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Abstract

The thermal mixed convection boundary-layer ow over a at horizontal cooled plate
is revisited. It is shown that this ow is very similar to that one taking place in a free
convection hypersonic boundary layer (with a shock in x3=4): the observed singular
solutions which branch out may then be reinterpreted in the framework of \triple
deck" theory. Two salient structures emerge, one in double deck, if the buoyancy
is very small, and the other one in single deck, if the buoyancy is O(1). Those two
structures are a reinterpretation of Steinr�uck (94) results. A numerical simulation
of the unsteady boundary layer in the case of impulsively started and cooled plate
is carried out. It leads to the separation of the boundary layer as predicted by the
triple deck theory. A region of reverse ow is obtained which depends on the outow
boundary condition.

1 Introduction

Here we consider the mixed convection problem of an incompressible buoy-
ant (following the Boussinesq approximation) uid owing over a semi in�nite
horizontal at plate at a constant temperature lower than the incoming ow
temperature (see �gure 1 for a de�nition sketch). Obviously, for a given x
location, the uid temperature, by di�usion, increases from the wall value
towards that of the free stream. But for a �xed y location the convection in-
duces a longitudinal decrease of the temperature. The outcome is a buoyancy
induced stream wise adverse pressure gradient. This gradient brakes the ow,
and this creates an interaction between the thermics and the dynamics. This
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mechanism of mixed convection breakdown has been stated by Schneider &
Wasel (1985) [32] (other examples of re-computation with di�erent numer-
ical methods are reviewed by Steinr�uck (1994) [37]); they showed that this
interaction promotes a breakdown of the mixed boundary layer equation: at
a relatively small abscissa, the equations are abruptly singular. Instead of a
buoyant boundary layer a buoyant wall jet may be studied, the case of adia-
batic wall was studied by Daniels (1992) [10] and Daniels & Gargaro (1993)
[11], they found the same conclusions. The wall jet problem is solved numeri-
cally and asymptotically by Higuera (1997) [17] who notes that the equations
are not parabolic as he noted before in the case of the hydraulic jump which
is very similar in its behaviour.

To a certain extent this self induced braking may be explained through a
retroactive process involving integral concepts as follows: as the variation of
pressure is more or less proportional to the variation of the boundary layer
thickness (because of buoyancy: J , de�ned by equation (1), will be the pa-
rameter), then the increase of boundary layer thickness promotes a rise of
pressure, which decreases the velocity, the result is an increase of the bound-
ary layer thickness: the process is self promoting. The failure of the integral
method is presented in Schneider & Wasel's work (1985) [32]. Similar phenom-
ena were observed in interacting boundary layer ows and described in Stew-
artson (1964) [41] and in Le Balleur (1982) [22] with a self induced mechanism
involving variations of boundary layer thickness and pressure (the di�erence
being that in supersonic ows, the variations of the slope of the boundary layer
give rise to pressure changes). The key mechanism in supersonic and hyper-
sonic ows was introduced by Neiland (1969) [25] and Stewartson & Williams
(1969) [43]: it is the "triple deck" theory which clari�es the scales and the
equations involved in the interaction. Brown, Stewartson & Williams (1975)
[7] and Brown & Stewartson (1975) [6] successfully explained the branching
solutions calculated in strong hypersonic ows by Werle et al (1973) [46] and
the link with Neiland (1969) [25] (this is a free convection hypersonic bound-
ary layer where the shock and the boundary layer behave in x3=4). Since both
mechanism of "thermal mixed convection with low wall temperature" and of
the "strongly interacting hypersonic boundary layer" seem to follow qualita-
tively the same path, we propose to revisit the mixed convection with the
triple deck tool (see Smith's review (1982) [35] for other examples).

Thermal e�ects in boundary layer with triple deck have been already studied
in the case of strati�cation in the upper deck by Sykes (1978) [44] and without
buoyancy by Mendez et al. (1992) [24] or on a vertical plate by El Ha� (1994)
[12]. Some triple deck in mixed convection is in Lagr�ee (1994) [19], and is
extended herein.

In this paper we see (x3.1) that the result of the triple deck theory is that, in a
mixed thermal linearized boundary layer (cold wall with very small buoyancy
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J), there exist eigen solutions where pressure is proportional to the displace-
ment of the streamlines; this is like the birth of a hydraulic jump (Gajjar
& Smith (1983) [13], Bowles & Smith (1992) [3] and Higuera (1994) [16]) or
a hypersonic boundary layer (Brown et al. (1975) [7] and Gajjar & Smith
(1983) [13]). In the case of a hot wall, pressure is proportional to the negative
of the displacement of the streamlines in the main part of the boundary layer
which leads to no upstream inuence but this approach captures the Tollmien
Schlichting waves (Smith (1979) [34]). This triple deck result of strong self-
induced upstream inuence will be shown to be exactly the eigen function
found by Steinr�uck (1994) [37] but in the limit of small J . He showed that
small perturbations from the solution at a given location (before the previ-
ously computed singularity) are ampli�ed exponentially; so the position of
the singularity depends strongly on the ampli�cation of the small numerical
errors. If, thanks to a very re�ned calculation, the branching solutions are not
selected, the buoyancy becomes greater and greater. If it is of order O(1), a
self induced interaction is again possible, but, as we will show, at di�erent
scales (x3.2). In this case the overall process takes place in the thin wall layer
itself and there is no retroaction from the main part of the boundary layer
(this is similar to what happens in pipe ows: Smith (1976) [33], Saintlos &
Mauss (1996) [29]). This structure is similar in a certain sense with Daniels
(1992) [10] and with what Steinr�uck (1994) [37] refers to as the "other large
eigenvalues". We next examine the above breakdown using integral methods
(x4). A solution with a back ow valid after the singular point is exhibited
and discussed; links with triple deck analysis are presented.

Finally (x5) we present a boundary layer calculation with a simple �nite dif-
ference method of the complete problem. To avoid the preceding problems
unsteadiness is introduced: the plate is impulsively heated and started. We
will see that a good choice in discretising the longitudinal derivative in the
equations and a good choice of outow conditions prevent the spatial sin-
gularity: this allows the boundary layer to separate with neither evidence of
�nite time breakdown (Van Dommeln & Shen. (1980) [45]) nor instabilities.
The skin friction will be shown to be coherent with Steinr�uck (1994) results,
each of his branched solution may be interpreted as a solution of a domain of
di�erent length.
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Fig. 1. Sketch of the mixed convection boundary layer ow, the temperature of
the plate is di�erent from the temperature of the ow. If the plate is cooled, the
buoyancy induces an adverse pressure gradient.

