Équations de Navier Stokes Réduites pour les

 écoulements biomécaniques: échelles caractéristiques et conditions aux limites.Reduced Navier Stokes equations in Biomechanics:
scales / boundary conditions
P.-Y. LAGRÉE

Lab. de Modélisation en Mécanique, UMR CNRS 7607, B 162,
Université Paris 6, 75252 Paris FRANCE
pyl@ccr.jussieu.fr

Introduction

Aim: find out simplier equations than Navier Stokes
Well adapted for "real time simulations" / image processing

Introduction

Aim: find out simplier equations than Navier Stokes
Well adapted for "real time simulations" / image processing

Starting from Navier Stokes (Axi)

- we simplify NS to a Reduced set of equations
- which contains the physical scales,
- the most important phenomena
- much more simple set of equations: Integral equations (1D)
- cross comparisons in some cases of NS/ RNSP/ Integral

3 Applications

- Application 1/3: steady flow in a rigid axi symmetrical arterial stenosis evaluation of the maximum value of Wall Shear Stress
- Application 2/3: steady flow in a rigid 2D symmetrical glottis evaluation of the pressure drop
- Application 3/3: unsteady flow in an elastic axi symmetrical artery comparing Reduced equations and Integral equations

RNSP Scales

Using:

$$
\begin{aligned}
& x^{*}=x R_{0} R e, r^{*}=r R_{0}, u^{*}=U_{0} u, v^{*}=\frac{U_{0}}{R e} v, \\
& p^{*}=p_{0}^{*}+\rho_{0} U_{0}^{2} p \text { and } \tau^{*}=\frac{\rho U_{0}^{2}}{R e} \tau
\end{aligned}
$$

the following partial differential system is obtained from Navier Stokes as $R e \rightarrow \infty$:

RNSP: Reduced Navier Stokes/ Prandtl System

RNSP: Reduced Navier Stokes/ Prandtl System

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0
$$

RNSP: Reduced Navier Stokes/ Prandtl System

$$
\begin{aligned}
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v & =0 \\
\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right) & =-\frac{\partial p}{\partial x}+\frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right)
\end{aligned}
$$

RNSP: Reduced Navier Stokes/ Prandtl System

$$
\begin{aligned}
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v & =0 \\
\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right) & =-\frac{\partial p}{\partial x}+\frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right) \\
0 & =-\frac{\partial p}{\partial r}
\end{aligned}
$$

RNSP: Reduced Navier Stokes/ Prandtl System

$$
\begin{aligned}
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v & =0 \\
\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right) & =-\frac{\partial p}{\partial x}+\frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), \\
0 & =-\frac{\partial p}{\partial r} .
\end{aligned}
$$

+ The boundary conditions.

$$
\text { RNSP: Reduced Navier Stokes/ Prandtl System } \begin{aligned}
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v & =0 \\
\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right) & =-\frac{\partial p}{\partial x}+\frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right) \\
0 & =-\frac{\partial p}{\partial r} .
\end{aligned}
$$

- axial symmetry ($\partial_{r} u=0$ and $v=0$ at $r=0$),
- no slip condition at the wall ($u=v=0$ at $r=1-f(x)$),
- the entry velocity profiles $(u(0, r)$ and $v(0, r))$ are given
- no output condition in $x_{\text {out }}=\frac{x_{\text {out }}^{*}}{R_{0} R e}$
- streamwise marching, even when flow separation.

Application 1/3: Flow in an arterial stenosis

 collaboration with S. Lorthois IMFT (F. Cassot \& M.-P. Vergnes, INSERM, + B. de Bruin RuG)

Evolution of the velocity profile along the convergent part of a 70% stenosis ($R e=500$) ; solid line: Poiseuille entry broken line: flat entry

Wall Shear Stress

Evolution of the WSS distribution along the convergent part of a 70% stenosis ($R e=500$) ; solid line: Poiseuille entry profile ; broken line: flat entry profile.

