
ideal Coulomb material, then one may attempt a guess
at the internal friction from the evolution displayed in
Figure 12.
An ideal Coulomb material, satisfying τ = µσn + τc at
equilibrium, with τc the cohesive stress and µ = tanϕ
the coefficient of internal friction, would imply a relation
between the failure angle α and the friction angle ϕ if
the failure was a linear one. In that case, at incipient
failure, α = ϕ/2 + π/4 should be satisfied [16, 17, 26].
At incipient failure, the yielding height Hy, defined as
the minimum height over which failure systematically
occurs, is reached. Considering the result H̄y = 0.45Bog

from [29], and Bog = 50 in the present simulation series,
the yielding height for the here-simulated columns is
approximately H̄y = 22. The corresponding failure angle
can be estimated by extrapolating the evolution shown
in Figure 12. We reckon α(Hy) ' 67◦.
We can hence deduce the internal friction angle
ϕ = 2(α − π/4) = 44o, giving µ = tanϕ = 0.96. This
huge figure is simply unrealistic.

This nonsensical result may be an indication that the
cohesive granular matter does not behave like an ideal
Coulomb material. Or, most likely, this could be a
token that the assumption of a linear failure becomes
unrealistic for short columns. Gans relates in [28] that
for small aspect ratios, columns do break in two parts
from their base, leading do unduly large failure angle.
In our case, we do observe, for short columns, what
resembles a tumbling behaviour following a vertical
failure, rather than the smooth sliding of a detached
corner along a linear failure plane (Figure 13).
The increase of the failure angle with the decreasing
height can thus be understood as resulting from a com-
plex size-dependent breaking dynamics of the cohesive
system. The increasing proximity of the bottom in then
expected to induce finite-size effects.

D. Section’s conclusion

We have studied the failure of systems with different
height far from stability limit. We have shown that the
grains displacement distribution during failure is affected
by the initial height of the systems. This blurs the def-
inition of a single displacement criterion to characterise
the failure onset in all systems. We have investigated
the sensitivity of the failure characterisation to the dis-
placement criterion, and concluded that it was not sig-
nificant. The ensuing plot of the failure angle with the
system height gave an evolution consistent with experi-
mental measurements. It gives a mean of ruling out the
linearity of failure for small system height. At any rate,
we conclude that the failure of small systems cannot be
interpreted is terms of material behaviour, at least in this

FIG. 13. Tumbling/toppling failure for squat columns. Top:
for H̄ = 20 and Bog = 40, at t/T = 0.79 and t/T = 1.43;
Bottom: for H̄ = 25 and Bog = 50, at t/T = 0.78 and t/T =
2.13. Black colour shows grains displaced more than 0.25d.

configuration.

V. APPROACHING INCIPIENT FAILURE

A. Detecting stability limit

Investigating stability limit for different cohesion
would mean considering granular columns with different
height H̄ ∈ [30, 120], as in section IV. For each height,
incipient failure could be approached using a bisection
(or dichotomy) method. First, an interval of Bond
numbers in which incipient failure falls is identified,
bounded by a stable state (larger value of the Bond
number) and a yielding state (lower value of the Bond
number). This interval is then narrowed by successively
choosing a value of the Bond number halfway between
the two bounds, selecting the interval where incipient
failure falls. After repeating this procedure a number
of times, we should reach a state very close to incipient
failure. Let’s denote By the value of the Bond number
corresponding to the yielding state, for any value of H.

Although the procedure is a simple one, approaching By

is not necessarily a smooth process. Indeed, columns
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FIG. 14. Total displacement of the system centre of mass
RG/d, between final and initial states, as a function of the
contact adhesion Bog, for a system with H̄ = 60. Inset: same
thing but for an alternative simulation (run B).

do exhibit a puzzling behaviour close to stability limit,
reflecting the increasing role of disorder and fluctuations
when approaching a critical state like incipient failure.
Accordingly, the initial packing arrangement induces
a large variability of results. In addition, a slightly
unstable system starting to yield slumps under the
yielding height and may thereby stabilise. This makes
the identification of stability ambiguous, unless one
decides that no yielding at all must occur. In the case
of 2D simulation, that would mean unduly large values
of the Bond number. The complexity of the response
of the systems hence forms a tangible limitation to the
bisection method.

