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A modified shallow-water model is presented for the collapse of tall columns of grains.
The flow is divided in two parts. Depth-averaged shallow-water equations are applied
to a thin horizontally spreading layer which is subjected to Coulombic friction. The
falling mass of grains is gradually added to the zone of the initial column during the
free-fall time of the column. This ‘rain’ is assumed to have no horizontal momentum.
The results obtained here are in agreement with both planar and axisymmetric
experiments over a range of aspect ratio a. In particular, the runout distance is found
to vary as a0.65 (planar) and a0.52 (axisymmetric). The flow dynamics compares well
with discrete simulations which have been successfully compared with experiments.

1. Introduction
Flows and spreading of granular mixtures are a central problem in geophysics and

risk assessment. Real geophysical flows such as rock avalanches and dry debris flows
involve materials of great complexity: rocks of various sizes and shapes, uncon-
solidated soils, and ashes. Many features of such flows can be reproduced in small-scale
experiments using model granular materials. These allow for a better understanding
of the dynamics of natural flow and provide a basis for the improvement of continuum
models.

In geophysical flows, such as landslides or pyroclastic flows, the prediction of the
runout is crucial for hazard prevention. Collapse and spreading of two-dimensional
and cylindrical columns of grains onto a horizontal plane have been recently
investigated in laboratory experiments to characterize better this runout distance
(Lube et al. 2004; Lajeunesse, Mangeney-Castelnau & Vilotte 2004). In these experi-
ments, the flow is only driven by the collapse and is highly unsteady. The most
striking result is that the runout distance depends only on the initial geometry of the
column and not on the size and type of grain. If h0 and r0 are the initial height and
the initial radius of the column respectively, and a = h0/r0 is the initial aspect ratio,
then the runout distance r∞ obeys the following relations for cylindrical columns:

r∞ − r0

r0

∝
{

a for a < a0,

a1/2 for a > a0,
(1.1)

where Lube et al. (2004) found a0 = 1.7 and Lajeunesse et al. (2004) found a0 = 0.74. In
this paper, we aim to reproduce these experimental scaling laws in the case of tall
columns (a > 2) using a shallow-water approach. The case of squat columns (a < 2) has
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already been studied with the shallow-water equations by Mangeney-Castelnau et al.
(2004).

A depth-averaged continuum model for the flow of granular material was first
introduced by Savage & Hutter (1989) to describe avalanches on inclines. This model
with a constant basal friction coefficient was successfully applied (Gray, Wieland
& Hutter 1999) to predict the motion of granular material on steep slopes in two
and three dimensions. Pouliquen & Forterre (2002) introduced a more sophisticated
friction law to reproduce the motion of a granular mass on a rough inclined plane.
Yet in the highly unsteady case of a column collapsing due to its own weight, this
model fails to recover the behaviour observed experimentally at large aspect ratios. In
particular the runout distance obtained scales with h0/µ, and this overestimates the
real runout. This failure is not surprising as the initial aspect ratio of the column does
not satisfy the shallow-water hypothesis. Moreover, the vertical fall of the grains and
their collision with the bottom plane and underlying grains is a source of important
dissipation, which cannot be accounted for by the classical shallow-water equations,
where basal friction is the only source of dissipation.

This paper presents a new approach using shallow-water equations. The flow is
divided in two parts. Shallow-water depth-averaged equations are applied to the hori-
zontally flowing layer of material which is subjected to Coulombic friction. Material is
gradually added to the flow during a time corresponding to the free-fall of the column.
This ‘rain’ is assumed to have no horizontal momentum. By adding mass gradually,
the input of potential energy into the system is much lower than the initial energy
of the full column. This takes into account the energy dissipated during the collapse.
The modified model reproduces over a large range of aspect ratio a the experimental
scaling laws for the runout distance and final height in both planar and axisymmetric
geometries. In addition it gives satisfactory results for the dynamics of the flow.

At the same time, discrete simulations have been carried out in planar geometry.
They reproduce the experimental observations for the column collapse (Staron &
Hinch 2005), while giving a powerful insight into the internal structure of the
flow. Shallow-water results are compared to these simulations. Comparisons of the
dynamics of the flow show good agreement, especially when the flow develops away
from the initial region.

2. Raining into shallow water
2.1. Modelling

Experimental observations show that the flow can be divided in two parts. While
a thin layer of material spreads horizontally, the column collapses in the central
region and feeds the flow. Depth-averaged equations can thus be used to describe the
spreading dynamics, while the addition of mass to the flow due to the collapse of the
column should also be included.