2 Governing equations of the mixed convection

2.1 Equations

We consider an incompressible two dimensional ow past a semi-in�nite (heated
or cooled) horizontal at plate (�gure 1). The boundary layer equations are
obtained from the Navier Stokes counter parts subject to Boussinesq approxi-
mation for a large Reynolds number. A re-scaling of the dimensional quantities
is carried out with the dynamical boundary layer scales (with Æ = Re�1=2 with
Re = �1U1L=�):

u� = U1u; v� = ÆU1v;

x� = Lx; y� = ÆLy;

p� = p1 + �1U2
1p; T = T1 + (T0 � T1)�;

the result is the classical system (2- 5) of thermal mixed convection (Schnei-
der & Wasel (1985) [32]), Prandtl number is assumed to be of order unity
and hence set, (without to much loss of generality), to one while the Eckert
number is assumed suÆciently small to obtain the energy equation as (5)).
The remaining parameter is the Richardson number or buoyancy parameter:

J =
�g(T0 � T1)LRe�1=2

U2
1

; (1)
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it depends on � the thermal coeÆcient of expansion of the density in the
Boussinesq approximation. The transverse pressure term (4) contains the
gravity term, as equation (4) holds for terms greater than O( 1

Re
); we have

jJ j >> Re�1:

@

@x
u+

@

@y
v=0; (2)

u
@

@x
u+ v

@

@y
u=� @

@x
p+

@

@y

@

@y
u; (3)

0 = � @

@y
p + J�; (4)

u
@

@x
� + v

@

@y
� =

@

@y

@

@y
�; (5)

Boundary conditions are:

u(x; y = 0) = 0; v(x; y = 0) = 0; (6)

�(x; y = 0) = �w with �w = 1, u(x; y �! 1) = 1; �(x; y �! 1) =
0; p(x; y �!1) = 0.

2.2 Marching breakdown

In this work the length scale L and the parameter J are independent, it
contrasts with the situation in Schneider & Wasel (1985) [32] or in Daniels
& Gargaro (1993) [11]. In the "real mixed convection problem with stable
strati�cation ow", the "natural" longitudinal scale is e�ectively built with
Richardson number. It is the length that gives unit Richardson number
(
����g(T0 � T1)LTU�2

1 (U1LT�
�1)�1=2

��� = 1), so:

LT =
U1
�
(

U2
1

��g(T0 � T1)
)2:

Note that J2LT = L: Schneider & Wasel (1985) [32] (scaled with LT ) showed
that this system leads to a singularity when solved with a marching (in increas-
ing x) resolution. They showed that the breakdown occurs for a rather small
abscissa. This is the reason why Steinr�uck (1994) [37] (scaled with LT ) has
investigated how the system (2-5) behaves when x tends to 0. In �gure 2 are
displayed, with symbols, the reduced skin friction from previous works com-
piled by Steinr�uck. The curves with numbers show solution of the marching
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problem with slightly perturbed initial conditions and come from his analysis
near x = 0. Asymptotic analysis suggests, however, that it is better to con-
sider an intermediate scale L (with L << LT ) leading to Blasius boundary
layer (with this scales x tends to 0 is the nose e�ect) with a small thermal
perturbation gauged by jJ j << 1, this means that the Richardson number
built with this abscissa is smaller than one. So, we will introduce the triple
deck analysis.

Fig. 2. the reduced skin friction compiled and computed by Steinr�uck (JFM 94),
the numbered curves show solution of the marching problem with slightly perturbed
initial conditions.

3 Asymptotic analysis: the triple deck tool

3.1 Small J , with displacement

3.1.1 Main Deck

Here we look for eigen solutions in a boundary layer slightly perturbed by the
thermal e�ect in order to show that system (2-5) is not parabolic in x when
the plate is cooled. We use the word "parabolic" for a system of P.D.E. in
the sense of a system that can be integrated in marching in x direction from
upstream to downstream (with no separation). The basic ow, driven by the
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free stream uniform velocity, is a classical Blasius boundary layer (thermal
and dynamical e�ects are not coupled). We study how a localized disturbance
evolves at the distance L downstream from the leading edge. At this point,
the boundary layer thickness is Re�1=2L. Pure thermal convection is relevant
as long as the transverse gradient from equation (4) is small which implies
1 >> jJ j. So, in this framework, the forced thermal boundary layer is of the
same thickness as the dynamic one, and the velocity at station x = 1 is the
basic Blasius velocity pro�le (say U0(y), the transverse variable is then the
same as the self similar one) and � is simply �0(y) = 1� U0(y). The choice of
L smaller than LT suggests expanding in powers of a small parameter " linked
to J .

Having de�ned the "basic state", we follow the classical "triple deck" analysis
(Neiland (1970) [25] ), Stewartson & Williams (1969) [43], Smith (1982) [35],
and more precisely Lagr�ee (1995) [20]): system (2-5) is re-investigated with
a smaller longitudinal scale, say x3L (with x3 � 1 and x = 1 + x3�x), this
scale is suÆciently small so that the preceding pro�les may be considered as
frozen. The reason for this new scale is the fact that near the breakdown point
the gradient of the skin friction is in�nite at scale 1, so we hope to render it
O(1) at this smaller scale. This layer with height ÆL and length x3L is in
fact the "main deck". Next we suppose that the perturbation of longitudinal
speed in the "main deck" is of the order of " and the pressure of the order of
"2, where " is unknown (but depends on Æ; J and x3), so we recover that at
these scales the inviscid problem with no longitudinal pressure gradient. The
perturbations are then linked by an up to now unknown displacement function
of the boundary layer called �A(�x) by Stewartson. In the "main deck", the
adimensionalized velocities and temperature up to the order of " are:

u = U0(y) + "A(�x)U 0
0(y); v =

�"A0(�x)U0(y)

x3
& � = �0(y) + "A(�x)�00(y) (7)

For the temperature, as for the speed, there is a matching between the outer
limit of the main deck and the inner limit of the upper deck, and likewise
for the bottom of the main deck and the top of the lower deck (those decks
are de�ned latter). We see that the temperature behaves as the Stewartson S
function (total enthalpy) in hypersonic ows (Brown et al. (1975) [7], Brown &
Stewartson (1975) [6], Neiland (1986) [26] ). This perturbation of temperature
gives rise to a transverse change of pressure through the "main deck"; we
develop (4) in powers of " as follows:

@

@y
p0 + "

@

@y
p1 + "2

@

@y
p2 + 0("3) = J(�0(y) + "A(�x)�0(y)) + 0("3) (8)

At this stage, for jJ j << 1 by minor degeneration (i. e. to retain the max-
imum of terms), we put J = " ~J; because J is small with ~J being a reduced
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Richardson number of the order of 0(1). Looking at each power of ", we see
that the �rst term is zero (as we supposed in the Blasius Boundary layer);
the second one shows that there is a pressure strati�cation coming from basic
temperature pro�le (

R1
0 �0(y)dy), it does not depend on �x at the short scale

x3, and it will appear that such a term can be ignored in the following analysis;
the third one integrates (using �0(1) = 0; �0(0) = 1 by de�nition) as:

p2(�x; y!1)� p2(�x; y ! 0) = ~JA(�x)(�0(1)� �0(0)) = � ~JA(�x);

where p2(�x; y ! 1) splices with upper deck and p2(�x; y ! 0) with lower
deck hitherto both being not de�ned. The case J of the order of one will be
discussed later (x3.2), surprisingly, it implies again that p1 does not drive the
ow in the main deck.