Nevertheless, there is no question that increasing con-
tact adhesion leads in general to a more stable state. This
is illustrated in Figure 14, for an example system with
height H̄ = 60d. The total displacement of the system
centre of mass RG/d, between final and initial states, is
plotted as a function of the contact adhesion, ie the Bond
number Bog. Expectedly, we observe how lower values of
Bog induce a larger displacement of the centre of mass
RG. More to the point, we observe a discontinuity in the
evolution of RG. This corresponds to a sharp transition
in the displacement of the centre of mass, between small
(RG/d < 1) and larger (RG/d > 2) displacements. This
transition may be interpreted as the passage through sta-
bility limit.
These different behaviours are also illustrated in Fig-
ure 15, where the time evolution of the mean velocity
is shown for this same column of height H̄ = 60, for
4 specific values of the Bond number (circled points in
Figure14). For small Bond (Bog = 50), namely a weak
contact adhesion, the large velocity reveals a fully devel-
oping collapse, eventually stabilising completely. For an

0.0
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〉/
√
g
d
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Bog = 360

FIG. 15. Evolution of the system average velocity at H̄ = 60
for 4 different Bond numbers corresponding to the circled data
point in Figure 14.

intermediate value (Bog =190), the velocity no longer in-
creases immediately, but goes through a phase of low val-
ues, betraying slow deformation, which eventually leads
to a peak revealing a collapse. For a slightly larger Bond
value (Bog = 191), the system is stable; the velocity no
longer increases but remains at a very low level, be-
speaking a slow creep. For a much larger Bond value
(Bog =360), a creep motion is still visible.

This ”regular” behaviour is however no absolute rule, and
other systems (as ”run B” in the inset graph in Figure
14) may oppose the previously described simple scenario
of stability. In the ”run B” case, differing only by the
grains arrangement in the initial state, lower values of
the contact adhesion Bog lead to a more stable system.
A first interpretation may be that, by making bonds more
fragile by lowering Bog, we allow the system to break a
net of contacts that was imposing a fatal stress to the
system, thereby getting rid of a threat to stability.
Another interpretation is that the sole position of the
centre of mass is no sufficient quantification of the sta-
bility of the system, which is indeed very likely.

We notice that the two last stable occurrences on Figure
15 (Bog =191 and Bog =360), although never collapsing,
never attain a zero velocity. Beside the occasional detach-
ment of individual grains from the edge of the column,
velocity fluctuations develop and take place steadily all
through the rest of the simulation. We observe here a
numerical artefact, induced by the existence of an adhe-
sive force threshold at contacts: while gravity tends to
separate grains and causes contact to open, the adhe-
sive threshold reverses the motion and causes contacts to
close again [30]. Because no damping at contact is intro-
duced in Contact Dynamics methods, as is the case in
Molecular Dynamics, contacts oscillate without opening,
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data points in 14 : Bog = 50 (large collapse), Bog = 190
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states). For a system with H̄ = 60.

and generate corresponding velocity oscillations. These
oscillations are yet of small amplitude: the maximum os-
cillations are of the order of 0.05

√
gd (
√
gd ' 0.22 in

this work).

These oscillations occur essentially at large adhesion
(large Bond number Bog), when the stability of the
system allows for perilous equilibrium configurations.
Weighty clusters of grains may then challenge the
adhesive strength of contacts, leading to long-lasting
attraction-repulsion sequences. By contrast, fully devel-
oped collapses, as occurs for Bog =50, lead to a complete
relaxation of contact stresses, and a truly zero-velocity
final rest.

B. Failure angle at critical state

It would certainly be most interesting to have access
to the failure angle at incipient failure. Indeed, if the
hypothesis of an ideal Coulomb material was correct,
that would give us right away an estimation of the
internal friction of the material. However, section IV has
shown how the failure characteristics are affected by the
height and dynamics of the failing system. There is no
reason to suppose that investigating the failure of sys-
tems at the approach of stability limit needs less caution.

Approaching stability limit means that grains become
less mobile: the distribution of grains displacement will
be affected. Figure 16 for instance, shows the distribu-
tion of grains displacement F for all simulations featured
in Figure 15: for a small contact adhesion Bog = 50,
corresponding to a large collapse, for an intermediate
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FIG. 17. Position of the static/failing interface for a dis-
placement criterion Rth/d = 0.15 close to stability limit, for
Bog = 200, 195, 193 andBog = 191, for a system with H̄ = 60.
Inset: corresponding orientation α of the failure.

value Bog = 190 corresponding to a smaller collapse,
for a slightly larger one Bog = 191 corresponding to
a stable state, and for a much larger Bog = 360. We
observe how increasing the contact adhesion is reflected
by an increase of the proportion of grains displaced
of a small distance (< 1d), but a rapid decrease of
the proportion of grains displaced of a larger distance,
eventually falling to zero. The larger displacements at
high cohesion coincide with an initial crumbling of the
edge of the column, characterised by the detachment of
individual grains poorly anchored on the packing side.
However the significant increase of small displacements
with adhesion strength is less obvious to explain. It very
likely coincides with a general slumping of the structure,
where diffuse arrangements of grains in the bulk occur;
a definite statement would however require a dedicated
work.