We wish to reproduce the spreading resulting from the collapse of a column of
grains of initial radius r0 and initial height h0. Being in a dense flow regime, we assume
that the flow is incompressible and of constant density ρ (Savage & Hutter 1989).
Moreover, we assume a plug-flow velocity profile.† The initial condition consists

† There are experimental indications that the velocity profile is not a plug flow. Within the
shallow-water equations one cannot find the evolution of the vertical profile of the velocity, but
only the evolution of the horizontal variation of the depth-averaged velocity. We hope this crude
level of description is sufficient to give the correct qualitative features of the runout.
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of a squat cylinder of initial height hi and of radius r0, such that hi = 0.1r0. To model
the increase of mass flowing in due to the column collapse, we add over the course
of time a volume flux per unit area

q(r, t) =

{
gt for 0 � r � r0,

0 for r > r0

to the initial cylinder during a time interval corresponding to the free-fall of the col-
umn, namely for 0 � t � tf with tf =

√
2(h0 − hi)/g (Staron & Hinch 2005). Hence

we will use the mass conservation equation:

∂h

∂t
+

1

r

∂(ruh)

∂r
= q (2.1)

for the axisymmetric case and omitting the two metric factors of r in the planar case,
where h(r, t) is the local thickness and u(r, t) the depth-averaged velocity.

The momentum equation is given by

∂(hu)

∂t
+

1

r

∂(rhu2)

∂r
= −1

2
Kg

∂(h2)

∂r
− µgh, (2.2)

again for the axisymmetric case and omitting the two metric factors of r in the planar
case. Note that there is no term qu on the right-hand side, because we are assuming
that the mass is added with zero addition horizontal momentum.

The spreading term −Kgh ∂h/∂r is proportional to the material slope. The earth-
pressure coefficient K represents the ratio between the horizontal and vertical
normal stresses and is related to internal friction. It can be calculated in quasi-
static deformations following the standard Mohr–Coulomb plasticity model (Savage
& Hutter 1989). In shallow-water modelling of granular flows on inclined planes,
both Gray, Tai & Noelle (2003) and Pouliquen & Forterre (2002) observed a better
agreement with experimental results when using the hydraulic assumption K = 1. We
therefore set K =1 in the following.

The frictional term −µgh is the shear stress at the base and is proportional to the
vertical normal stress. The friction coefficient µ will be assumed to be constant, as in
Gray et al. (2003) or in Mangeney-Castelnau et al. (2004). Its value was calibrated
to optimize the comparison with discrete simulations results, and is set to 0.45. The
precise value does not affect the general behaviour, only the numerical coefficients.
For the simple history of the flow we are considering, we can assume that when the
flow stops at some location, it remains stationary there and a reduced value of the
friction force is able to resist the spreading term, i.e. we do not include the possibility
of the flow restarting or reversing.

2.2. Numerical method

The equations are non-dimensionalized using r0 and t0 =
√

2r0/g. Although K and
µ could be scaled out of the problem, they are the coefficients through which the
internal and basal friction appear in the model so they will be kept in the equations.
A simple numerical code has been developed and validated to solve this problem.
More refined numerics solving the classical depth-averaged equations can be found
in Tai et al. (2002) or Mangeney-Castelnau et al. (2004).

A standard Eulerian shock-capturing method based on a first-order Roe solver is
used to solve the conservative system of variables h and uh (Hirsch 1988). Keeping to
a first-order scheme enables this simple model to cope with the shock waves generated
through the addition of mass with no further numerical refinements.
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The typical grid has 1000 points with �t = 10−3. The use of an Eulerian grid without
any front tracking implies the absence of any real ‘dry zone’ where the thickness of
the flow is zero. There always exists a steady prelayer of negligible thickness ε =10−7

in which u is set to zero. We have checked that this prelayer has a negligible effect
on the behaviour as long as ε � 10−3r0.

With µ = 0 and no mass addition, our equations are identical to those for the fluid
dam-break classical problem, for which an analytic solution based on the method
of characteristics is available in the planar case. This analogy has enabled us to
validate our code. Another validation was obtained by recovering results obtained by
Mangeney-Castelnau et al. (2004) for small-aspect-ratio columns without any ‘rain’.

We investigated aspect ratios varying from 2 to 30, with four different initial values
of the radius r0. Comparisons with discrete simulations were made using the same
dimensional values for the initial radius and height.