3.1.2 Lower deck

From the solution (7) we see that the no slip condition is violated: u !
U 0
0(0)(y + "A); and �! �00(0)(y + "A) as y! 0: So we introduce a new layer

of thickness " (in boundary layer scales), and scale y by "�y; so the scale of
u is "�u and, by least degeneracy of equation (2), we have p = "2�p (which is
consistent with the matching "2p2(�x; y! 0) = "2�p(�x; �y !1) ) and v is of the
order of "=x3 . The convective di�usive equilibrium gives the relation between
x3 and ": x3 = "3: The problem of mixed convection near the wall is then:

@

@�x
�u+

@

@�y
�v = 0; (9)

�u
@

@�x
�u+ �v

@

@�y
�u = � d

d�x
�p+

@

@�y

@

@�y
�u; (10)

�u
@

@�x
�� + �v

@

@�y
�� =

@

@�y

@

@�y
��; (11)

Boundary conditions are no slip at the wall ��(�x; 0) = 1, A(�1) = 0; and
for �y ! 1; the matchings: �u ! U 0

0(0)(�y + A); �p ! p2(�x; y ! 0) and �� !
1 � U 0

0(0)(�y + A): This set of non linear equations is relevant in the "lower
deck" of length x3L = "3L and of height "ÆL placed at station 1; here, the
thermal and the dynamical problem are uncoupled. In this thin layer of small
extent, the pressure coming from the main deck is the most dangerous for the
velocity and may lead to separation.
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3.1.3 The upper deck

3.1.3.1 Possibility of retroaction with the external ow The per-
turbations of transverse velocity and pressure at the edge of the main deck
introduce a perturbation in the inviscid ow: the upper deck is of size "3 in
both directions. This perturbation is solved by the standard technique of lin-
earized subsonic perfect uid, this gives the Hilbert integral (the new pressure
displacement relation):

1

�

Z �A0
�x� � d� � p2(�x; y! 0) = � ~JA(�x)

and the usual gauge (Smith (1982) [35]): " = Æ�1=4 = Re�1=8 (so J = Re�1=8 ~J)
and this gives the lower limit for x3 = Re�3=8 in the preceding x. The e�ect
of the temperature is to add a new term proportional to the displacement
function A, it may be interpreted as a hydrostatic pressure variation.

3.1.3.2 Retroaction only in the boundary layer Consideration of (7)
shows that another (but equivalent) choice of " could have been made: " = jJ j.
With this choice, x3 = jJ j3 ; and the preceding relation reads:

jJ j�4Re�1=2
�

Z �A0
�x� �

d� � p2(�x; y! 0) = �(jJ j =J)A(�x):

This choice implies that we concentrate on thermal e�ects rather than on
perfect uid e�ects, if jJ j � Re�1=8 (note that Re�1=8 >> Re�1=2), the three
terms are of the same magnitude (as seen in the preceding paragraph). Now, if
jJ j >> Re�1=8 (or ~J bigger than one) there is no interaction of the boundary
layer with the external perfect uid, the thermal e�ect is dominant and the
pressure displacement relation degenerates in the form:

p2(�x; y ! 0) = �p(�x) = �A(�x); (12)

for a cold wall (J < 0), and in the form:

p2(�x; y ! 0) = �p(�x) = A(�x); (13)

for a hot one (J > 0), where in both cases Re�1=8 � jJ j � 1. This shows that
the upper deck is not necessary for the interaction to take place (as noted by
Bowles (1994) [2]), the same phenomenon exists in free convection hypersonic
ows (Brown et al. (1975) [7] or Neiland (1986) [26] and Brown Cheng & Lee
(1990) [5]) for cold wall.
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3.1.4 The fundamental problem of mixed convection on "double deck" scales

with displacement

Finally, the mechanism relevant for the problem of in�nitely small mixed con-
vection is without external perfect uid retroaction, the whole process of in-
teraction takes place in the "main deck". This is a double deck interaction. We
write here the �nal re-scaled problem (in order to avoid U 0

0(0)):With scales:

x = L + jJ j3 (L=U 0
0(0))~x; y = jJ j ((U 0

0(0))
�2L=Re1=2)~y

t = jJ j2 (L=U1)~t
u = jJ j ((U 0

0(0))
�1U1)~u; v = (jJ j�1 ((U 0

0(0))
�2U1Re�1=2)~v;

p = J2((U 0
0(0))

�2�U2
1)~p

(and Re�1=8 � jJ j � 1), the �nal "canonical problem of in�nitely small mixed
convection" is:

@

@~x
~u+

@

@~y
~v = 0; (14)

@

@~t
~u+ ~u

@

@~x
~u+ �v

@

@~y
~u = � d

d~x
~p+

@2

@~y2
~u; (15)

Boundary conditions are: no slip at the wall (~u = ~v = 0 in ~y = 0), no
displacement far upstream ( ~A = 0 in ~x ! �1); the matching ~y ! 1; ~u !
~y + ~A and the coupling relation (hot wall, sign(J) = 1, cold wall sign(J) =
�1):

~p = sign(J) ~A: (16)

The introduction of time changes only the "lower deck" by the adjunction of
the @~u=@~t term (Smith (1979)[34]). Figure 3 displays a rough sketch of the
double deck structure.

3.1.5 Resolution

3.1.5.1 The eigen value solution System (14-16) admits the Blasius
solution ~u = ~y as the basic one. Invariance by translation in space and time
suggests linearized solutions of the form:

~u = ~y + aei(k~x�!
~t)f 0(~y); ~v = �ikaei(k~x�!~t)f(~y); & ~p = aei(k~x�!

