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1 Introduction

Estimating the order of magnitude of the wall shear stress (WSS) in a lo-
cally constricted pipe is important in numerous applications. For example,
elevated wall shear stresses encountered in stenoses, i.e. local constrictions of
blood vessels, play a significant role in thrombo-embolism and atherosclerotic
plaques ruptures (Berger and Jou [1], Stroud et al. [33]). Of course, computing
the flow in such a pipe can be achieved with great accuracy through Navier-
Stokes solvers (Budwig et al. [2], Bluestein et al. [3] de Bruin et al. [6], Siegel
et al. [28]). However, asymptotic equations provides a better understanding
of the flow structure and relevant scalings, and reduces computational time.
Therefore, parameters may be changed easily and their influence can be thor-
oughly investigated. Hence, the aim of this work is to find the appropriate
scaling for the wall shear stress in a constricted pipe as a function of pertinent
non-dimensional parameters using an asymptotic approach.
For that purpose, a set of equations that is sometimes referred to as Reduced
Navier-Stokes (RNS) equations will be our starting point. These equations,
including a transverse pressure gradient, can be found either in three or two
dimensions, plane or axisymmetrical, in Fletcher [7] and Tannehil et al. [35].
However, in our analysis, these equations will be used with a constant trans-
verse pressure, i.e. the pressure is a function of x alone : ∂rp = 0 or p(x).
In this case, the RNS equations formally correspond to the Prandtl equa-
tions, but with different boundary conditions. Therefore, they may be called
RNS/Prandtl, or RNSP(x).
Following Smith [29] and other authors (e. g. Saintlos & Mauss [26], Sychev
et al. [34]) analyses, we will show that the RNS/Prandtl equations includes
many classical asymptotic descriptions for internal flows, i.e. the Interactive
Boundary Layer (IBL), the Double Deck and the Triple Deck theories, as well
as Blasius and Poiseuille regimes. Thus, the RNS/Prandtl equations are able
to describe the transitions between flow regions that correspond to different
classical asymptotic descriptions or regimes that are usually done with the full
Navier-Stokes Equations.
In order to demonstrate the “universality” of the RNSP(x) equations, we will
use either the least possible degeneracy principle (Van Dyke [36]), which re-
quires the inertia-pressure-viscous force balance, or directly the results from
the literature, that are classical but till have been disjoined.
The limitation of this description will also be presented. In particular, the
RNSP(x) equations are not valid when ∂rp is not zero, which induces ellip-
ticity and prevents the flow from being solved with a streamwise marching
procedure. Nevertheless, this is not a very strong condition in internal flows,
and will be demonstrated using the Double Deck and Triple Deck theories. In
particular, calculation of separated flows is possible (Smith [29], Sychev et all.
[34], Lagrée et al. [14]). Hence, the RNSP(x) equations may be applied in the
case of a dilated pipe or aneurysm (Lagrée [11], Budwig et al. [2] and Bluestein
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et al. [3]). In addition, the RNSP(x) formulation can be applied to supersonic
external flows (see Davis et al. [5]) except when there is an upstream influ-
ence from the flow downstream, which occurs in some Triple Deck problems
(Stewartson [32]). A case of a hypersonic external flow has also been studied
by Maslov et al. [18] by a RNS computation without obtaining branching so-
lutions from upstream influence.
In the following, the variables with stars denote dimensional variables.

2 RNS/Prandtl equations (RNSP(x))

2.1 The RNSP(x) hypothesis

We consider a steady laminar incompressible axisymmetrical flow of a Newto-
nian fluid in a locally constricted axisymmetric pipe (see Fig. 1 for notations
used). The radial position of the pipe is given by : R∗ = R∗

0(1 − f(x∗)),
where R∗

0 is the unconstricted radius and f is the given radius perturbation.
In addition, we denote by U ∗

0 the longitudinal velocity scale of the flow and
assume that the typical length scale for transverse variations of the longitudi-
nal velocity is R∗

0. From the Navier-Stokes equations, we obtain a longitudinal
scale (L∗RNS >> R∗

0) from a balance between the convective term and the
largest diffusive term. In other words, (u∗ ∂u∗

∂x∗
) must be of the same order as

ν ∂
r∗∂r∗

(r∗ ∂
∂r∗

u∗), which leads to:

U∗2
0

L∗RNS

u
∂u

∂x
' ν

U∗

0

R∗2
0

∂

r∂r
(r

∂

∂r
u), (1)

where ν is the kinematic viscosity. Thus the longitudinal scale L∗RNS equals
R∗

0Re, where Re is the Reynolds number Re = U ∗

0 R∗

0/ν. Finally, the pressure
and transverse velocity scales are determined from a balance among the viscous
term, convective term, and pressure gradient that drives the flow (Van Dyke
[36]). Of course, this is similar to the classical way to obtain the Prandtl
equations although in the Prandtl case the transversal scale is deduced from
an initially chosen longitudinal scale.
A similar approach will be carried out in the following sections with various
transverse scales corresponding to the tickness of additional layers near the
wall, and with various scales for the longitudinal velocity in these new layers.
A longitudinal length scale will still be determined in order to obtain a balance
among inertia, pressure, viscous forces.
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2.2 The RNSP(x) Formulation

As deduced from the previous section, the non-dimensional variables are given
by :
x∗ = xR∗

0Re, r∗ = rR∗

0, u∗ = U∗

0 u, v∗ =
U∗

0

Re
v, p∗ = p∗0 + ρ0U

∗2
0 p,

p∗0 denoting the entry pressure, and, consequently :

τ ∗ = µ
∂u∗

∂r∗
=

ρU∗2
0

Re
τ, (2)

where τ is the WSS, µ is the dynamic viscosity and ρ the density.
With these new variables, the following partial differential system is obtained
from the Navier-Stokes equations as Re →∞:

∂

∂x
u +

∂rv

r∂r
= 0, u

∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+

∂

r∂r
(r

∂u

∂r
), 0 = −∂p

∂r
. (3)

The associated boundary conditions are:

• the condition of axial symmetry : ∂ru = 0 and v = 0 at r = 0,
• no-slip condition at the wall : u = v = 0 at r = 1 − f(x). Of course, in

order to apply the RNSP(x) set, f is of order one, but smaller than one,
and the longitudinal scale has to be compatible, i.e. of scale L∗RNS . In the
next section, the implications of a change in the constriction height and the
length will be discussed,

• the entry velocity profiles (u(0, r) and v(0, r)) are given : flat profile or
Poiseuille flow, but other profile is also possible,

• there is no outflow boundary condition because the system is parabolic as
will be demonstrated in the linearised asymptotic descriptions. The equa-
tions are solved by marching in the streamwise direction, even if there is
flow separation.

The most important result of the computation is the non-dimensionalised
WSS: τ = ∂u

∂r
(x, 0).