Example of numerical resolution

Various values of the stenosis degree: animation

Boundary Layer/ Perfect Fluid

Boundary Layer/ Perfect Fluid

The boundary layer is generated near the wall δ_{1} is the displacement thickness.

Boundary Layer/ Perfect Fluid

The displacement thickness acts as a "new" wall!
\rightarrow Interacting Boundary Layer (IBL)

RNSP/ IBL

After rescalling:
$r=R(\bar{x})-(\lambda / R e)^{-1 / 2} \bar{y}, u=\bar{u}, v=(\lambda / R e)^{1 / 2} \bar{v}$ and $x-x_{b}=(\lambda / R e) \bar{x}, p=\bar{p}$, where x_{b} is the position of the bump, the $\operatorname{RNSP}(\mathrm{x})$ set gives the final IBL (interacting Boundary Layer) problem as follows:

$$
\begin{gathered}
\frac{\partial \bar{u}}{\partial \bar{x}}+\frac{\partial \bar{v}}{\partial \bar{n}}=0 \\
\left(\bar{u} \frac{\partial \bar{u}}{\partial \bar{x}}+\bar{v} \frac{\partial \bar{u}}{\partial \bar{n}}\right)=\bar{u}_{e} \frac{d \bar{u}_{e}}{d \bar{s}}+\frac{\partial}{\partial \bar{n}} \frac{\partial \bar{u}}{\partial \bar{n}}
\end{gathered}
$$

with: $\bar{u}(\bar{x}, 0)=0, \bar{v}(\bar{x}, 0)=0 \bar{u}(\bar{x}, \infty)=u_{e}$, where $\bar{\delta}_{1}=\int_{0}^{\infty}\left(1-\frac{\bar{u}}{\bar{u}_{e}}\right) d \bar{n}$, and

$$
\bar{u}_{e}=\frac{1}{\left(R^{2}-2\left((\lambda / R e)^{-1 / 2}\right) \bar{\delta}_{1}\right)}
$$

IBL integral: 1D equation

$$
\begin{gathered}
\frac{d}{d \bar{x}}\left(\frac{\bar{\delta}_{1}}{H}\right)=\bar{\delta}_{1}\left(1+\frac{2}{H}\right) \frac{d \bar{u}_{e}}{d \bar{x}}+\frac{f_{2} H}{\bar{\delta}_{1} \bar{u}_{e}} \\
\bar{u}_{e}=\frac{1}{\left(R^{2}-2(\lambda / R e)^{-1 / 2} \bar{\delta}_{1}\right)} .
\end{gathered}
$$

To solve this system, a closure relationship linking H and f_{2} to the velocity and the displacement thickness is needed.

Defining $\Lambda_{1}=\bar{\delta}_{1}^{2} \frac{d \bar{u}_{e}}{d \bar{x}}$,
the system is closed from the resolution of the Falkner Skan system as follows:
if $\Lambda_{1}<0.6$ then $H=2.5905 \exp \left(-0.37098 \Lambda_{1}\right)$, else $H=2.074$.
From H, f_{2} is computed as $f_{2}=1.05\left(-H^{-1}+4 H^{-2}\right)$.

IBL integral: 1D equation Simplified Shear Stress

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation) $\quad U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}$

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

$$
U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}
$$

- acceleration: boundary layer $\delta_{1} \simeq \frac{\lambda}{\sqrt{R e_{\lambda}}}$,

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

$$
U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}
$$

- acceleration: boundary layer $\delta_{1} \simeq \frac{\lambda}{\sqrt{R e_{\lambda}}}$, with $R e_{\lambda}=\frac{\lambda U_{0}}{(1-\alpha)^{2} \nu}=\frac{R e \lambda}{(1-\alpha)^{2}}$

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

$$
U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}
$$

- acceleration: boundary layer $\delta_{1} \simeq \frac{\lambda}{\sqrt{R e_{\lambda}}}$, with $R e_{\lambda}=\frac{\lambda U_{0}}{(1-\alpha)^{2} \nu}=\frac{R e \lambda}{(1-\alpha)^{2}}$
- WSS $=($ variation of velocity $) /($ boundary layer thickness $)$