The choice of the initial condition, a cylinder of initial height hi = 0.1r0, is justified
by discrete simulations showing that the main part of the column collapses in free
fall to a height comparable with the initial radius. We have investigated the influence
of the thickness of this initial layer on the spreading dynamics. For hi � r0 the results
are not affected by the initial condition, apart from the propagation of the front at
short times. For hi � 1.5 r0 the model fails to recover the correct behaviour, especially
the scalings with a of the runout and final height.

2.3. Discrete simulations

In contrast to shallow-water equations, and continuum models in general, discrete
simulation methods take into account the existence of the individual grains forming
the granular media. Hypotheses on the nature of the interactions between the grains
are thus necessary. Different models for contacts can be adopted, the discussion of
which is beyond the scope of this paper.

The simulations discussed here were carried out using the Contact Dynamics (CD)
algorithm (Moreau 1988; Jean 1994) in two dimensions. This method supposes
perfectly rigid grains interacting through geometrical exclusion (ensuring that
overlapping between grains is forbidden) and a simple Coulombic friction law. For
the simulations presented in this paper, the value of the coefficient of friction between
the grains µm was set to 1. Moreover, the coefficient of restitution for collisions e

was set to 0.5. Typically, the aspect ratio of the column ranges from 2 to 15, and
the number of grains ranges from 2000 to 8000. The columns were prepared by the
random rain of grains into a cylinder. At the beginning of the experiment, the cylinder
is removed and the grains fall in response to gravity. The bottom plane over which
the grains spread is perfectly smooth, and the contacts between the grains and the
plane have the same properties as the contacts between the grains themselves.

A detailed description of the CD simulations is presented elsewhere (Staron &
Hinch 2005). Let us just mention that both the flow dynamics and the scaling laws
obtained for the runout distance are in good agreement with the experimental results:
(r∞ − r0)/r0 = 3.25a0.7 for a � 2.

3. Final runout distance and height, and dynamics of the flow
3.1. Final runout and final central height

One of the key points that the classical shallow-water model fails to reproduce is
the scaling of the runout and final height. Indeed, classical shallow-water approaches
give a runout distance increasing linearly with a, as expected from a simple friction
behaviour. The runout distance and final central height obtained with the present
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Figure 1. The runout distance r∞ − r0 (�) normalized by the initial radius r0 and the final
central height h∞ (�) plotted as functions of the initial aspect ratio a = h0/r0 for planar
(a) and axisymmetric (b) cases. The straight lines are power law an with index n taking the
values indicated.

method are plotted figure 1 as a function of the aspect ratio a in both planar and
axisymmetric cases. Two flow regimes clearly appear on these graphs.

For 2 � a � 10, the runout scales as

(r∞ − r0)/r0 = 4.4a0.65 in planar geometry, (3.1)

(r∞ − r0)/r0 = 3.2a0.52 in axisymmetric geometry. (3.2)

The dependence in an appears to be in very good agreement with experimental
results. Quasi-two-dimensional experiments give n equal to 2/3 (Lube et al. 2005)
or 0.65 (Balmforth & Kerswell 2005). In axisymmetric geometry, both Lajeunesse
et al. (2004) and Lube et al. (2004) find an exponent n ≈ 0.5. For the first time,
a continuum model is able to reproduce these experimental results in this range of
a. Our prefactors 4.4 (planar) and 3.2 (axisymmetric) were obtained with a basal
friction coefficient µ = 0.45 and they overestimate the experimental results by a factor
2. We find that this prefactor varies approximately like 1/µ. This dependence on
friction is compatible with observations by Lajeunesse et al. (2004) and Balmforth &
Kerswell (2005) but not by Lube et al. (2004). In order to match the results obtained
by Lube et al. (2005, 2004), our basal friction coefficient should be set to 0.9 in the
planar, and 0.8 in the axisymmetric configuration. Such a high value of the basal
friction coefficient might represent the dissipation occurring within the real flows due
to vertical velocity variations, neglected in our plug-flow model.

In the second regime a � 10, the runout distance displays a different behaviour in
both geometries:

(r∞ − r0)/r0 = 8.2a0.35 in planar geometry, (3.3)

(r∞ − r0)/r0 = 5.2a0.29 in axisymmetric geometry. (3.4)

This change is not observed in experiments; here our model fails to reproduce the cor-
rect runout for very tall columns. The discrepancy is less marked in the axisymmetric
geometry.