2.3 Comments

This set of equations has been already used for studying entry effects by
Cebeci & Cousteix [4] and in Schlichting [27]. However, Rubin & Himansu
[25] and Tannehil et al. [7] kept a transversal pressure variation linked with
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the transverse velocity as follows:

Re−2(u
∂

∂x
v + v

∂

∂r
v) = −∂p

∂r
+ Re−2(

∂

r∂r
(r

∂

∂r
v)− v2

r
). (4)

They call the system (3.1 , 3.2, 4) “Reduced NS“, but as noted by Fletcher
[7], this system contains a mix of orders of magnitude, and is not coherent
from an asymptotical point of view. Indeed, as Re tends toward infinity, Eq.
4 degenerates to Eq. 3.3, and the system (3.1, 3.2, 4) reduces to the RNSP(x)
set. Subsequently, this system is used to obtain most of the degeneracy of the
full NS equations in an axisymmetrical pipe :

• In §3.1, a unconstricted case will be discussed (entry problem, see Fig. 3),
• In §3.2.1 and §3.3, a case of a constriction situated near the pipe entry,

where the velocity profile is flat in the core flow, will be considered (see Fig.
2, left). In this case, the Interacting Boundary Layer and the Triple Deck
theories are valid since the core flow is inviscid and there is a thin boundary
layer near the wall,

• In §3.4, a case of a constriction situated far from the pipe entry, where
the flow is fully developed, will be considered (see Fig. 2, right). In this
region, the Double Deck theory, also known as Smith’s theory of viscous
perturbation on a Poiseuille flow in a pipe, is valid,

• Finally, in §3.6.1, we will show that if the constriction is short compared to
R∗

0Re, the velocity profile at the entry is not important. In that case, the
Interacting Boundary Layer theory proves to be valid again: acceleration
is so high that the profile flattens, recreating an inviscid core and a thin
boundary layer near the wall.

In particular, the scale of the non-dimensional WSS will be determined by the
location and size of the constriction. This scale will not always be of order one
in the RNSP scales.

3 Link of RNSP(x) with other Asymptotic descriptions.

3.1 RNSP(x): from Blasius to Poiseuille

First, starting from a flat profile at the entrance (u(0, r) = 1 and v(0, r) = 0),
the flow consist of two concentric layers (see Fig. 3) :

• A first layer of length ε2 << 1 and of transversal length 1 (except near the
wall) where the velocity is uniform (u = 1, v = 0): the inviscid core,
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• A second thin layer of the same longitudinal length ε2 << 1, but of thickness
ε << 1. In this layer, introducing x = ε2x̄, r = 1−εȳ, u = ū, −v = ε−1v̄ and
p = p̄, the RNSP(x) set leads to the classical Boundary Layer equations:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = −∂p̄

∂x̄
+

∂2ū

∂ȳ2
, 0 = −∂p̄

∂ȳ
, (5)

with the following boundary conditions : ū(x̄, 0) = 0, v̄(x̄, 0) = 0, ū(x̄,∞) =
1, p̄(x̄,∞) = 0, corresponding to the Blasius flow regime.

Thus, if L∗ denotes the current dimensional length in this second layer,
i.e. L∗ = ε2L∗RNS , the corresponding thickness is given by εR∗

0, or :

√

L∗

L∗RNS

R∗

0 =
L∗

√

U∗

0
L∗

ν

, (6)

the classical boundary layer thickness. Similarly, the non-dimensional WSS
is the Blasius value τ̄ = 0.33x̄−1/2 (Schlichting [27]). Consequently, τ =
ε−10.33(ε−2x)−1/2, or, in dimensional form :

τ ∗ = [
ρU∗2

0

Re
](0.33(

x∗

R∗

0

)−1/2). (7)

Second, the Poiseuille solution is obviously a solution for the set (3) associated
with the no-slip condition at the wall , with its WSS:

u = UPois(r) = 2(1− r2), v = 0, τ ∗ = (4)[
ρU∗2

0

Re
]. (8)

Third, the system (3) allows the computation of the entry flow from Blasius to
Poiseuille (see Schlichting [27], Cebeci & Cousteix [4] and next sub-section).
Finally, at the entrance of the pipe, there is a small region of the same relative
thickness and length ε = Re−1 where a full Navier-Stokes problem must be
solved. This degeneracy is not included in the RNSP(x). From Navier-Stokes
equations, with: x∗ = εR∗

0x̂, r∗ = R∗

0(1− εŷ), u∗ = U∗

0 û, v∗ = U∗

0 v̂ we obtain:

∂û

∂x̂
+

∂v̂

∂ŷ
= 0 (9)

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+

∂2û

∂x̂2
+

∂2û

∂ŷ2
, û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= −∂p̂

∂ŷ
+

∂2v̂

∂x̂2
+

∂2v̂

∂ŷ2
(10)

This short scale problem is the first limitation of the RNSP(x) set because
∂p̂/∂ŷ is not zero, resulting an elliptic system. In this region, in the RNSP
scales, the transversal length is of order Re−1 and the longitudinal velocity is
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of order 1. The non-dimensional WSS thus scales as Re. Finally, from Eq. 2,
the physical scale of the WSS (τ ∗) is given by

τ ∗ = O(ρU∗2
0 ). (11)

Note that the matching between this NS short scale region and the RNS/Prandtl
areas is a very difficult task. However, there is an analogy between this issue
and the thermal boundary layer in a Poiseuille flow (described in Pedley [21]).
First, at the entrance of the pipe, the full heat equation holds, corresponding
to our full NS problem. Then, the Lévêque problem corresponds to our in-
viscid core/Blasius layer flow region. Finally, the Graetz problem corresponds
to the Blasius/Poiseuille transition. In this problem, solutions of the full heat
equations may be matched with the solution of the Lévêque problem.

3.1.1 Numerical results

The numerical solutions of the RNSP system (3.1, 3.2, 3.3) and other asymp-
totic descriptions in the following sections are achieved using a simple finite
difference scheme in ”mapped variables” (Lagrée [12]). The derivatives are
implicit, centered in the transverse direction and marching in the streamwise
direction. The core of the solution is the second order derivative with a two
point boundary condition for u in Eq. 3.2. It is solved by the Thomas algo-
rithm (Peyret & Taylor [22]). The transverse velocity is then computed by
integration of Eq. 3. The idea is to guess by a Newton iteration scheme the
value of the pressure at the current step so that the boundary condition for
the transverse velocity is fulfilled. An alternative way to solve for the pressure
gradient can be found in Feltcher [7]. This code enables the computation of
the boundary layer separation (reverse flow) in mild constrictions, but, if the
constriction is severe, the FLARE approximation (Reyhner & Flügge Lotz
[23]) must be used .
Fig. 4 displays the longitudinal evolution of the velocity at the centre of the
pipe, starting from the entrance (u(x = 0, r = 0) = 1) and to the Poiseuille
value (u(x = ∞, r = 0) = 2)). The length of the entrance region is given by
xe ' 0.214 where u(xe, r = 0)/u(x = ∞, r = 0) equals 0.99. The asymptote
obtained for small x = 0 values will be examined in the next section. Fig. 5
displays the longitudinal evolution of the pressure. For large x, the pressure
asymptote is linear and of slope −8 as expected from Eqs. 5 and 8. The inter-
cept of this asymptote corresponds to the singular pressure drop ∆pentry for
an entry flow, i.e. : ∆pentry = −0.63.
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3.2 RNSP(x): the link with IBL (Interacting Boundary Layer)