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

$$
U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}
$$

- acceleration: boundary layer $\delta_{1} \simeq \frac{\lambda}{\sqrt{R e_{\lambda}}}$, with $R e_{\lambda}=\frac{\lambda U_{0}}{(1-\alpha)^{2} \nu}=\frac{R e \lambda}{(1-\alpha)^{2}}$
- WSS $=($ variation of velocity $) /($ boundary layer thickness $)=\frac{(R e / \lambda)^{1 / 2}}{(1-\alpha)^{3}}$

IBL integral: 1D equation Simplified Shear Stress

- variation of velocity (flux conservation)

$$
U_{0} \rightarrow U_{0} /\left(1-\alpha-\delta_{1}\right)^{2}
$$

- acceleration: boundary layer $\delta_{1} \simeq \frac{\lambda}{\sqrt{R e_{\lambda}}}$, with $R e_{\lambda}=\frac{\lambda U_{0}}{(1-\alpha)^{2} \nu}=\frac{R e \lambda}{(1-\alpha)^{2}}$
- WSS $=($ variation of velocity $) /($ boundary layer thickness $)=\frac{(\operatorname{Re} / \lambda)^{1 / 2}}{(1-\alpha)^{3}}$

A simple formula as been settled:

$$
W S S=\left(\mu \frac{\partial u^{*}}{\partial y^{*}}\right) /\left(\left(\mu \frac{4 U_{0}}{R}\right)\right) \sim .22 \frac{\left((R e / \lambda)^{1 / 2}+3\right)}{(1-\alpha)^{3}}
$$

Reynolds number is no longer $R e$ but $R e \lambda$ and $(R e / \lambda)^{1 / 2}$ is the inverse of the relative boundary layer thickness.

IBL integral: Comparison with Navier Stokes (Siegel et al. 1994)

$W S S=a R e^{1 / 2}+b$
Coefficient a and b for the maximum WSS.
solid lines with \triangle and "square" : coefficient a and b obtained using the IBL integral method ;
\diamond : coefficient a derived from Siegel for $\lambda=3$;
\times : coefficient a derived from Siegel for $\lambda=6$;
\bigcirc : coefficient b derived from Siegel for $\lambda=3$;
$+:$ coefficient b derived from Siegel for $\lambda=6$.

Testing asymmetry in the entry profile

The velocities in the middle for Comflo and RNS.
Comflo uses here 50X50X100 points. Dimensionless scales!

Application 2/3: Flow in the glottis

collaboration E. Berger (LMM), M. Deverge (TUE), C. Vilain (ICP) \& A. Hirschberg (TUE) + B. de Bruin (RuG)
idem in 2D !!!

$$
\begin{align*}
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v & =0 \tag{1}\\
u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial y} u & =-\frac{\partial}{\partial x} p+\frac{\partial^{2}}{\partial y^{2}} u, \quad 0=-\frac{\partial}{\partial y} p . \tag{2}
\end{align*}
$$

Application 2/3: Flow in the glottis

VAL - ISO
$-9.13 \mathrm{e}-01$
$<5.338+00$

Application 2/3: Flow in the glottis

- nearly constant "shape":
$K_{e}=P_{t} / P_{m}$ is nearly constant $K_{e} \simeq 0.82$
$K_{g}=P_{g} / P_{m}$ is nearly constant $K_{g} \simeq 0.97$.