~t);
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Fig. 3. the two �nal layers involved: the boundary layer itself and a thin wall layer.

were a << 1. After substitution, f veri�es an Airy di�erential equation with
the variable � = (ik)1=3~y , so classically we �nd:

�f 0(1) =
(ik)1=3

Ai0(�i1=3!=k2=3)
1Z

�i1=3!=k2=3
Ai(�)d�: (17)

3.1.5.2 Cold wall, eigen value and comparison with Steinr�uck In
the case of cold wall, the coupling ( ~p = � ~A) gives 1 = �f 0(1), and a sta-
tionary exponentially growing solution may be obtained: ! = 0; ik = � =
(�3Ai0(0))3 ' 0:47: We recover the same behavior as in hypersonic ows
(Brown et al. (1975) [7] and Gajjar & Smith (1983) [13]), in the birth of
hydraulic jumps (Bowles & Smith (1992) [3]) and in supersonic pipe ows
(Ruban & Timoshin (1986) [27]). � is called the Lighthill eigenvalue, it shows
that there is upstream inuence, for example the preceding solution is the
linearization of what happens far upstream of the separating point. The oc-
currence of eigen functions states that system (2-5) is not parabolic.

We have proved that the perturbation grows like e(�3Ai
0(0))3~x. It may be com-

pared with Steinr�uck's result: he showed that the system (2-5) scaled longitudi-

nally by LT admits near the origin eigen function growing like exp(
�+0
�40
�) where

�+0 = 2U 0
0(0) (� 3Ai0(0))3, (formula 2.29 from [37] or A.15 from [38], with

Pr = 1, U 0
0(0) = f 00(0) = 0:3321 and

R1
0 Ai(�)d� = 1=3) where � = (x=LT )1=2
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and where �0 is the place where the ow is perturbed. If we substitute �+0 , �
and �0 in the exponential, bearing in mind L=LT = J2; and jJ j � 1; and �0
is (L=LT )1=2 i.e. jJ j), we rewrite it with our variables, and develop with the
�rst power of jJ j:

e

�+
0
�4
0

�
= exp(

�+0

jJ j3 (1 + jJ j
3 (1=U 0

0(0))~x)
1=2 ) � exp(jJ j�3 �+0 + �+0 (1=U

0
0(0))~x=2))

so, factorizing exp(jJ j�3 �+0 ) and substituting the value of �+0 ; we recover the
exponential growth with ~x:

exp((�3Ai0(0))3)~x):

So the conclusion is that the triple deck theory (which is a theory in the limit
of small J at x = 1) is equivalent to Steinr�uck's result (with only a di�erent
choice of scales: LT instead of L so J = 1 and x is small).

3.1.5.3 Non linear resolution of the fundamental problem The
stationary and non linear self induced solution with ~p = � ~A law is numerically
computed and asymptotically described in Gajjar and Smith (1983) [13]. This
solution is plotted on �gure 4, we see that the self developing displacement
�A is superposed on to the pressure; the skin friction becomes negative. The
upstream pressure is in e0:4681x while the downstream is in 0:94796x0:4305 (this
last behavior is noticeable very far downstream, at least x > 103, those results
are taken from reference [13]). To compute this we use a standard Keller Box
(with are approximation) scheme for the lower deck (adapted for the triple
deck from Bradshaw & al. (1981) [4]). This is an inverse method which allows
to catch separation: � ~A is given and ~p is computed. A "semi inverse method",
which is iterative (details may be found in Le Balleur (1982) [22], and which
has been used in an other hypersonic triple deck case by Lagr�ee (1992) [18])
is used to couple the lower deck and the pressure- deviation relation. It means
that, given a displacement� ~An at iteration level n, the next� ~An+1 is obtained
as follows:

� ~An+1 = � ~An + �(
dpn

dx
� d~pn

dx
) + �(pn � ~pn):

where ~pn is the lower deck Keller Box result associated to � ~An; pn is the pres-
sure associated to the displacement � ~An, (here simply: pn = � ~An, equation
(16)), with � and � being relaxation coeÆcients. These coeÆcients are chosen
in order to stabilize the iterations: the complex gain modulus is imposed to
be smaller than one for all spatial frequencies smaller than kmax = �=�x (�x
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is the longitudinal discretisation step) and greater than �=L (L is size of the
computational domain). This gain may be written exactly in the vicinity of
the null solution (p = �A = 0 is a solution), in this case equation (17) gives for
the Fourier transform (FT) of pressure and displacement small perturbations:

FT(~pn) = (ik1=3)
FT(�An)

�3Ai0(0) ;

while equation (16) gives FT(pn) = FT(� ~An); then with G = FT(� ~An+1)

FT(� ~An)
, we

have:

G = 1 + (�ik + �)(1 � (
(ik1=3)

�3Ai0(0) )):

The choice of the coeÆcients � and � is such that, for obvious reasons of sta-
bility, jGj < 1 for all the spatial frequencies present (�=L < k < �=�x). The

0

1

2

3

4

5

6

7

8

-30 -20 -10 0 10 20 30

-A
p

exp.
tau

~x

Fig. 4. Linearized eigen solution ("exp." is exp((�3Ai0(0))3)~x)), and non linear
solution of the self induced (~p = � ~A) problem solved with Keller Box and "semi
inverse" coupling: pressure (p), displacement (-A) and skin friction (tau).
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non linear calculation is carried out with lower values for the said coeÆcients.
Here both ends are imposed: in x = �L=2 and in x = L=2, the perturbation
of �A is 0 at the �rst step of the domain (�L=2), and is imposed �Am at the
output (L=2). L = 60 and �Am = 7 were largely suÆcient for our purpose.
The Keller Box is a marching scheme: d~p

n

dx
is a backward derivative, the up-

stream inuence is recovered by the derivative of the pressure dpn

dx
which is a

forward derivative.

3.1.5.4 Hot wall, instability The pressure displacement relation ~p = ~A
does not permit upstream inuence, so the ow is now really parabolic... but
unstable: the dispersion equation

(ik)1=3

Ai0(�i1=3!=k2=3)
1Z

�i1=3!=k2=3
Ai(�)d� = 1

gives ! = 2:3 and k = 1:0: The scaled values for a neutral Tollmien- Schlichting
wave are then: !� = 2:3 jJ j�2 (U�

0=L); and �
� = 18:9 jJ j3 L:

3.2 Bigger J with no displacement

3.2.1 New Main deck

The preceding structure is characterized by the interaction between the lower
deck and the main deck by a pressure- displacement function: the pressure
in the lower deck produces a displacement which changes the pressure again
in the main deck, and so on. Here in discussing the relation (8) we con�ne
the interaction in the lower deck itself, without retroaction in the main deck.
This idea is in fact deduced from Steinr�uck and from Daniels (1992) [10]. The
latter author has found the self similar solution U0; p0 and �0 associated to a
problem with a superposition of a jet and a constant ow with an adiabatic
wall. Numerical explosions with a marching scheme were observed which lead
him to investigate the corresponding eigen value problem for the said ow.