The variability of the grains displacement distribution
F with Bog makes it unlikely that it may serve as a ba-
sis for electing a displacement threshold Rth for detect-
ing the failure, as is attempted in section III. Hence,
rather than trying to establish a criterion to detect fail-
ures, we will rather try to assert the sensitivity of the
measure to the criterion. More specifically, we examine
what changes in the measure are brought by changes in
the displacement criterion Rth. We also question the ef-
fect of different adhesion Bog close to stability limit on
the identification of the failure.

1. Getting closer to By

The example simulation featured in Figure 14 (H̄=60)
gives us an adequate set of collapses to probe the effect of
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displacement criterion Rth applied for the detection of the
failure. For comparison, the orientation of the failure for the
same system but with Bog =50 is also shown.

contact adhesion Bog onto the failure orientation at the
approach of stability limit. From the final position of the
centre of mass depending on contact adhesion, we may
suppose that the values Bog =200, 195, 193 and Bog =191
are all realistic candidates for the critical Bond value By.
We suppose that the displacement criterion R̄th =0.15 is
appropriate to detect the occurrence of a failure in this
interval of adhesion. Applying the procedure described
in section III, we analyse each simulation and derive the
orientation of the failure plane.
The outcome is displayed in Figure 17, showing the sig-
nature of the failure for each simulation given by the
static-displaced material interface; the inset graph shows
the corresponding orientation as a function of the ad-
hesion Bog. Both graphs show that little difference is
induced by variations of the value of Bog at the approach
of stability limit/incipient failure: the variations of fail-
ure angle α are smaller than 3 degrees. It gives a mean
failure orientation of α = 51.6 deg, leading to a friction
angle of ϕ = 13.2 and a friction coefficient µ ' 0.23.
These values are small, however they are perfectly real-
istic for 2D numerical spherical grains with inter-grain
friction µc = 0.2 [31].
We hence conclude that the uncertainty related to the
determination of By at stability limit has no crucial con-
sequence on the measure of the failure angle.

2. Sensitivity to the displacement criterion Rth at stability
limit By

Another difficulty in detecting the failure close to sta-
bility limit is that the distribution of the displacement
of the grains does no longer display a smooth shape al-
lowing to discriminate between diffuse and failure-related
motion. Instead, a general slump seems to emerge, from

which no signature of an incipient failure comes out (Fig-
ure 16). For this reason, electing a reliable displacement
criterion to detect failure is difficult and uncertain.

Because of this uncertainty, it is important to assert the
sensitivity of the measure to the displacement criterion.
We consider the same system as used so far to illustrate
this section, with H̄ = 60 (featured in Figure 14, Figure
15, Figure 16 and Figure 17).

The previous paragraph has convinced us that a small
degree of uncertainty on the estimation of the adhesion
at stability limit By has no tangible effect on the fail-
ure characterisation. We thus feel confident in choosing
Bog = By ' 191 as a system at stability limit, it being
the smallest value of adhesion for which that system re-
mains apparently stable in terms of grains displacement
(Figure 14). Following the steps described is section III,
we apply different displacement threshold to detect the
failure: we test the values Rth = 0.05, 0.10, 0.15, 0.20
and Rth = 0.25.
The outcome is displayed in Figure 18. The variations of
α with Rth remain small: the extremal cases Rth = 0.05
and Rth = 0.25 imply a difference of ' 3 deg between
the two measures of α, when the interval of criterion
Rth ∈ [0.10 : 0.20] induces only ' 1.1 deg variations.
In this last case, the measure of α seems robust against
small variations of Rth.
Interestingly, carrying the same analysis but away from
stability limit, with a much lower adhesion Bog = 50,
gives exactly the same conclusion. However, for all val-
ues of Rth, the measure of α is lower of about ' 3 deg.

C. Section’s conclusion

In this section, we have approached stability limit for
an example system namely a column with H̄ = 60. Do-
ing so, we come across the complexity of the response of
granular systems in general, and occasional unexpected
behaviour like stability being increased by lowering con-
tact adhesion. Although this last instance is by no mean
a general observation, it stresses the fact that stability
limit in granular systems may be difficult to approach,
all the more for small systems as studied here.
We observe that stability is nevertheless accompanied by
a slight slump of the structure. The fact that the simula-
tions are 2D and grains are disks certainly amplifies this
phenomena, however we believe the latter remains rele-
vant for real systems, at least in the range of moderate
adhesion as applied here.
The onset of a failure at stability limit was characterised,
and shows that small variations of the value of contact
adhesion close to stability limit poorly affect the failure
orientation. The characterisation of the failure is also
fairly robust against the displacement criterion applied,
in the range [0.1d:0.2d].