The evolution of the final central height follows a similar pattern. In planar geo-
metry,

h∞/r0 = 0.66a0.35 for 2 � a � 10, (3.5)

h∞/r0 = 0.38a0.57 for a � 10, (3.6)
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Figure 2. Shape of the deposit for different aspect ratios: (a) the planar case, (b) the
axisymmetric. h(r, ∞) is normalized by h∞ and r by r∞.

with a prefactor varying approximatively with µ. This should be compared with
Lube et al.’s (2005) results who found for a > 1.15 a similar dependence with a:
h∞/r0 = ka0.4 with k = 1 or 1.1 depending on the material used.

In the axisymmetric case, no change of the slope can be seen around a =10. The
final central height stays roughly constant, equal to a fraction of the initial radius over
the whole range 2 � a � 30: h∞/r0 = 0.52a−0.02. This quite surprising result matches
the experimental law given by Lajeunesse et al. (2004) who found for a > 0.74
that h∞/r0 = 0.74. Lube et al. (2004) found a weak dependence with 0.88a1/6 for
1.7 � a � 10, followed by a decrease for higher a.

3.2. Shape of the deposit

In the planar case, the normalized deposit h(r, ∞)/h∞ versus r/r∞ exhibits the
universal shape of a long thin triangle independent of the initial aspect ratio for
a � 10 (figure 2a). This interesting property has also been observed in two-dimensional
experiments (Balmforth & Kerswell 2005). The a = 12.2 curve deviates slightly from
the other curves. The universal shape enables us to relate the previous power laws
for the final runout and the height using volume conservation h∞r∞ ∝ h0r0 = ar2

0 .
For a < 10, we find h∞r∞ ∝ a1.0r2

0 with the scaling laws 3.1 and 3.5, and a0.92r2
0 for

a � 10 with equations 3.3 and 3.6. In experiments, Balmforth & Kerswell (2005) have
observed that the final volume seems to increase by less than 10 % compared to the
initial volume. This indicates that the averaged particle fraction remained roughly
constant from the initial to the final states.

No universal shape is found in the axisymmetric case (figure 2b). The maximum
height is reached in the centre of the deposit and a secondary maximum appears
half-way along the runout. The height of this secondary maximum increases with a.
The absence of a universal shape agrees with results from Lube et al. (2004). Although
both Lajeunesse et al. (2004) and Lube et al. (2004) report only a slight secondary
bump in their experiments for high aspect ratios (“Mexican hat shape”, Lajeunesse
et al. 2004), our numerical results greatly overestimate the bump. For a � 10, we
recover the volume conservation in spite of the shape evolution: h∞r2

∞ ∝ a1.02r3
0 .

In both geometries, the final slope at the front is much lower than the slope that
would be given by an internal angle of friction δ = tan−1(µ) = 24◦.

3.3. Front propagation and duration of the flow

One of the interesting observations made in the experiments is of the dynamics of the
front, i.e. the moving edge of the evolving deposit. An initial phase of acceleration is
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Figure 3. Front propagation in the planar case. (r − r0)/(r∞ − r0) is plotted as a function of
t/t∞. Shallow-water results (thick line) and discrete simulations results (thin line) are plotted for
a = 7.7. r∞ − r0 = 16.03r0 for discrete simulation; r∞ − r0 = 16.6r0 for shallow-water simulations
and t∞ = 8.36

√
2r0/g (discrete) or 9.4

√
2r0/g (shallow-water). The square marks the end of the

free fall tf .

followed by a long phase of constant velocity, and finally a short phase of abrupt de-
celeration before the flow stops. Once the front has stopped most of the grains are sta-
tionary, and only minor surface flows involving a few particles are observed. Figure 3
displays the results obtained with our model and with discrete simulations for the
same initial condition of a =7.7. Although the final time t∞ and runout distance r∞
are slightly higher for this a in the shallow-water calculation, the agreement between
the two is quite good. The shallow-water model reproduces a phase of acceleration
followed by a phase of constant velocity. This constant-velocity phase results from a
balance between deceleration due to basal friction and acceleration due to the slope
∂h/∂r . A final short period of deceleration during which frictional effects overcome the
flow leads to the final full stop of the front at t = t∞. One should note that this stop is
well-defined, contrary to what would be observed in classical fluid dynamics. The dura-
tion of the constant-velocity and the deceleration phases are quite similar in our
shallow-water calculation and in the simulations, and the final runout is almost
identical.