Up to now, pressure was found to be of the order of "2; while perturbations of
u velocity component and displacement �A in the main deck were found of
order ". Similar interaction appears in pipe ows in the presence of a bump,
without thermal e�ect, (see Smith (1976) [33] and Saintlos & Mauss (1996)
[29]). The bump gives rise to perturbation of pressure (of order "2) with no
displacement in the main deck (at order "): �A = 0. This O("2) pressure
drives perturbations in the main deck of O("2) in velocity, and so a O("2)
displacement.
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If now we introduce thermal e�ects and if J is small, the conclusion is the
same: �A = 0 in the main deck at order ". Now if J becomes of order unity
(J = O("0)), relation (8) suggests that the perturbation of pressure is of order
". But, because of the O(") matching of velocities between lower and main
deck, the pressure in the lower deck is always of order "2. Thus the matching
of pressure implies again that there is no "p1 contribution: there is again no
displacement "A at �rst order (it is the same as in the "double deck" structure
pointed out before). With no anticipation, we put here "� for the order of the
perturbations in this new deck, with � > 1 (the complete analysis will show
that the matching with the lower deck will give surprisingly � = 3=2 and not
2 as in pipe ows); here U0; p0 and �0 denote the solution (as computed by
Daniels) with x scaled by LT ; and y by ÆLT (boundary layer thickness in LT
scales, Re is computed with LT ) that is perturbed. As the scale is LT , in this
section J stands for sign(J):

u = U0(y) + "�u� v =
Æ"�

x3
v�

p = p0 + "�p� � = �0 + "���

x = 1 + x3x̂ y = y:

as long as 1 � " � Re�1=6; the main deck problem is di�erent because the
longitudinal gradient of pressure is still present:

@

@x̂
u� +

@

@y
v�=0; (18)

U0(y)
@

@x̂
u� + v�U

0
0(y)=�

@

@x̂
p�; (19)

0 = � @

@y
p� + J��; (20)

U0(y)
@

@x̂
�� + v��

0
0(y) = 0; (21)

where U0(y) solves the mixed convection problem. If we de�ne  � the pertur-
bation of the stream function, �� is straightforward: �� =  �(x̂; y)�00(y)=U0(y):
After elimination of the velocities and pressure, we have to solve a modi�ed
Rayleigh equation:

@2

@y2
 � � (

U 00
0 (y)

U0(y)
� J

�00(y)

U2
0 (y)

) � = 0: (22)

This equation may be solved in y in assuming zero perturbation at the outer
edge (for sake of simplicitywe suppose that there is no upper deck of perturbed
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perfect uid involving the Hilbert integral) and the matching for p� in y = 0
is discussed later. The value of u�(x̂; 0) will not interfere with the lower deck.

If Æ"2

x23
= "2

Æ
then the transverse velocity v� is present too in the transverse

pressure gradient equation (20), so it is now:

U0(y)
@

@x̂
v� = � @

@y
p� + J��;

the equation for  � may be then obtained. If this term is in the equations
then we have x3 = Æ = Re�1=2 and " = Re�1=6, the main deck has same scales
in both directions.

3.2.2 New Lower deck: the fundamental problem of mixed convection on "sin-

gle deck" scales with no displacement

For sake of simplicity we put U 0
0(0) = 1 and j�00(0)j = 1: The lower deck

problem is then changed by the fact that the transverse pressure variation is
within the lower deck, (in the preceding xthe transverse variation of pressure
took place in the Main Deck), it is a single deck interaction:

u = "û; v = "2v̂;

p = p1 + J"ŷ + "2p̂2; � = 1 + "�̂;

x = 1 + "3x̂ y = "ŷ;

(because x3 = "3),

@

@x̂
û+

@

@ŷ
v̂=0; (23)

û
@

@x̂
û+ v̂

@

@ŷ
û=� @

@x̂
p̂2 +

@2

@ŷ2
û; (24)

0 = � @

@ŷ
p̂2 + J�̂; (25)

û
@

@x̂
�̂ + v̂

@

@ŷ
�̂ =

@2

@ŷ2
�̂; (26)

The matching is û �! ŷ and �̂ �! �ŷ, for ŷ �! 1; because there is no
displacement. At the wall, the boundary conditions are obvious: û = v̂ =
�̂ = 0. The pressure matches at order "2; that is the value of the lower deck
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pressure for ŷ �! 1 which makes the main deck to develop, and there is
no retroaction from the main deck to the lower one. All the problem lies in
the lower deck: there is no need for an external pressure change (because here
@p̂2=@ŷ 6= 0). This is true for any " in the range 1� " � Re�1=6:

3.2.3 Linearized resolution

Branching solutions are obtained from the linearized system deduced from
(23)-(26), where (u; v; p2; �) denotes perturbations from the basic state (ŷ; 0; 0; 0; 0)
(here J is sign(J)):

@

@x̂
u+

@

@ŷ
v=0; (27)

ŷ
@

@x̂
u+ v=� @

@x̂
p2 +

@2

@ŷ2
u; (28)

0 = � @

@y
p2 + J(�); (29)

ŷ
@

@x̂
� + v =

@2

@ŷ2
�: (30)

This suggests looking for solution in the form:

u = e�x�0(ŷ); v = ��e�x�(ŷ)
p2 = J(g(ŷ))e�x � = e�xg0(ŷ);

with the pressure value given at the wall (as the system is linear we simply
write g(0) = 1). � is the eigenvalue that we are looking for. We note that the
system may be written as:

(
@

@ŷ

@

@ŷ
� �ŷ)g0(ŷ) = ��(ŷ) & (

@

@ŷ

@

@ŷ
� �ŷ)�00(ŷ) = J�g0(ŷ): (31)

If we write � = �1=3ŷ, so � disappears from the problem, any � is convenient.
The problem is solved numerically for J = �1 by a �nite di�erence method
with time reintroduced to provide for a relaxation mean of the numerical
scheme. In �gure (5) the computed velocity pro�le �0(�) is compared with
the corresponding asymptotic solution while temperature results, g0(�), are
shown on �gure (6), (no solution was found with this method for J = 1).
The pro�les of velocity and temperature slowly decrease in oscillating to 0 as
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Fig. 5. comparison of the computed value of �0(�) and asymptotic value

�0a(�) =
�
�p

3 cos(
p
3 log(�)

2 )

�
2
p
� � sin(

p
3 log(�)

2 )

2
p
�

� ! 1: This is coherent with the leading term of � which is in �n, where n

solves n2 � n + 1 = 0. Hence � involves �
1�ip3

2 as � ! 1; thereby implying
that v is proportional to

p
� sin(

p
3 log(�)=2), and by consequence u becomes

proportional to � d
d�
(
p
� sin(

p
3 log(�)=2)) and � to �1p

�
sin(

p
3 log(�)=2) (the

exact coeÆcient of proportionality has not been determined).