3.2.1 The IBL Formulation

After rescaling: r = 1−εȳ, u = ū, v = −ε−1v̄, x = ε2x̄ and p = p̄ and assuming
a flat entry velocity profile, the RNSP(x) leads to the final IBL formulation
as follows:

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0, (ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) = ūe

dūe

dx̄
+

∂2ū

∂ȳ2
, (12)

ūe =
1

(1− 2εδ̄1)
(13)

where δ̄1 =
∫

∞

0 (1− ū
ūe

)dȳ and with the following boundary conditions :
ū(x̄, 0) = 0, v̄(x̄, 0) = 0 and ū(x̄,∞) = ūe

3.2.2 Comments

The idea of the IBL (Cebeci & Cousteix [4], Sychev et all. [34] and Le Balleur
[17]) is to divide the flow into two regions : a boundary layer and an inviscid
core. The Boundary Layer equations are obtained in the same way as in the
preceding paragraph which led to the Blasius solution. However, in the IBL
case, an outer edge velocity ūe = ū(x̄,∞), corresponding to the velocity of the
inviscid core, is introduced. The outer edge velocity is not necessarily equal
to 1, as in the Blasius case. These two regions are strongly interacting, so
that the radius seen by the inviscid core is no longer R∗

0 but R∗

0(1− εδ̄1). The
inviscid solution for a channel with a slow radius change is then obtained by

a simple mass balance: u∗ = U∗

0

[

R∗

0

R∗

0
(1−εδ̄1)

]2

, where δ̄1 is the boundary layer

displacement thickness.
In establishing the velocity displacement relation (Eq. 13), the key lies in the
examination of the integral of the velocity over the channel cross-section. This
integral is decomposed using a small parameter δρ such as : 1 >> δρ >> ε.

1
∫

0

(ru)dr =

1−δρ
∫

0

(ru)dr +

1
∫

1−δρ

(ru)dr + (

1
∫

1−δρ

(rue(x̄))dr −
1

∫

1−δρ

(rue(x̄))dr).

When δρ tends to 0, the combination of the first and third terms equals ūe/2,
as δρ is located in the inviscid core where u = ūe. The second and fourth terms
may be recombined using the ȳ boundary layer variable. As ε tends to 0 faster
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than δρ, i.e. δρ/ε→∞, their sum is :

−ε

0
∫

δρ/ε

((1− εȳ)ū)dȳ + ε(

0
∫

δρ/ε

((1− εȳ)ūe(x̄))dȳ)→ −εūeδ̄1,

where δ̄1 is the well known boundary-layer displacement thickness δ̄1 =
∫

∞

0 (1−
ū

ūe(x̄)
)dȳ. Finally, at order O(ε2):

∫ 1
0 (ru)dr = ūe

2
− εūeδ̄1, or :

ūe(x̄)(1− 2εδ̄1) = 1, (14)

which may be rewritten as ūe(x̄)(1 − εδ̄1)
2 + O(ε2) = 1 to be interpreted as

mass conservation.
Note that the IBL description has terms of different order of magnitude be-
cause Eq. 14 degenerates into ūe(x) = 1. The interaction between the bound-
ary layer and the inviscid core disappears and the Blasius regime is recovered.
This inconsistency does not appear in the pure Triple Deck description.
If a constriction of height ε and of length ε2 (i.e. f(x) = εf̄(x̄)) is introduced,
the new boundary condition at ȳ = 0 is : ū(x̄, f̄(x̄)) = 0 and v̄(x̄, f̄(x̄)) = 0.
Using the Prandtl transform : x̄ → x̄, ȳ → ȳ− f̄(x̄) and δ̄1 =

∫

∞

0 (1− ū
ūe

)dȳ, the
problem reads again as (12), with a modified velocity displacement relation
and an O(ε2) error :

ūe(x̄)(1− 2ε(δ̄1 − f̄)) = 1, (15)

with the former boundary condition at ȳ = 0 (i.e. ū(x̄, 0) = 0 and v̄(x̄, 0) = 0).
As a conclusion, the IBL set of equations is encompassed by the RNSP(x) set
at first order.

3.2.3 WSS

In dimensional form, the WSS is of order O(
ρU∗2

0

Re
∂u
∂r

), which leads to :

τ ∗ = O(ε−1ρU∗2
0

Re
). (16)

3.2.4 The integral IBL solution

The IBL system (12, 13) may be simplified by integrating Eq. 12.2 over the
transverse variable ȳ. The following integral system is obtained (see Schlichting
[27], Gersten & Hervig [9]) for the displacement thickness and the velocity for
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the inviscid core :

d

dx̄
(
δ̄1

H
) = δ̄1(1 +

2

H
)
dūe

dx̄
+

f2H

δ̄1ūe

, ūe(x̄)(1− 2εδ̄1) = 1, (17)

where H is the shape factor and f2 is the friction coefficient.
To solve this system, a closure relationship linking H and f2 to δ1 and ūe

is needed. By defining Λ1 = δ̄2
1

dūe

dx̄
, this closure relationship is obtained by

locally approximating the velocity profile near the wall by a velocity profile of
the Falkner Skan family (see Lorthois & Lagrée [15]) :

H =











H = 2.59e−0.37Λ1 if Λ1 < 0.6

H = 2.07 if Λ1 ≥ 0.6
, and f2 = 0.94(− 1

H
+

4

H2
). (18)

3.2.5 Numerical results for a straight pipe

Figs. 4 to 7 display the numerical solutions for the RNSP and IBL equations
solved using an integral approach. For comparison, the IBL equations were
solved at the RNSP scales. At these scales (x = ε2x̄ and δ1 = εδ̄1), the integral
system (17), becomes :

d

dx
(
δ1

H
) = δ1(1 +

2

H
)
dūe

dx
+

f2H

δ1ūe
, ūe(x)(1− 2δ1) = 1. (19)

Fig. 6 displays the evolution of the displacement thickness δ1 obtained by the
IBL integral method and its RNSP value deduced from the mass conservation
relation (Eq. 14) e.g.: δ1 = 1/2−∫ 1