Application 2/3: Flow in the glottis

- nearly constant "shape":
$K_{e}=P_{t} / P_{m}$ is nearly constant $K_{e} \simeq 0.82$ $K_{g}=P_{g} / P_{m}$ is nearly constant $K_{g} \simeq 0.97$.
- writing a Bernoulli law gives the pressure drop:

$$
P_{m} \simeq-\frac{1}{2}\left(\frac{1}{\left(1-\alpha-\delta_{1 c}\right)^{2}}-1\right)
$$

Application 2/3: Flow in the glottis

- nearly constant "shape":
$K_{e}=P_{t} / P_{m}$ is nearly constant $K_{e} \simeq 0.82$ $K_{g}=P_{g} / P_{m}$ is nearly constant $K_{g} \simeq 0.97$.
- writing a Bernoulli law gives the pressure drop:

$$
P_{m} \simeq-\frac{1}{2}\left(\frac{1}{\left(1-\alpha-\delta_{1 c}\right)^{2}}-1\right)
$$

- with $\delta_{1 c} \simeq(1-\alpha)(R e)^{-1 / 2}$

Experiments

"pg1" : $\left(-0.17 P_{t}^{*} / \rho U_{0}^{2}\right), " \operatorname{pg} 2 "\left(P_{g}^{*} / \rho U_{0}^{2}\right)\left(P_{t}^{*}\right.$ and P_{g}^{*} experimental pressures)

Testing upstream influence $(\operatorname{Re}=200)$

Case 2

Case 4

Testing upstream influence $(\operatorname{Re}=200)$

The velocity in the middle of the tube for stenosis $1,2,3,4$ and 6 . Dimensions in cm

Application 3/3: Flow in an elastic artery

Application 3/3: Flow in an elastic artery

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0,
$$

Application 3/3: Flow in an elastic artery

- introducing time:

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0
$$

$$
\frac{\partial u}{\partial t}
$$

Application 3/3: Flow in an elastic artery

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0,
$$

- introducing time:

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\varepsilon_{2}\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right)=-\frac{\partial p}{\partial x}+\frac{2 \pi}{\alpha^{2}} \frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), 0=-\frac{\partial p}{\partial r} \\
\varepsilon_{2}=\frac{\delta R}{R_{0}},
\end{gathered} \alpha=R_{0} \sqrt{\frac{2 \pi / T}{\nu}} .
$$

Application 3/3: Flow in an elastic artery

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0,
$$

- introducing time:

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\varepsilon_{2}\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right)=-\frac{\partial p}{\partial x}+\frac{2 \pi}{\alpha^{2}} \frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), 0=-\frac{\partial p}{\partial r} . \\
\varepsilon_{2}=\frac{\delta R}{R_{0}},
\end{gathered} \alpha=R_{0} \sqrt{\frac{2 \pi / T}{\nu}} .
$$

- introducing wall elasticity:

Application 3/3: Flow in an elastic artery

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0,
$$

- introducing time:

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\varepsilon_{2}\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right)=-\frac{\partial p}{\partial x}+\frac{2 \pi}{\alpha^{2}} \frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), 0=-\frac{\partial p}{\partial r} . \\
\varepsilon_{2}=\frac{\delta R}{R_{0}},
\end{gathered} \alpha=R_{0} \sqrt{\frac{2 \pi / T}{\nu}} .
$$

- introducing wall elasticity: $p(x, t)=k\left(R(x, t)-R_{0}\right)$

Application 3/3: Flow in an elastic artery

$$
\frac{\partial}{\partial x} u+\frac{\partial}{r \partial r} r v=0,
$$

- introducing time:

$$
\begin{gathered}
\frac{\partial u}{\partial t}+\varepsilon_{2}\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right)=-\frac{\partial p}{\partial x}+\frac{2 \pi}{\alpha^{2}} \frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), 0=-\frac{\partial p}{\partial r} \\
\varepsilon_{2}=\frac{\delta R}{R_{0}},
\end{gathered} \alpha=R_{0} \sqrt{\frac{2 \pi / T}{\nu}} .
$$

- introducing wall elasticity: $p(x, t)=k\left(R(x, t)-R_{0}\right)$
+ The boundary conditions: here hyperbolical $\left(R\left(x_{i n}, t\right)\right.$ and $\left.R\left(x_{\text {out }}, t\right)\right)$ given.

Flow in an elastic artery: integral relations

- new integral equations: adapting Von Kármán integral methods

The key is to integrate the equations with respect to the variable $\eta=r / R$ from the centre of the pipe to the wall $(0 \leq \eta \leq 1)$.