Let's return now to the matching of the two layers in order to obtain �. In the
lower deck the pressure is O("2), and behaves for large ŷ like

p
ŷ; so, written in

outer variables the pressure becomes "2
p
ŷ �"3=2py: In the vicinity of y = 0;

(22) behaves as:

@2

@y2
 � + J

1

y2
 � ' 0;

if J = �1;  � involves the same powers of y as �: y
1�i

p
3

2 ; and hence �� is

proportional to combinations of y
�1�ip3

2 and the pressure (of order "�) con-
tains the square root of y: Matching of the pressure between the two decks
leads to � = 3=2. With perturbation of order "3=2 the other matching are
straightforward. We conclude that any value of � is acceptable and creates a
self induced solution in the lower deck with no �rst order displacement: the
dominant variations of velocities and pressure are con�ned in the lower deck,
the main deck is passive.
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3.2.4 Comparison with Daniels and Steinr�uck results

Daniels solves a set of equations closely related to the preceding one, and
without reference to triple deck. The main di�erence is that he chooses non
linear pro�les: U0(y) ' yb�1 and �0(y) ' �0(0) + yc; near y = 0. This may be
interpreted as a thicker lower deck (the matching is not in the linear region
but somewhere higher). So the longitudinal scale is now x3 = "b+1. The adi-
abaticity gives in his study (� @

@ŷ
p2 = 0). He �nds which exact power b of ŷ

is coherent for the lack of what we would call the displacement function and
that he calls "an origin shift" in the transversal variable and noted k3(b). Thus
he shows that k3(b) = 0 is necessary for the matching of the two layers. As a
result, near the singularity, in x̂ < 0, the eigenfunction of the pressure is found
to be ' (�x̂)0:305 and there is a free interaction with decreasing pressure.

Nevertheless, here we deal with b = 1; instead of 0:305 we �nd 1=3: We note
that if b = 1 in Daniels's results there is no perturbation at all (see his �gure
4 page 431, where when the pressure, noted q, equals zero the displacement,
noted k3(b); equals zero as well), this is the same here, if there is no transverse
variation of pressure, there is no possible linearized solution in the lower deck
with �A = 0 except the null solution.

This solution is in fact what Steinr�uck calls the "other large eigen values",

the oscillating behavior (equation (3.12) of ref. [37]) involves 1=2 � i
q
3=4 (it

is the same because we took
j�00(0)j
U 00(0)2

= 1). So, the two sets of eigen values are
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explained by a triple deck analysis.

4 Integral methods and branching solutions.

4.1 Singularity

The preceding results for small J suggest that there is no singularity in the
equations, but, because of non parabolicity a dependence with downstream
conditions. The ow may generate a self induced interaction which may lead
to separation (at least in the ~p = � ~A case). So, we may revisit the over
simpli�cation of the problem with integral methods as already mentioned by
Schneider & Wasel (1985) [32], to see whether we may go after the singularity
even in this very simple description. They integrate over the whole boundary
layer the system (2-5) as follows:

d

dx

1Z
0

2
4u(1� u) + J

1Z
y

�dY

3
5 dy =

 
@u

@y

!
y=0

This balance may be re-written with the help of the displacement function Æ1
(which is more physical in our opinion):

d

dx

"
Æ1
H

+ JAÆ21

#
=
f2H

Æ1
; (32)

where H and f2 are standard notation (Schlichting (1987) [30]): H = Æ1=Æ2
is by de�nition the shape factor, and f2 is de�ned from the skin friction as
f2 = Æ2

�
@u
@y

�
y=0

. Now the problem must be solved with assumptions on the

pro�le shape. Classically f2 is function of H and H is function of the pressure
gradient and Æ1. Like Schneider & Wasel, we choose a simple sinusoidal pro�le
with constant parameters (H = H0 , A = A0 and f2 = f20). The pro�le:
u = sin(� y

Æ
) permits to evaluate H0 = 2(2 � �)=(� � 4) and f20 = 1 � �=4,

the value of A0 is (�8 + �2)=(2(�2 + �)2).

Then the integral equation (32) integrates in:

(
1

2
(Æ21 � Æ210) + (

2

3
)JH0A0(Æ

3
1 � Æ310)) = f20H

2
0 (x� x0)

At the leading edge x0 = 0 and Æ10 = 0; so we may obtain an explicit Æ1 as a
function x: It is much more simpler to plot (x(Æ1); Æ1) in a parametric mode.
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The case J = 0 reduces of course to the approximation of the Blasius solution:

Æ1B =
q
2f2H2

0x
1=2 = 1:742x1=2;

and for a non zero negative J we �nd, with Schneider & Wasel, that there is
a singularity in the slope dÆ1

dx
=1 in xs = (24A2

0H
4
0f2J

2)�1 where Æ1 =
�1

2A0H0J

(=Æs say, which is �nite).

4.2 Non singular solution

Schneider & Wasel stopped in xs, but we may construct the sequel of the
solution after xs if we note that for x > xs the solution may be integrated if
f2 < 0 (say f2 = f2s). For sake of oversimpli�cation we only change the value
of f2 in (32), the solution reads:

(
1

2
(Æ21 � Æ2s ) + (

2

3
)JH0A0(Æ

3
1 � Æ3s)) = f2sH

2
0 (x� xs)

This expression is singular in xs and valid for x > xs . Here, on �gure 7, we
plot the two expressions of Æ1 (upstream and downstream of xs) and Æ1B on
the same graph.

10 20 30 40 50 60 70
0

5

10

15

20

Fig. 7. The upper curve is the plot of Æ1 function of x as predicted by the very
simple model, the lower one is the Blasius solution.