0 ru/u(x, 0)dr, which is 1/4 for the Poiseuille
regime. Both solutions are superimposed for small x values (x < 0.02). For
larger x, a discrepancy appears because the IBL description does not account
for the opposite wall of the pipe. Therefore, the displacement thickness mono-
tonically increases instead of reaching a finite asymptote of value 1/4.
In addition, with the IBL approach, a first order correction to the Blasius
regime near the entry in Blasius scales may be obtained. At first order in ε,
the Blasius solution leads to δ̄1 ∼ 1.7x̄1/2 ([27]). Thus, from Eq. 13, ūe ∼
1 + 2ε1.7x̄1/2, which may be rewritten in x = ε2x̄ scales as: δ1 = εδ̄1 ∼ 1.7x1/2

and ūe ∼ 1 + 3.4x1/2, valid for very small x. The associated pressure is then
p̄ ∼ 3.4x1/2. These two asymptotes are respectively plotted on Figs. 4 and 5
and labelled as ”Blasius cor”. Note that the appearance of the

√
x perturba-

tion has been mentioned by Schlichting [27].
As displayed in Fig. 5, the longitudinal evolution of RNSP pressure behaves
as the square root for small x and linearly for large x, suggesting a hyperbolic
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relationship. By least square regression :

phyp = −40

53

√

(
53x

5
+ 1)2 − 1. (20)

The maximal relative error for 0 < x < .2 between Eq. 20, as plotted in
Fig. 5, and the RNSP solution is 1.2%. Note that an additional error between
the RNSP and NS solutions comes from the near entry effect and may be
estimated from (ρ0U

2
0 )Re−1/2.

Finally, Fig. 7 displays the computed evolution of the WSS that starts from
the Blasius asymptote .33x−1/2 and goes to the constant Poiseuille value for
large x as predicted by the theory.

3.3 RNSP(x): the link with Triple Deck and IBL

3.3.1 The Triple Deck Formulation

• LOWER DECK :
After rescaling: r = 1− ε2ỹ, x = ε2 + ε5x̃, u = εũ, v = −ε−2ṽ and p = ε2p̃
and assuming that 1 >> ε5 >> Re−1 and a flat entry velocity profile, the
RNSP(x) set leads to the final Triple Deck formulation as follows:

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0, (ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
) = −dp̃

dx̃
+

∂2ũ

∂ỹ2
(21)

with the following boundary conditions: ũ(x̃, f̃(x̃)) = 0, ṽ(x̃, f̃(x̃)) = 0,

ũ(x̃, ỹ →∞) → (dUBlas(0)
dȳ

)(ỹ + Ã(x̃)) and the pressure displacement relation

p̃(x̃) = 2Ã(x̃) (22)

.
• MAIN DECK :

The main deck scales are: x = ε2 + ε5x̃, identical to the lower deck longitu-
dinal scale and r = 1 − εȳ, corresponding to the Blasius transversal scale.
The velocity and pressure expand as:

u = UBlas + εuMD + ... v = −ε−3vMD + ..., p = ε2pMD, (23)

So that: ∂uMD

∂x̃
+ ∂vMD

∂ȳ
= 0, UBlas

∂uMD

∂x̃
+ vMD(dUBlas(ȳ)

dȳ
) = 0 and ∂pMD

∂ȳ
= 0,

whose solution is: uMD = Ã(x̃)(dUBlas(ȳ)
dȳ

) and vMD = −dÃ
dx̃

UBlas.

• UPPER DECK :
The upper deck scales are: r = r, x = ε2 + ε5x̃ and velocity and pressure

11



expand as :

u = 1 + ε2uUD + ..., v = ε−3vUD + ..., p = ε2pUD + .... (24)

So that: ∂uUD

∂x̃
+ ∂rvUD

r∂r
= 0, ∂uUD

∂x̃
= −∂pUD

∂x̃
and ∂pUD

∂r
= 0.

The boundary conditions for these two latter layers are obtained using asymp-
totic matching. They are presented in the following paragraphs.
Note that to be compatible with the Triple Deck scales, the constriction is
redefined as f = ε2f̃(x̃).

3.3.2 Comments

The Triple Deck theory introduces a small perturbation to the Blasius regime,
for which the thickness of the developed boundary layer is of order ε. The
longitudinal scale of the location of the bump has thus to be of order ε2, as
deduced from the IBL formulation.
The upper deck, the main deck and the lower deck respectively corresponding
to the inviscid core, the boundary layer of transverse scale ε and a small per-
turbed fraction of the boundary layer close to the wall (see Fig. 8).
Briefly, the approach of Ruban & Timoshin [24] is transposed to the axisym-
metrical case. A constriction of small width x3, such as x = ε2 + x3x̃, and of
small height ε3ε, such as r = 1 − ε3εỹ, is considered. It will be subsequently
shown that ε3 = ε and that x3 = ε5. In the boundary layer (main deck), the
longitudinal velocity is of order 1. Thus, the velocity slope ∂u/∂r is of order
ε−1. The velocity perturbation induced by a constriction of height ε3ε is then
of order ((ε3ε)ε

−1) = ε3. In the fraction ε3ε of the boundary layer, i.e. the
lower deck, the balance of convection (u∂u/∂x) - diffusion (∂2u/∂y2) leads
to x3 = ε3

3ε
2. In the same way, the convection (u∂u/∂x) - pressure (∂p/∂x)

balance shows that the pressure in the lower deck is of order ε2
3.

As the lower deck equations give a velocity perturbation of order ε3, the
boundary layer velocity (main deck) must also be perturbed by an amount
(ε3), i.e. u = UBlas + ε3uMD. The perturbation of the Blasius regime is
simply solved from the RNSP equations in the main deck scales, showing
that this perturbation is inviscid, and that u = UBlas + ε3Ã(dUBlas(ȳ)

dȳ
) and

v = −(ε−1ε−2
3 )(dÃ/x̃)UBlas. The function −Ã represents the displacement of

the stream lines in the boundary layer. For small ȳ, the longitudinal velocity
may be expanded as : (dUBlas(0)

dȳ
)ȳ+ε3Ã(dUBlas(0)

dȳ
), or, in the lower deck variable

(ȳ = ε3ỹ), as ε3
dUBlas(0)

dȳ
(ỹ+ Ã). Hence, matching the velocity in the lower deck

(i.e. ε3ũ) for large ỹ with the velocity in the main deck for small ȳ leads to :

ũ→ (
dUBlas(0)

dȳ
)(ỹ + Ã). (25)
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At the top of the main deck, where UBlas = 1, the transverse velocity is
−(ε−1ε−2

3 )dÃ/dx̃. This velocity is transmitted to the bottom of the upper
deck and, by incompressibility, the longitudinal velocity perturbation uUD is
of order ε3ε. The convection - pressure balance then shows that the pressure
perturbation pUD is also of order ε3ε.
Finally, as the transverse pressure gradient is nul across the three layers, ε3ε
is equal to the order of magnitude of the pressure in the lower deck, which
is ε2