- U_{0}, the velocity along the axis of symmetry,
- q a kind of loss of flux $\left(\delta_{1}\right)$,
- Γ a kind of loss of momentum flux $\left(\delta_{2}\right)$:

$$
U_{0}(x, t)=u(x, \eta=0, t), \quad q=R^{2}\left(U_{0}-2 \int_{0}^{1} u \eta d \eta\right) \quad \& \Gamma=R^{2}\left(U_{0}^{2}-2 \int_{0}^{1} u^{2} \eta d \eta\right)
$$

Flow in an elastic artery: integral relations

$$
\frac{\partial R^{2}}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}\left(R^{2} U_{0}-q\right)=0, \quad R=1+\varepsilon_{2} h
$$

Integrating RNSP, with the help of the boundary conditions, we obtain the equation for $q(x, t)$:

$$
\frac{\partial q}{\partial t}+\varepsilon_{2}\left(\frac{\partial}{\partial x} \Gamma-U_{0} \frac{\partial}{\partial x} q\right)=-2 \frac{2 \pi}{\alpha^{2}} \tau, \quad \tau=\left.\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}-\left.\left(\frac{\partial^{2} u}{\partial \eta^{2}}\right)\right|_{\eta=0}
$$

From the same equation evaluated on the axis of symmetry (in $\eta=0$), we obtain an equation for the velocity along the axis $U_{0}(x, t)$:

$$
\frac{\partial U_{0}}{\partial t}+\varepsilon_{2} U_{0} \frac{\partial U_{0}}{\partial x}=-\frac{\partial p}{\partial x}+2 \frac{2 \pi}{\alpha^{2}} \frac{\tau_{0}}{R^{2}}, \quad \tau_{0}=\left.\left(\frac{\partial^{2} u}{\partial \eta^{2}}\right)\right|_{\eta=0}
$$

Boundary conditions $\left(h\left(x_{i n}, t\right)\right.$ and $\left.h\left(x_{\text {out }}, t\right)\right)$ given

Closure

The two previous relations introduced the values of the friction in $\eta=0$, the axis of symmetry: $\left(\left.\left(\frac{\partial^{2} u}{\partial \eta^{2}}\right)\right|_{\eta=0}\right)$ and the skin friction in $\eta=1$, at the wall: $\left(\left.\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}\right)$.

- Information has been lost here, so we need a closure relation between (Γ, τ, τ_{0}) and $\left(q, R, U_{0}\right)$.
- we have to imagine a velocity profile and deduce from it relations linking Γ, τ and τ_{0} and q, U_{0} et R.

Closure: Womersley

- the most simple idea is to use the profiles from the analytical linearized solution given by Womersley (1955) for

$$
\left(j_{r}+i j_{i}\right)=\left(\frac{1-\frac{J_{0}\left(i^{3 / 2} \alpha \eta\right)}{J_{0}\left(i^{3 / 2} \alpha\right)}}{1-\frac{1}{J_{0}\left(i^{3 / 2} \alpha\right)}}\right) .
$$

- assume that the velocity distribution in the following has the same dependence on η. It means that we suppose that the fundamental mode imposes the radial structure of the flow.

The coefficients of closure

- by integration/ derivation, we obtain:

$$
\Gamma=\gamma_{q q} \frac{q^{2}}{R^{2}}+\gamma_{q u} q U_{0}+\gamma_{u u} R^{2} U_{0}^{2}, \quad \tau=\tau_{q} \frac{q}{R^{2}}+\tau_{u} U_{0} \quad \tau_{0}=\tau_{0 q} \frac{q}{R^{2}}+\tau_{0 u} U_{0}
$$

The coefficients $\left(\left(\gamma_{q q}, \gamma_{q u}, \gamma_{u u}\right),\left(\tau_{q}, \tau_{u}\right),\left(\tau_{0 q}, \tau_{0 u}\right)\right)$ are only functions of α.