Thus we have a continuously varying Æ1 valid throughout except in xs. The
displacement shows a gradual increase as long as the thermal e�ect is small,
then it thickens in the vicinity of the separation, �nally it slowly increases.
We note that it looks like a "jump" in the displacement thickness.
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4.3 Branching solutions

Of course, a better description should involve a continuously varying H and
f2 (this will enable to cross xs). As a �rst step in this direction, we present
an over- simpli�ed argument: we may develop the shape factor (only in the
right hand side, in the left hand size it has no real inuence) near the Blasius
value as follows: H = H0 � JhdÆ1

dx
: We may justify this postulate in noticing

that for a small adverse pressure gradient a small growth of H is promoted
(this is true in a classical boundary layer such as the Falkner Skan's one where
H0 ' 2:59 and h ' 2:88...), but here the variation of pressure through the
boundary layer is more or less proportional to JÆ1; this introduces a parameter
h > 0. With those crude assumptions and at �rst order in J , a new term
appears, proportional to the second derivative of the displacement

d

dx

"
Æ1
H

#
' Jh

"
Æ1
H2

0

#
d2Æ1
dx2

+
d

dx

"
Æ1
H0

#
;

so (32) is now:

Jh

"
Æ1
H2

0

#
d2Æ1
dx2

+
�
1

H0
+ 2JAÆ1

�
d

dx
Æ1 ' f2H0

Æ1

With this ad hoc term in the equation, �rst the singularity will be smoothed
(for example we may construct an asymptotic description of the equation in
introducing a region in xs where

d2Æ1
dx2

is not negligible....); second, and closely
linked, eigen function may be exhibited if we write Æ1 = Æ10(1 � aeKx); where
Æ10 is the Blasius solution frozen (K must be big), and K solves:

hJ

"
Æ10
H2

0

#
K2 +K(

1

H0
+ 2JAÆ10) +

f2H0

Æ10
' 0;

The roots, for small J are at �rst order �f2H
2
0

Æ10
and (�J)�1 H0

hÆ10
: If J is positive,

they are negative, so any perturbation is damped, and the parabolic nature
of the ow is recovered. If J is negative, the �rst one remains negative, but
the other is positive and big leading to a growing exponential on a short scale.
This solution destroys the parabolicity of the ow, and is clearly a consequence
of the h term. This behavior qualitatively similar to the complete resolution
(as we will see in the next paragraph) and with the occurrence of branching
exponential solutions (as in triple deck) shows again how powerful are the
integral methods (Le Balleur (1982) [22]) if the variation ofH with the pressure
gradient is not omitted. In the next section we look how the previous results
may be observed on a complete numerical simulation of the equations, and
whether it is possible to obtain a separated ow.
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5 Numerical computations

5.1 The problem

As shown in the previous paragraph with di�erent scales and methods, solving
the equations with a marching scheme in x (stationary in t) leads to the
selection of the eigenvalues and to a self induced interaction. In supersonic
ows the way to prevent this fact is to construct an iterative coupled method as
already mentioned. It permits to impose boundary conditions at both ends of
the domain. Here the problem is that the pressure changes across the boundary
layer, so those powerful methods are not applicable. We propose to change the
problem and to make it unsteady.

We have to solve (2-5) with the @t term and new boundary conditions at t = 0
and at x!1:

@

@x
u+

@

@y
v=0; (33)

@

@t
u+ u

@

@x
u+ v

@

@y
u=� @

@x
p+

@

@y

@

@y
u; (34)

0 = � @

@y
p+ J�; (35)

@

@t
� + u

@

@x
� + v

@

@y
� =

@

@y

@

@y
�; (36)

with at time t = 0 :

u(x; y > 0; t = 0) = 1; u(x; y = 0; t = 0) = 0;

v(x; y � 0; t = 0) = 0;

�(x; y > 0; t = 0) = 0; p(x; y � 0; t = 0) = 0

and after, for t > 0:

u(x; y = 0; t � 0) = 0 v(x; y = 0; t � 0) = 0

u(x; y!1; t � 0) = 1

�(x; y = 0; t � 0) = 1 �(x; y!1; t � 0) = 0

p(x; y!1; t � 0) = 0
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8y; for x > t, x!1 : @
@x
u = 0; @

@x
v = 0; @

@x
p = 0; @

@x
� = 0:

If, at a given x; we wait for a long time, and with an enough big domain,
we expect to �nd a steady solution which solves (2-5) too after a transient
spreading.

5.2 Numerical discretisation

The set of equations (33-36) is discretised in �nite di�erences in the most
simple way, second order in space x; y and in time t: It is implicit in y; explicit
in x. We introduce an internal loop to improve the description of the non
linear terms putted as an explicit source terms.

The �rst diÆculty is now at the entry, we cannot begin the calculation in
x = 0 because the equations are singular at the origin, so we impose the
Blasius boundary layer pro�le at any time t > 0; in x = xin > 0: This creates
a small non dangerous perturbation.

The second one is at the exit, where x = xout. The annulation of longitudinal
derivatives ( @

@x
= 0) at the outlet is a coherent boundary condition as long as

no information has propagated (at velocity 1) from the nose. If t > xout it is
not true anymore.

The third diÆculty is the numerical discretisation in x. If we put a centered

derivative ((
fNi+1j�fNi�1j

2�x )) we observe oscillations, by inspection if we choose a

downstream derivative (
3fNij�4fNi�1j+f

N
i�2j

2�x ) in the transport equations but we cen-

ter vN+1
ij = �( 

N+1
i+1j� 

N+1
i�1j

2�x ) in the incompressibility no oscillations are observed
and the back ow region is computed.

6 Results

6.1 Test cases

As test case of our numerical discretisation (for the unsteady part as well for
the non linear part) we have recomputed the classical problem of the starting
at plate (solved analytically by Stewartson (1951) [39], Stewartson (1973)
[42] and numerically by Hall (1969) [15]).

For sake of validation of boundary layer separation phenomena, we have com-
puted the starting ow around a cylinder. We recover the Van Dommeln &
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Shen (1980) [45] result of �nite time singularity. For this severe test, the three
di�erent discretisations in x where tested. We conclude that the e�ect of the
choice of the longitudinal derivative (centered or not...) on the position of the
separating point is very small: a di�erence of 0:3%. In reference [21] we dis-
cuss more precisely those examples. Of course, this �nite di�erence scheme in
Eulerian description does not go near the singularity as Cassel et al. (1996)
[8] do with boundary layer equations written in Lagrangian description. Nev-
ertheless, it predicts the singularity, so this is an element of validation of the
back ow calculation.

Next, we introduce the transverse buoyancy, but we impose the temperature
to be x�1=2 rather than 1: For example if J = �0:025 we obtain Æ1 ' 1:9x1=2

and @u
@y
(x; 0) ' :29x�1=2; the value @u

@y
(x; 0)

p
x as a function of jJ jpx for

di�erent time steps is plotted on �gure 8 (the choice of abscissa � = jJ jpx
and ordinate f"(�; 0) = @u

@y
(x; 0)

p
x comes from Steinr�uck's work based on self

similar variables).