3 (see above). Hence : ε3 = ε and x3 = ε5. In addition, the matching be-
tween the transverse velocity in the main deck for large ȳ and the transverse
velocity in the upper deck for r close to 1 leads to vUD(r→1) = −(dÃ/dx̃).
Since the upper deck is irrotational, which means that uUD is independent on
r, the transverse velocity is vUD = −(dÃ/dx̃)r/2. Thus, by incompressibility,
∂uUD/∂x̃ = −2dÃ/dx̃. Finally, pUD = p̃ = 2Ã.
As a conclusion, the Triple Deck theory is included in the RNSP(x) set.
Another interpretation of −Ã is that the flux relation (Eq. 13) is equivalent
to the Triple Deck pressure deviation relation p̃ = 2Ã. As done for obtaining
Eq. 14, the displacement thickness is decomposed using a small parameter Y1

such as 1 >> Y1 >> ε :

δ̄1 =

Y1
∫

0

(1− ū

ūe

)dȳ +

∞
∫

Y1

(1− ū

ūe

)dȳ −
Y1
∫

0

(1− UBlas

ūe

)dȳ +

Y1
∫

0

(1− UBlas

ūe

)dȳ.(26)

In this case, ūe = UBlas(∞) = 1. The combination of the first and third terms
is evaluated in the lower deck where ū = εũ and ȳ = εỹ as :

Y1/ε
∫

0

(1− εũ)εdỹ +

Y1/ε
∫

0

(1− εỹ(
dUBlas(0)

dȳ
))εdỹ, (27)

which is of order ε2. The combination of the second and fourth terms is
calculated when Y1 approaches 0, i.e. in the main deck where u = Ublas +
εA(dUBlas(ȳ)

dȳ
), so that the Blasius displacement thickness is reobtained plus a

small term −ε
∫

∞

0 A(dUBlas(ȳ)
dȳ

)dȳ which equals −εA. Therefore we obtain from
Eq. 26:

δ̄1 =

∞
∫

0

(1− UBlas)dȳ − εA + O(ε2) = δ̄1,Blas − εA + O(ε2). (28)

Linearization of Eq. 13 with this value of δ̄1 gives a velocity perturbation
of −2Ã, opposite to the pressure perturbation. Thus, the pressure deviation
relation is p̃ = 2Ã.
Note that the linearised solution of (21) may be obtained (see Gajjar & Smith
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[8]) and that, as no eigen function is found, the problem is parabolic. However,
if ε is decreased to Re−1/5, x3 = Re−1 and the constriction width equals the
pipe diameter. Thus the RNSP(x) equations no longer hold because the upper
deck fills up the entire pipe cross section and there is a transverse pressure
gradient (see Smith [30]).
If the constriction is short, the influence of the opposite wall disappears. The
Triple Deck with the pressure deviation law (Stewartson [32]):

p =
1

π

∞
∫

−∞

A′

x− ξ
dξ,

is valid. This problem is not included in the RNSP(x) equations because the
transverse pressure gradient has not been taken into account.
In conclusion, the Triple Deck equations are equivalent to the RNSP(x) equa-
tions (at first order) for all the relative scales:

Re−1/5 << ε << 1

3.3.3 WSS

The WSS τ ∗ is O([ε−1 ρU2

0

Re
]), the same as the IBL scale.

3.3.4 Incipient separation : comparison with IBL.

The IBL equations (12, and 15), and the Triple Deck equations (21 and 22)
were solved with the ”semi inverse” method (Le Balleur [17]). This is an iter-
ative process, iteration is done on δ1 or Ã: the ”Prandtl” part ((12.1- 12.2) or
(21)) is solved for the pressure with a finite difference scheme with δ1 or Ã im-
posed, then pressure displacement is solved for the pressure (15 or 22), the new
value of δ1 or Ã is updated from the difference of pressures until convergence.

The constriction shape is f̄ = αexp(−(2(K(x̄ − 1)/x̄l))
2, with K =

√

ln(2)

for the IBL and the integral IBL problems. The constriction f̃ is proportional

to exp(−(2(K(x̃ − 2)))2, with K =
√

ln(2) for the Triple Deck problem. Fig.
9 displays the WSS at incipient separation, i.e. flow configuration where the
WSS equals zero only at one point (the shear stresses are rescaled by the flat
case). All the methods (RNSP, IBL, integral IBL and Triple Deck) show a
good agreement, even if the slope discontinuity on the integral IBL curve, cor-
responding to the value Λ1 = 0.6 where the derivative of H is discontinuous
(Eq. 18) is visible. For a given boundary layer thickness ε2, the value of α that
promotes the incipient separation at different constriction widths x̄l was nu-
merically sought using the IBL equations. From the Triple Deck theory, α/ε is

the relative perturbation in the lower deck, and it behaves like x̄
1/5
l . As shown
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on Fig. 10 for ε2 = 10−3, this prediction is valid up to x̄l = 0.3.

3.4 RNSP(x): the link with Double Deck Equations

3.4.1 The Double Deck Formulation

• LOWER DECK :
After rescaling: r = 1−ε4−1/3y̌, x = 1+ε3x̌, u = 42/3εǔ, v = −41/3ε−1v̌ and
p = 48/3ε2p̌ and assuming a Poiseuille entry velocity profile, the RNSP(x)
set leads to the final Double Deck formulation as follows:

∂ǔ

∂x̌
+

∂v̌

∂y̌
= 0, (ǔ

∂ǔ

∂x̌
+ v̌

∂ǔ

∂y̌
) = −dp̌

dx̌
+

∂2ǔ

∂y̌2
(29)

with the following boundary conditions : ǔ(x̌, f̌(x̌)) = 0, v̌(x̌, f̌(x̌)) = 0 and
ǔ(x̌, y̌ → ∞) → y̌. Note that the Prandtl transform leads to ǔ(x̌, 0) = 0,
ǔ(x̌, y̌ →∞) → y̌ − f̌(x̌).

• MAIN DECK :
The main deck scales are x = 1+ε3x̌, identical to the lower deck longitudinal
scale, and r = 1−y, corresponding to the Poiseuille transverse scale. Velocity
and pressure expand as :

u = UPois + ..., v = 0 + ... p = 0 + ...

To be compatible with the Double Deck scales, the constriction is defined by
f = 4−1/3εf̌(x̌).