The coefficients of closure

- by integration/ derivation, we obtain:

$$
\Gamma=\gamma_{q q} \frac{q^{2}}{R^{2}}+\gamma_{q u} q U_{0}+\gamma_{u u} R^{2} U_{0}^{2}, \quad \tau=\tau_{q} \frac{q}{R^{2}}+\tau_{u} U_{0} \quad \tau_{0}=\tau_{0 q} \frac{q}{R^{2}}+\tau_{0 u} U_{0}
$$

The coefficients $\left(\left(\gamma_{q q}, \gamma_{q u}, \gamma_{u u}\right),\left(\tau_{q}, \tau_{u}\right),\left(\tau_{0 q}, \tau_{0 u}\right)\right)$ are only functions of α.

$$
\begin{aligned}
\gamma_{u u}= & 1-\int j_{i}^{2} /\left(\int j_{i}\right)^{2}-\left(2 \int j_{r} j_{i}\right) / \int j_{i}-\int j_{r}^{2}+ \\
& +\left(2 \int j_{i}^{2} \int j_{r}\right) /\left(\int j_{i}\right)^{2}+\left(2 \int j_{i} j_{r} \int j_{r}\right) / \int j_{i}- \\
& -\left(\int j_{i}^{2}\left(\int j_{r}\right)^{2}\right) /\left(\int j_{i}\right), \\
\tau_{0 u}= & \partial_{\eta}^{2} j_{r \eta=0}+\partial_{\eta}^{2} j_{i \eta=0} / \int j_{i}-\left(\partial_{\eta}^{2} j_{i \eta=0} \int j_{r}\right) / \int j_{i}
\end{aligned}
$$

Remarks

- The main difference from other integral methods in our approach is the introduction of an auxillary partial differential relation obtained from an aeronautical analogy. Instead of q, Γ and U_{0} authors mainly use Q, Q_{2} and U_{0} :

$$
\begin{aligned}
& Q=\int_{0}^{R} 2 \pi u r d r \quad Q / \pi=U_{0} R^{2}-q \\
& Q_{2}=\int_{0}^{R} 2 \pi r u^{2} d r \quad Q_{2} / \pi=U_{0}^{2} R^{2}-\Gamma
\end{aligned}
$$

Remarks

Substracting our third from our second equation we obtain the classical system:

$$
\begin{gathered}
2 \pi R \frac{\partial R}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}(Q)=0 \\
\frac{\partial Q}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}\left(Q_{2}\right)=-\pi R^{2} \frac{\partial p}{\partial x}+\left.\pi \frac{2 \pi}{\alpha^{2}}\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}
\end{gathered}
$$

Remarks

Substracting our third from our second equation we obtain the classical system:

$$
\begin{gathered}
2 \pi R \frac{\partial R}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}(Q)=0, \\
\frac{\partial Q}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}\left(Q_{2}\right)=-\pi R^{2} \frac{\partial p}{\partial x}+\left.\pi \frac{2 \pi}{\alpha^{2}}\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}
\end{gathered}
$$

The effect of the skin friction $\left(\tau_{1}=\left.\frac{2 \pi}{\alpha^{2}}\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}\right)$ is often estimated by $\tau_{1}=-\frac{8 \pi}{\alpha^{2}} \frac{Q}{\pi R^{3}}$, true for a Poiseuille flow only. It may be replaced by an unsteady relation such as:

$$
T_{\tau} \frac{\partial \tau_{1}}{\partial t}+\tau_{1}=-\frac{8}{\alpha^{2}}\left(Q+T_{Q} \frac{\partial Q}{\partial t}+\ldots\right)
$$

Remarks

Substracting our third from our second equation we obtain the classical system:

$$
\begin{gathered}
2 \pi R \frac{\partial R}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}(Q)=0, \\
\frac{\partial Q}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}\left(Q_{2}\right)=-\pi R^{2} \frac{\partial p}{\partial x}+\left.\pi \frac{2 \pi}{\alpha^{2}}\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}
\end{gathered}
$$