The lines correspond to the Rayleigh solution of the problem: an in�nite
at plate impulsively moved and heated. In this case: (

p
x@u
@y
(x; y = 0) =

�1
q
�x=t, which is linear in jJ jpx and whose slope decreases with time t),

they are plotted for comparison (so we see the propagation of the inuence
of the nose). We note that it takes a long time to obtain the stationary (here
selfsimilar) solution computed by Schneider (1978) [31] and Afzal & Hussain
(1984) [1], this ow is a particular case of the generalized Falkner Skan mixed
convection as pointed out by Ridha (1996) [28]. The last points present a small
discrepancy because of the output e�ect: the upstream inuence of @

@x
p = 0.

This is an element for the validation of the thermal coupling part of our
dicretization. Note, that for�0:8 '< J < 0 there are two self similar solutions,
one with a positive skin friction and an other with a negative skin friction
(Steinr�uck (1995) [38] and Ridha (1996) [28]). Steinr�uck (1995) [38] showed
that it is possible, near the critical value, to branch from the selfsimilar ow
(for x! 0) with positive skin friction to the other, with negative skin friction
(at large x).

6.2 Starting ow, buoyant, non self similar results

In the sequel we �x J = �0:025. The temperature of the wall is equal to 1.
This value of J is a compromise between two e�ects: �rst, if J is too large, the
interaction takes place near the nose where the gradients are big, �x must be
not too small and xin must also be not too small; second, if J is too small, the
Blasius part is well solved, but, the size of the computational domain is now
too big. J = �0:025 seems to be good enough to prevent those two drawbacks.
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Fig. 8. Numerical computation of the reduced skin friction function as a function
of the reduced longitudinal variable at di�erent times (from t = 15 to 3000) and in
the case of wall temperature Tw(x) = 1=

p
x. The reduced Rayleigh skin friction is

plotted as well (lines at time t = 15; 30; 60; 125; 250; 500 and 1000. the �nal value is
the selfsimilar one: 0:29).

On �gure 9 we display the converged reduced skin friction at the wall as
function of the size of the domain (i.e. the value of xout). We note that de-
pending on this size we obtain di�erent solutions. The �rst points present
an error coming from the discretisation at the input, they are not far from
f"Blasius(0) = :33. Reducing the step size decreases this error (the error is
ampli�ed on the graph because of the

p
x term coming from � = jJ jpx). The

quantity f"(�; 0) = @u
@y
(x; 0)

p
x decreases to a minimum and increases greatly

after and reaches a maximum at the end of the computational zone. This min-
imum decreases as the size of the domain increases and ultimately this leads
to separation. Finally, we may compare favorably results from �gure 9 and
Steinr�uck's results (his �gure 1 page 261 from reference [37]) reproduced on
�gure 2): most of the curves have common parts with Wickern results com-
piled by Steinr�uck. But here the originality of our work is that we catch the
back ow, so our curves do not stop at separation.
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Fig. 9. the reduced skin friction function of the domain size, results are compared
with the calculation of Wickern 1991 (compiled by Steinr�uck) and refered as "march-
ing". The size of the domain is xout = 5 10 20 50 100 and 125.

On �gure 10, we plot the displacement thickness as a function of x (�nal state)
for the di�erent domain sizes compared with Blasius solution. The �gure 11
is a zoom of the same �gure showing the sudden increase of displacement
thickness associated to the boundary layer separation.

We do not observe any singularity at a �nite time as observed in all the
boundary layer calculation for impulsive ow Van Dommeln & Shen (1980)
[45]. In investigating smaller grid e�ects we do not observe oscillations as
predicted by Cowley et al. (1985) [9] or Smith & Elliot (1985) [36].

7 Conclusion

This problem is very interesting because it summarizes all the diÆculties of
boundary layer ows: the existence of eigenfunction destroying the parabolic-
ity, boundary conditions diÆcult to settle, occurrence of a back ow, numerical
and physical instabilities.

Numerical calculations with marching techniques have clearly shown (Steinr�uck
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(1994) [37]) that there is a singularity in the self interaction of the boundary
layer for J = O(1). This singularity is similar to the "branching solutions"
obtained in supersonic inviscid- viscous interacting ows (and presented by
Werle et al. (1973) [46]). Those Interacting Boundary Layer ows were often
solved with integral methods, we have presented here such a simpli�ed reso-
lution too. The divergence of the numerical solution was observed, and often
explained with those integral methods (Le Balleur (1982) [22]). As we have
exactly the same behavior as clearly stated by Steinr�uck who compares a lot
of numerical results, we have presented here the same arguments: we have
showed that integral methods may be extended to remove the singularity (as
in aerodynamics), we have showed that this behavior is natural from "triple
deck" theory (in aerodynamics the supersonic and hypersonic boundary layer
ows were the problems which have led Neiland and Stewartson to introduce
the triple deck analysis).

Two di�erent asymptotic structures were presented, the �rst with small J
predicts that there is no singularity but ampli�cation of any perturbation;
the second at J of order of one predicts a self similar singularity at any lo-
cation. Those two structures were shown to be those found by Steinr�uck but
with a di�erent approach. Moreover, we have presented a numerical computa-
tion showing that the self induced singularity may be removed if downstream
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conditions are supplied (coherent with the �rst mechanism: ampli�cation of
any perturbation at small J). No general physical boundary condition were
imposed, nevertheless with a zero gradient output condition, we showed that
depending upon the size of the domain di�erent branching solution may be
selected. The boundary layer may then separate and present a region of back
ow (even after step size reduction no oscillations were observed). This is a
generalization of Steinr�uck results.

Some questions may arise, �rst of physical interpretation: does this upstream
inuence describe the phenomenon of "blocking" which is observed in strati�ed
ows? Is it the result of the existence of a kind of hydraulic internal jump? {
this is possible because the hydraulic jump equation solved by Higuera (1994)
[16] are nearly the same as they involve a change of pressure associated with
the change of the thickness of the �lm (analogous to Æ1), the inverse of the
Froude number being the analogous of the buoyancy parameter; furthermore,
Higuera (1997) [17] solves the problem of a buoyant wall jet over a �nite
plate with a singularity imposed at the end, his work enters in greater details
(inuence of adiabatic wall and of Pr number), there is a separation and a back
ow as well, the case of cold jet on adiabatic plate leads to separation too,
he compares qualitatively this result with what happens in cavity driven ow
where sort of "hydraulic jump" are observed{. Is it nearly impossible to reach
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the location where J ' �1 (incidentally, linear stability of the J ' 1 should be
investigated) because branching solution have appeared far upstream of this
point where J << 1? What are the real downstream boundary conditions? Is
it possible to �nd a set of those boundary conditions which leads to a solution
with a region of back ow developing continuously downstream (as proposed
by Steinr�uck in self similar ows)?
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