3.4.2 Comments

The Double Deck theory introduces a small perturbation to the Poiseuille
regime. In this theory, the flow is divided into two regions (see Fig. 11) :
the fully viscous region (main deck) and a boundary layer of transverse scale
ε4−1/3. The equations are directly obtained from Smith [29] or transposed from
Saintlos & Mauss [26] to the axisymmetrical case. The matching condition
ǔ(x̌, y̌ →∞) → y̌ comes from the fact that the Poiseuille velocity in the core
flow (main deck) is of value UPois = 2(1 − r2) but is 42/3εy̌ near the wall
as ε tends to 0. This velocity must match the velocity at the outer edge of
the lower deck (i.e. 42/3εǔ(x̌,∞)). Note that the full Double Deck theory is
directly derived from the NS description. In this description, the perturbations
in the main deck have to be sought as :

u = 2(1− r2) + εuMD + ...; v = ε−2vMD + ...; p = ε2pMD (30)
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Solving these perturbations either from the full NS or from the RNSP(x)
equations leads to :

∂uMD

∂x̌
+

∂vMD

∂y
= 0; (UPois

∂uMD

∂x̌
+ vMD

dUPois

dy
) = 0 (31)

However the development obtained for pMD from the full NS description is :

UPois
∂vMD

∂x̌
= −(ε7)Re2 ∂pMD

∂y
. (32)

• First, the Double Deck theory requieres that ε is smaller than one. If ε >>
Re−2/7, Eq. 32 leads to ∂pMD

∂y
= 0, which is consistent with the RNSP

equations. In other words, if ε >> Re−2/7 (or Reε3 >> Re1/7), the RNSP(x)
equations are equivalent to the Double Deck equations and the transverse
pressure gradient is not relevant.

• Second, when ε = Re−2/7, corresponding to real constriction length R∗

0Re1/7

and height R∗

0Re−2/7, the RNSP(x) is no longer valid. However, it may
be shown that the pressure drop is linked to the second derivative of the
displacement function Ǎ. In particular, in the symmetrical case, it may be
shown (Smith [29]) that vMD = 0 (so Ǎ = 0) . This is why the RNSP(x) set
remains valid for symmetric case even if ε = Re−2/7.

• Third, if ε << Re−2/7, from Eq. 32, the equation at first order of ε is
∂vMD

∂x̌
= 0 and its solution vMD = 0. Thus, perturbations appear at higher

orders. Consequently, ∂pMD

∂y
= 0. The value ε = Re−1/3, at which the physical

longitudinal scale is R∗

0, is included in this scenario.
• Finally at short scale when the variations of x∗ and y∗ are of same order, a

full NS problem is encountered. This corresponds to ε3ReR∗

0 = εR∗

0. Thus,
for the Double Deck equations to hold, ε must be greater than Re−1/2.

In conclusion, the Double Deck equations are equivalent to the RNSP(x) equa-
tions (at first order) for all the relative scales:

Re−1/2 << ε << 1

3.4.3 WSS

The skin friction τ ∗ is O(4(ρU∗2
0 /Re)) for a constriction of physical length

R∗

0 < ε3ReR∗

0 << R∗

0Re1/7 and of height εR∗

0.

3.4.4 Incipient separation : comparison with RNSP

Starting from a Poiseuille flow, a constriction R(x) = 1 − αexp(−(2K(x −
xc)/xl)

2), with exp(−K2) = 0.5, was introduced, which corresponds to f̌(x̌) =
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αD.D.exp(−(2Kx̌)2) in the Double Deck description. The equation is the same
as in the Triple Deck case, but the scales are different.
Fig. 12 displays the WSS near incipient separation, showing a good agreement
between the RNSP and the Double Deck solutions in the case of a small con-
striction.
Then, the value of α that promotes incipient separation for incrasing con-
striction widths xl was numerically sought using the RNSP equations. Fig. 13
displays the value of α, denoted αIS, as a function of xl. As expected from the
Double Deck theory, which implies that :

αIS = αD.D.,IS(4−1/3)(xl)
1/3, (33)

where αD.D.,IS is the unique Double Deck incipient separation angle, αIS

behaves as x
1/3
l . Numerical resolution of the Double Deck equations led to

αD.D.,IS ' 2.0. The curve 2.(4−1/3)(xl)
1/3 is referred as ”D.D.” on Fig. 13.

3.4.5 Maximum value of WSS for a given constriction

Finally, increasing the constriction angle in the Double Deck scales, with 6 >
αD.D. > 0, the maximum value of the WSS is fitted as :

1.11 + 0.984αD.D. + 0.28α2
D.D.. (34)

Expressing αD.D. as a function of xl and α in Eq. 34 and multiplying by
4(ρU2

0 /Re), the asymptotic maximum WSS obtained in the case of a small
constriction is thus given by :

4(ρU2
0 /Re)(1.11 + 0.984

41/3α

x
1/3
l

+ 0.28
41/3α

x
1/3
l

2

) (35)

3.5 RNSP(x): the link with quasi Poiseuille flow

After rescaling x = Xx′, with X >> 1, r = r′, v = X−1v′ and p = Xp′, the
RNSP(x) set leads at first order in X−1 to the classical quasi Poiseuille flow:
each velocity profile is a Poiseuille one. The well known relation for the WSS
is obtained (for extremely large constrictions i.e. larger than R∗

0Re in physical
scales):

τ ∗ = 4(ρU∗2
0 Re−1)(

R∗

0

R∗(x)
)3 (36)
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3.6 RNSP(x): the link with another IBL case

3.6.1 Final Formulation

After rescaling r = R(
=
x) − (λ/Re)−1/2

=
y, u =

=
u, v = −(λ/Re)1/2 =

v, x − xb =

(λ/Re)
=
x and p =

=
p, where xb is the position of the constriction throat and λR∗

0

the width of the throat, the RNSP(x) set leads to the final IBL (Interacting
Boundary Layer) formulation as follows:

∂
=
u

∂
=
x

+
∂

=
v

∂
=
y

= 0, (
=
u

∂
=
u

∂
=
x

+
=
v

∂
=
u

∂
=
y
) =

=
ue

d
=
ue

d
=
x

+
∂2 =

u

∂
=
y

2 , (37)

=
ue=

1

(R2 − 2(λ/Re)−1/2
=

δ1)
, (38)

where
=

δ1=
∫

∞

0 (1−
=

u
=

ue

)d
=
y, and with the following boundary conditions :

=
u (

=
x, 0) = 0,

=
v (

=
x, 0) = 0 and

=
u (

=
x,∞) =

=
ue.

3.6.2 Comments

The constriction throat is located at station xb, and is of relative length in
RNSP (λ/Re). The equations are almost identical to equations (12, 13) in
the IBL section (§3.2.1) except the flux conservation relation (Eq. 38). In
the previous IBL section, the transition from a flat profile to a Poiseuille
profile has been discussed. In a severe constriction the opposite occurs : the
Poiseuille profile becomes a flat profile associated with an inviscid core. The
IBL formulation again applies, but new scales have to be introduced (see
Lorthois & Lagrée [15], Lorthois et al. [16]). This will be numerically verified
in the following section where the RNSP(x) solution shows a flat profile at the
throat for any given entry profile.