In the short initial phase, the discrete simulation flow accelerates in agreement with
experiments. The shallow-water calculation has a small non-zero initial velocity due
to the initial condition hi =0.1r0, and then has a short phase of constant acceleration.

In axisymmetric geometry, the front propagation follows the same behaviour. After
an initial acceleration phase, the velocity remains constant during the main part of
the flow, and then a brief phase of deceleration leads to the sudden stop of the mass.

The duration of the numerical flow t∞/
√

2r0/g as a function of the aspect ratio a

is displayed figure 4 for planar and axisymmetric calculations. The evolution is quite
similar in the two geometries:

t∞/
√

2r0/g = 4.35a0.36 in planar geometry, (3.7)

t∞/
√

2r0/g = 3.75a0.33 in axisymmetric. (3.8)



266 E. Larrieu, L. Staron and E. J. Hinch

a

t∞

0.36

0.33

100 101100

101

√2r0/g

Figure 4. Duration of the runout t∞/
√

2r0/g as a function of a in planar (�) and axisymmetric
(�) experiments. The straight lines are power law an with index n taking the values indicated.

r/r0

h(r, t)
r0

10 15 200 5

1

2

3

4

Figure 5. Time evolution of the deposits. Rescaled shape h/r0 as a function of r/r0 for a = 9.1.
Profiles are plotted at times t/t∞ = 0.3(0.1)1.0. Thick and thin lines represent shallow-water
and discrete simulations respectively.

This dependence is continuous through a = 10 contrary to the previous changes in
slope observed in figure 1 for the runout and final height. The power-law behaviour
seems to be almost independent of the geometry, as observed in experiments by
Lube et al. (2004, 2005). In the experiments, however, a1/2 is found instead of our
a1/3, making t∞ proportional to the free-fall time

√
2h0/g. We thus underestimate the

duration of the flow, although the prefactors produce less difference in the range of
the experiments.

4. Comparison with discrete simulations
4.1. Height profiles

Figure 5 displays the evolution of the height profiles in time for a = 9.1. The profiles
given by shallow-water calculations show a reasonably good agreement with the
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Figure 6. Time evolution of the velocity profile u(r, t)/
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gr0 as a function of r/r0 for a = 9.1
at the same times and with the same notation as figure 5.

discrete simulations. The agreement improves in time up to the final stage where the
two profiles are remarkably similar.

At the earliest time t =0.3t∞ = tf , the shallow-water results show an accumulation
of mass which has not yet been accelerated away as in the discrete simulations. This
is a feature of the shallow-water model where acceleration can only occur with slopes
whereas in experiments or discrete simulations material can be pushed away from the
initial release zone.

The slope at the nose seems to be constant in time during most of the flow t > tf .
This reflects the constant velocity observed in figure 3 where acceleration due to the
constant slope is exactly cancelled by deceleration due to the constant friction.

4.2. Velocity profiles

The evolution of the velocity profile in the spreading layer is readily available in
simulations but is quite difficult to measure experimentally. It is displayed figure 6 for
both shallow-water and discrete simulations results; for the discrete simulations, the
horizontal velocity has been depth-averaged. These results are in surprisingly good
agreement considering the rough hypothesis of plug-flow velocity in the shallow-
water model. Figure 6 shows that the central part of the material remains stationary.
The velocity then increases linearly to a maximum, reached very close to the front.
This maximum remains roughly constant for a long time, in agreement with the
constant velocity of the front observed figure 3. The profile indicates that the material
is stretched during the whole flow. This figure also shows that the stopping front,
dividing the central stationary part from the outer moving material, propagates
outwards. This feature has been observed in experiments (Lube et al. 2005).

5. Energy budget
The initial potential energy in the tall column is E0 = 1

2
πgr2

0h
2
0 (axisymmetric) and

1
2
gr0h

2
0 (planar). If one were to use the shallow-water equations to describe the entire

collapse starting from this initial tall and very much non-shallow column, then the
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Figure 7. Energy balance for different aspect ratios. The data are normalized by the full
potential energy of the initial column E0. The final energy E∞/E0 (�) is equal to the energy
balance (Eq + Ei − Dµ − Dq )/E0 (�), where Ei is the initial potential energy (not plotted), Eq

(♦) is the potential energy due to the mass addition, Dµ (�) is the frictional dissipation and
Dq (	) the dissipation due to the mass addition.

initial potential energy is quickly converted by the equations into horizontal kinetic
energy with velocities O(

√
gh0). The sideways flow then decelerates at µg to run out

to a distance O(h0/µ), i.e. (r∞ − r0)/r0 ∝ a1, which is too far. Hence some energy
must be lost by another mechanism.