The effect of the skin friction $\left(\tau_{1}=\left.\frac{2 \pi}{\alpha^{2}}\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}\right)$ is often estimated by $\tau_{1}=-\frac{8 \pi}{\alpha^{2}} \frac{Q}{\pi R^{3}}$, true for a Poiseuille flow only. It may be replaced by an unsteady relation such as:

$$
T_{\tau} \frac{\partial \tau_{1}}{\partial t}+\tau_{1}=-\frac{8}{\alpha^{2}}\left(Q+T_{Q} \frac{\partial Q}{\partial t}+\ldots\right)
$$

- We do not claim that our description is better, but for a sinusoidal input we find again (at any frequency) the Womersley linear solution. Our profiles are realistic in the sense that they present overshoots in the core and back flow near the wall.
- RNSP

Comparison RNSP/ Integral 1D/ pure Womersley

$$
\begin{aligned}
\frac{\partial}{\partial x} u & +\frac{\partial}{r \partial r} r v=0, \\
\frac{\partial u}{\partial t}+\varepsilon_{2}\left(u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial r} u\right) & =-\frac{\partial p}{\partial x}+\frac{2 \pi}{\alpha^{2}} \frac{\partial}{r \partial r}\left(r \frac{\partial}{\partial r} u\right), 0=-\frac{\partial p}{\partial r} . \\
p(x, t) & =k\left(R(x, t)-R_{0}\right)
\end{aligned}
$$

- Integral 1D

$$
\begin{gathered}
\frac{\partial R^{2}}{\partial t}+\varepsilon_{2} \frac{\partial}{\partial x}\left(R^{2} U_{0}-q\right)=0, \quad R=1+\varepsilon_{2} h . \\
\frac{\partial q}{\partial t}+\varepsilon_{2}\left(\frac{\partial}{\partial x} \Gamma-U_{0} \frac{\partial}{\partial x} q\right)=-2 \frac{2 \pi}{\alpha^{2}} \tau, \quad \tau=\left.\left(\frac{\partial u}{\partial \eta}\right)\right|_{\eta=1}-\left.\left(\frac{\partial^{2} u}{\partial \eta^{2}}\right)\right|_{\eta=0} . \\
\frac{\partial U_{0}}{\partial t}+\varepsilon_{2} U_{0} \frac{\partial U_{0}}{\partial x}=-\frac{\partial p}{\partial x}+2 \frac{2 \pi}{\alpha^{2}} \frac{\tau_{0}}{R^{2}}, \quad \tau_{0}=\left.\left(\frac{\partial^{2} u}{\partial \eta^{2}}\right)\right|_{\eta=0 .} . \\
p(x, t)=k(h(x, t))
\end{gathered}
$$

- Womersley

Figure 1: The displacement of the wall $(h(x, t=2.5))$ as a function of x is plotted here at time $t=2.5$. The dashed line (wom3(x,2.5)) is the Womersley solution (reference), the solid line (B.L.) is the result of the Boundary Layer code and the dots (intg) are the results of the integral method ($\alpha=3, k_{1}=1, k_{2}=0$ and $\varepsilon_{2}=0.2$).

inverse method

using RNSP equ. as synthetic datas, inverse method (retropropagation...)
Settle a non invasive method to estimate wall elasticity

Minimisation between "mesure" and 1D computation at one point.

Conclusion

Conclusion

Starting from Navier Stokes

- a simple set of equations: RNSP

Conclusion

Starting from Navier Stokes

- a simple set of equations: RNSP
- much more simple set of equations: Integral equations

Conclusion

Starting from Navier Stokes

- a simple set of equations: RNSP
- much more simple set of equations: Integral equations
- cross comparisons in some cases

Conclusion

Starting from Navier Stokes

- a simple set of equations: RNSP
- much more simple set of equations: Integral equations
- cross comparisons in some cases
evaluation of skin friction
evaluation of pressure drop
Boundary conditions...
Well adapted for "real time computations/ simulations/ visualisations" ...