3.6.3 WSS

Using this IBL point of view, an heuristical evaluation of the WSS may be
found. If the relative aperture of the constriction 1 − α is small, i.e. (1 −
α) << 1, the order of magnitude of the velocity obtained by flux conservation
increases from 1 at the pipe inlet to 1/(1− α)2 at the constriction throat. If
λR∗

0 represents the constriction length, R∗

0 the common scale in x and y and
Re the Reynolds number , the transverse velocity scale in the boundary layer
is then (1− α)λ1/2Re−1/2.
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The displacement thickness is then

δ1 = d1(1− α)λ1/2Re−1/2, (39)

where d1 is an O(1) numerical value. The first correction to the velocity is
from the displacement thickness δ1, whose effect is to increase the constriction
felt by the inviscid core. The velocity is thus sligthly greater than (1 − α)−2

and may be evaluated by (1− α− δ1)
−2. As λ1/2Re−1/2 << 1, Eq. 13 leads to

the following approximation for the velocity :

u = (1 + 2d1((Re/λ)−1/2))(1− α)−2. (40)

The displacement thickness corrected by this extra acceleration is :

δ1 = d1(1− α− d1(1− α)λ1/2Re−1/2)λ1/2Re−1/2. (41)

Finally, the WSS at the constriction throat may be approximated as the ratio
of Eq. 40 and Eq. 41 divided by 4, which is the Poiseuille WSS :

WSS = (µ
∂u∗

∂y∗
)/((µ

4U∗

0

R∗
)) ∼ .22

((Re/λ)1/2 + 3)

(1− α)3
(42)

The numerical coefficient .22 is based on the assumption that flow acceleration
at the constriction throat corresponds to the value of a convergent channel (see
Gersten & Hervig [9] or Schlichting [27] and §3.2.4 for the definition of H and
f2), for which Hf2/4 ∼ .22. In addition, it is assumed that d1 ∼ 1. Note
that details on the integral method and closure relationships may be found
in Lorthois & Lagrée [15]. The constriction recreates an interacting boundary
layer flow. Therefore, the relevant Reynolds number is no longer Re but Reλ
and (Re/λ)1/2 is the inverse of the relative boundary layer thickness.

3.6.4 Comparison with NS and RNSP(x)

• Comparison with NS :
Siegel et al. [28] have numerically solved the NS equations in a constricted
pipe. Based on their results, they postulated an ad hoc dependence for the
maximal WSS as:

WSSmax,Sieg = aRe1/2 + b (43)

where coefficients a and b were dependent on the constriction geometrical
parameters α and λ. On the contrary, the IBL approach led to the universal
scaling law Eq. 42. This heuristical scaling law has first been numerically
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tested by solving the IBL system using an integral formulation. The regres-
sion analysis of the numerical results for various shapes led to :

WSSmax = (µ
∂u∗

∂y∗
)/((µ

4U0

R
)) ∼ .231(

(Re/λ)1/2

(1− α)3.311
+

3.11

(1− α)2.982
) (44)

Note that the coefficients are very close to the theoretical ones (see Eq. 42),
and they show very good agreement with the numerical values derived from
Siegel et al. (1994) (see Fig. 14).

• Comparison with RNSP(x):
The set of RNSP(x) equations has been solved by the marching finite-
differences scheme. Fig. 15 displays the evolution of the velocity profile along
the convergent part of a 70% constriction, for two different imposed entry
profiles: a flat profile (fully potential entry) and a Poiseuille profile (fully
viscous entry). As expected, when the entry flow is fully viscous, strong
flow acceleration causes the velocity profile to flatten. At the constriction
throat, the flow is thus independent of the entry velocity profile. In par-
ticular, the maximal WSS is in good agreement (3% discrepancy) with the
maximal WSS obtained by the IBL scaling law (Eq. 44) (see Fig. 16). In
conclusion, the described set of RNS equations is “fully interactive” without
any matching step and well suited for studying flow fields in constrictions.

Siegel et al. [28] and Huang et al. [10] have numerically solved Navier-Stokes
equations for 100 < Re < 1000. The results obtained are consistent with our
method. Furthermore, the bidimensional counterpart of this RNSP and IBL
theories has been settled in Lagrée et al. [14]. Some comparisons have been
done with a NS solver focusing on the pressure p(x) and on the reverse flow.
It has been observed that for Re from 100 to 1000, IBL, RNSP, and NS give
very similar results.

4 Conclusion

Having in mind applications in biomechanics, where the elevated wall shear
stresses encountered in arterial stenoses are likely to play a role in the mecha-
nisms of thrombo-embolism and atherosclerotic plaques ruptures, the purpose
of this study is to evaluate the scale of the wall shear stress τ ∗ in a constricted
pipe. Of course, the computation of such flows is now accurately achieved
through Navier-Stokes solvers in a reasonable range of Reynolds numbers.
On the other hand, simplified 1D theories and correlations from experimental
data are available. Our work fills the gap between them. We claim that the
asymptotic equations provide a better understanding of flow structure and of
the relevant scalings as well. As computational time is reduced, parameters
may be easily changed and their influence can be analysed. Thus, in this pa-
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per, we have presented a system that we call RNSP, referring to the Reduced
Navier-Stokes equations, which are in fact the Prandtl equations with differ-
ent boundary conditions. We have shown how to obtain the RNSP system
from the NS system. Then, we have established the connection between the
RNSP system and many other asymptotic descriptions of the Navier-Stokes
equations, as summarised on Fig. 17, 18, and Table 1:

• First, the IBL equations deduced from the RNSP have been discussed. The
entry effect has been computed using both the RNSP equations and a simple
integral IBL description. They show a good agreement.

• We compared a full IBL resolution to a Triple Deck solution in the case of
a very small constriction, located in the vicinity of a fully potential entry.
The constriction height that promotes incipient separation was calculated
using both Triple Deck theory and the IBL description.

• Then, the RNSP equations was compared with the Double Deck equations
in the case of a small reduction of the pipe radius, assuming a fully vis-
cous entry. The constriction height that promotes incipient separation was
calculated using both the Double Deck theory and the RNSP description.

• A case of extremely long bumps leading to a Poiseuille flow was presented.
• Finally, a case where the initial potential flow is destroyed, leading to an

IBL flow, has been studied. Maximum skin friction was calculated using
simple IBL arguments. This permitted us to obtain an universal scaling law
for the WSS.