To understand the energetics of our modified version of shallow-water theory,
we first derive the local energy equation from equations (2.1) and (2.2) for the
conservation of mass and momentum,

∂

∂t

(
1

2
hu2 +

K

2
gh2

)
+

1

r

∂

∂r

(
rhu

(
1

2
u2 + Kgh

))
= qKgh − µghu − 1

2
qu2, (5.1)

for the axisymmetric case and omitting the two metric factors of r in the planar case.
We see on the right-hand side that potential energy is introduced by the rain, work
is done against basal friction, and in the final term energy is dissipated when the
rain with no horizontal velocity is mixed instantaneously into the sideways flow. One
might have anticipated that this last term was the key additional dissipation required
to shorten the runout distance, but we see in figure 7 that its integrated effect

Dq =

∫ tf

0

∫ r0

0

1

2
qu2 dr dt

(in the planar case) is small, less that 5 % of the initial potential energy E0 in the tall
column.

The important feature of our ‘rain’ modification turns out to be that the supply of
potential energy to drive the sideways flow is only

Eq =

∫ tf

0

∫ r0

0

qKgh dr dt



Raining into shallow water as a description of column collapse 269

(in the planar case). This is much lower that the initial potential energy in the tall
column, because the ‘rain’ is fed in at the height h(r, t) which is always significantly
lower than 1

2
h0. Our modified version of the shallow-water model therefore allows the

tall column to fall freely under gravity in so far as the mass input q is concerned, but
then says that the vertical kinetic energy is fully dissipated when the grains impact on
the base, leaving nothing to input into horizontal kinetic energy in the sideways flow.

The key question addressed by our modified version is now seen to be the piling up
caused by the ‘rain’ which is necessary to accelerate the grains away from the base of
the column, with important differences in this evacuation between axisymmetric and
planar geometries.

Figure 7 shows the various components in the energy budget for the collapse of
planar columns of different aspect ratios. We see that the supply of potential energy
Eq as a fraction of the total potential energy in the initial tall column E0 decreases
with aspect ratio, dropping to around 30 % by a =30. The dissipation due to the
mixing of the rain into the horizontal flow Dq is negligible compared with E0, while
the total dissipation by the basal friction

Dµ =

∫ t∞

0

∫ r(t)

0

µghu dr dt

(in the planar case) removes most of the supplied energy, leaving the final potential
energy when the flow has stopped

E∞ =

∫ r∞

0

K

2
gh2 dr dt

(in the planar case) at t = t∞. We have checked that our numerical code satisfied the
overall energy budget E∞ =Ei + Eq − Dµ − Dq , where Ei is the potential energy in
our initial condition hi =0.1r0 in r < ro.

6. Conclusion
Our modified shallow-water model is the first continuum model to reproduce, for

not too high aspect ratios a < 10, the correct runout dependence, a1/2 and a2/3, in
both axisymmetric and planar geometries. The final shape of the deposit is good in
planar geometry, where a universal shape is also found in experiments and discrete
simulations. As in the experiments, we find no universal shape in axisymmetric flow,
although our ‘Mexican hat’ shape is more pronounced. In both geometries, the front
runs at a constant velocity for most of the time, as in discrete simulations and
experiments. The planar shape and the velocity profiles evolve in time in agreement
with discrete simulations. The duration of the runout, however, is shorter than in the
experiments of Lube et al. (2004, 2005).

The key feature of our model is that a substantial part of the initial potential
energy in the tall column E0 is not supplied by the ‘rain’ in Eq , because we assume
all the vertical kinetic energy of the free-fall is lost on impact with the plane.

Our model fails for high aspect ratios. One explanation could be that the shallow-
water equations cannot push the grains away from the raining area with pressure but
must accelerate the flow away by having a surface slope. It seems that at high aspect
ratio this acceleration cannot keep up with the increasing mass flux in the rain, and
instead a temporary high central peak occurs, as in figure 5 at t/t∞ = 0.3. However, if
such an averaged continuum model cannot capture the whole dynamics of the flow,
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it is interesting that it is able to recover many features with the simplest ingredients:
basal friction and mass addition.
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