13

2
3
4
5
6
7
8
9

10

20 40 60 80 100 120

∆
α

H/d

Rth =0.087
Rth =0.150
Rth =0.276

FIG. 19. Range of value of failure orientation ∆α measured
in section IV for different systems height H and different dis-
placement criterion Rth, for a contact adhesion Bog =50.

VI. DISCUSSION

We have carried out simulations series of cohesive
granular collapse focussing on the failure process. More
specifically, the existence of a reliable criterion to
characterise the failure, specifically its orientation, was
discussed. In a first step, a criterion was elected based on
the distribution on the grains cumulative displacement
over the duration of the failure, and backed by the study
of failure time-evolution of an example system. The
elusive nature of granular failure was however, made
fully apparent.
The effect of both system initial height and contact
adhesive properties on the value and definition of a dis-
placement criterion, was then investigated. Essentially,
the conclusions are:
i) the system geometry, in particular its height, has a
significant influence on the value of the displacement
criterion,
ii) the system cohesion stemming from contact adhesion,
changes the displacement distribution shape and blurs
the definition of a criterion,
iii) the measure of a failure plane orientation is rather
robust against small variations of the criterion, and
against imprecisions in the identification of the stability
limit.
The work stresses that a finer quantification of stability
limit in unconfined yielding situation is nevertheless
needed. Yet, it suggests that imprecisions in the election
of a failure criterion should have a marginal effect on the
measure of the failure orientation.

However, it is important here to clarify what ”robust”
and ”marginal effect” means in the present study.
Granular packings are, intrinsically, disordered systems.
Their behaviour is the result of complex interactions
between many bodies, and often falls into a dispersion
interval around a mean trend. This is for instance the

case for the angle of stability [27].

In the present study, failure angle are measured.
Uncertainty may possibly result from the measuring
methodology; however, a certain dispersion of the
measure is expected simply because of the disordered
nature of the systems [26], as follows.
Considering different systems height H, and different
displacement criteria Rth, the failure of three indepen-
dent systems was analysed, namely systems differing
only by the geometrical arrangement of the grains (see
generation method in section II A). The dispersion of the
results ∆α can thus be evaluated as the distance sepa-
rating the maximum and minimum angle α measured for
these three independent runs at a given H and Rth. The
result is summarised in Figure 19, where the dispersion
∆α is plotted for each system size H investigated (and
each Rth when the measure was performed). A large
scattering can be observed: 5.28 deg on averaged,
especially for small systems. A pic ∆α = 10 deg arise
for H̄ = 40, and the minimum dispersion of ∆α= 2 deg
is observed for H̄=120. From this general evolution, we
may conclude that any dispersion less than 3 degrees
can be coined ”marginal”, and the criterion used ”fairly
robust”. This is not entirely satisfying in the perspective
of measuring fine variations, but it is correct to discuss
general trend.

Certainly the small size of the samples amplifies the
role of fluctuations and increases the dispersion of the
data, as suggested by Figure 19. Yet it allows for a
detailed look into the destabilisation mechanism. This
includes identifying clues of a tumbling motion, and
dismissing the likelihood of a linear failure for small
systems. This also permits to single out non-trivial
equilibrium situations, where decreasing contact adhe-
sion leads to an apparently more stable construction.
This stresses the need for a more detailed description
and understanding of the stability of a cohesive granular
packing under gravity, possibly including the cohesive
force network and the contact density and anisotropy.

In the same line, although the distribution of the grains
displacement is instructive, it is alone insufficient to
filter out the effect of geometry and cohesion. The
orientation of the displacement, their variations in time,
or a measure of the local volume fraction, are candidate
to improve the identification of the failure.
Another aspect of interest is the influence of time. When
increasing the contact adhesion, and thus the overall
cohesion of the packing, we encounter systems which
remain stable for a certain lapse of time, but eventually
fail. How long should a simulation run for us to be
confident on the systems stability? How does ageing
manifest itself in the packing structure? How to filter
out numerical effects?

Finally, an important question is the relevance of model
cohesive granular samples to geotechnical applications.
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There is an obvious issue of system size, which might
however not be so crucial for large discrete simulations,
for which finite-size effects can be, if not ruled out, cir-
cumvented. A fundamental issue is, however, the initial
state of the samples. Soils result from a complex history,
very different from general laboratory or computing
conditions. It seems thus important to aim at a thorough

understanding of the effect of initial conditions onto fail-
ure onset: initial compaction, initial stress distribution
etc. Larger systems than the ”toy models” studied in the
present contribution may then bring interesting insight
in soil failure. Particularly, the shape of the failure might
be questioned, and the observation of circular shape,
generally met in-situ, may then open new research alleys.
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bilisation des pentes granulaire, PhD thesis, Institut de
Physique de Globe de Paris (2002)