A selected number of examples have been presented. Note that the gain in
computational time is significant when compared with a full NS solution. Di-
mensional scaling allows a better understanding of various physical phenom-
ena. In each section, the limits of the asymptotic descriptions was presented.
The most interesting conclusion is that the transverse pressure gradient is ir-
relevant in a large number of cases. Thus, the flow in a constricted pipe is
mainly ”parabolic”: the disturbances propagate downstream and weakly up-
stream which allows marching computation (see [14] for a comparison between
RNSP/ IBL and full NSin case of reverse flow in a bidimensional configura-
tion). In addition, the independence of the flow on the entry velocity profile
has great implications because the in vivo entry profile is unknown and not
parabolic as assumed in most studies.
In conclusion, it has been verified asymptotically and numerically that, in
the pipe case, the RNSP(x) system agrees with most of the Double/ Triple
Deck sets of equations and the IBL as well. Thus, the RNSP system may be
used in cases of stenotic pipes. The bidimensional extension is straightforward.
Extension to unsteady and non-axisymetrical flows is currently in progress.
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5 Nomenclature

Latin symbols:
A the Triple Deck displacement function.
a, b coefficients of a scaling law.
d1 a numerical value.
f2 boundary layer friction coefficient.
f a function describing the wall perturbation.
K a constant.
H boundary layer shape factor.
p pressure.
R0 initial radius of the pipe.
Re Reynolds number U0R0/ν
r radial variable.
u, v longitudinal and transverse velocity.
WSS Wall Shear Stress.
x longitudinal variable.
y transverse variable from the wall .
Superscripts:
x∗ the longitudinal variable with dimensions.
x̄, the longitudinal variable in RNSP and entry IBL scales.
x̂, the longitudinal variable in entry short scale.
x̃, the longitudinal variable in Triple Deck scale.
x̌, the longitudinal variable in Double Deck scale.
=
x, the longitudinal variable in IBL scale.
x′, the longitudinal variable in quasi Poiseuille scale.
Subscripts:
U0 incoming velocity scale.
UPois Poiseuille solution.
UBlas Blasius solution.
U ′

Blas = dUBlas

dȳ
derivative of Blasius solution.

xl, x̄l width of the wall perturbation.

LD in the Lower Deck.

MD in the Main Deck.

UD in the Upper Deck.
Greek symbols:
α relative size of the wall perturbation.
ε a small parameter.
λ ratio of the length of the stenosis to the radius of the pipe.
Λ1 used in the integral boundary layer.
ν viscosity.
ρ density.
τ non-dimensionalized Wall Shear Stress.
δ1 boundary layer displacement thickness.
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différentes méthodes de type couche limite”, Archives Physiol. Biochem. Vol
106 supp B, septemb 98, p 42.

[12] Lagrée P.-Y. (2000): ”An inverse technique to deduce the elasticity of a large
artery ”, European Physical Journal, Applied Physics 9, pp. 153-163

[13] Lagrée P.-Y. & Lorthois S. (1999): ”Interacting Boundary layer flow in a
stenosis”. Archives Physiol. Biochem. Vol 107 sept 99, p 51.

23



[14] Lagrée P.-Y., Berger E., Deverge M., Vilain C. & Hirschberg A. (2004):
”Characterization of the pressure drop in a 2D symmetrical pipe: some
asymptotical, numerical and experimental comparisons”, ZAMM, under press.

[15] Lorthois S. & Lagrée P.-Y. (2000): ”Écoulement dans un convergent
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6 Table and Figures

model RNSP IBL IBL Triple Deck Double Deck

section §2.2 §3.2.1 §3.6.1 §3.3 §3.4

Initial prof. any Blasius any Blasius Poiseuille

bump pos. x = O(1) x = O(ε2) any x = O(ε2) x > 1

bump width any ε2 O(1/Re) ε5 ε3

bump height any ε O(1) ε2 ε

validity Re >> 1 Re−1/2 � ε� 1 Re >> 1 Re−1/5 � ε� 1 Re−1/2 � ε � 1

Table 1: The scales may be tabulated in the following table (longitudinal length
are scaled with R∗

0Re, transverse are scaled by R∗

0.
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Fig. 1. Geometrical parameters of the constricted pipe. Note that the trans-
verse scale is non-dimensionalised by the unperturbed pipe radius R∗

0. Values of xl

and α are linked via the asymptotic scales.
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R = 1
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Fig. 2. Flow configurations : A constriction may be located at station x1 where
an inviscid fluid core still exists, see §3.2.1: IBL or §3.3: Triple Deck (Fig. 8), or at
station x2 where the Poiseuille profile has developed, see §3.4: Double Deck (Fig.
11). If the constriction is short but severe enough, the exact entrance velocity profile
has no importance, see §3.6.1: IBL.
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R = 1

Fig. 3. Unconstricted situation : entry problem. Starting from a flat velocity
profile, a Poiseuille profile is obtained at the exit, i.e. at a distance O(1) in the
R0Re scale. Near the entrance, i.e. at a distance O(ε2), the IBL formulation is valid
: the boundary layer thickness is of order O(ε) in the R0 scale.
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Fig. 4. Unconstricted situation : longitudinal evolution of the velocity at

the centre of the pipe. RNSP : numerical solution of the RNSP equations ;
integral IBL : solution obtained with the integral IBL approach, rescaled in the x
variable ; ”Blasius cor.” : first order correction (u = 1 + 3.4x1/2) to the Blasius
solution (which is u = 1), as obtained in §3.2.5. Note that the Poiseuille value is
independent of x and equals 2.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25

RNSP
integral IBL
Blasius cor.

Poiseuille
hyperbolic fit

P
S
frag

rep
lacem

en
ts

x

p(
x
)

Fig. 5. Unconstricted situation : longitudinal evolution of the pressure :

RNSP : numerical solution of the RNSP equations ; integral IBL : solution ob-
tained with the integral IBL approach, rescaled in the x variable ; Poiseuille :
p = −0.63 − 8x, see §3.1 ; Blasius cor. : first order correction (−2εδ̄1Blasius) to
the Blasius solution (which is p = 0), as obtained in §3.2.5 ; hyperbolic fit : ad hoc
fitting relation (Eq. 20).
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Fig. 6. Unconstricted situation : longitudinal evolution of the displace-

ment thickness. RNSP : numerical solution of the RNSP equations ; integral IBL
: solution obtained with the integral IBL approach, rescaled in the x variable ;
Poiseuille : δ1 = 1/4; Blasius : δ1 = 1.7x̄1/2.

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25

RNSP
integral IBL

Blasius
Poiseuille

P
S
frag

rep
lacem

en
ts

∂
u

∂
y

x

Fig. 7. Unconstricted situation : longitudinal evolution of the WSS. RNSP
: numerical solution of the RNSP equations ; integral IBL : solution obtained with
the integral IBL approach, rescaled in the x variable ; Poiseuille : τ = 4; Blasius :
τ = 0.33x−1/2.
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Fig. 8. Flow configuration in the Triple Deck case : A mild constriction, of
length ε5 and height ε2, is located at station ε2, lying in the lower deck (LD). This
thin layer is included in the boundary layer of thickness ε, or main deck (MD). The
upper deck (UD) is the inviscid core.
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Fig. 9. Longitudinal evolution of the WSS near the incipient separation

case RNSP, integral IBL, full IBL resolution (in RNSP variables, the bump is
located in x = 0.02, and its width is 0.00125), and Triple Deck resolution. All the
curves are rescaled in Triple Deck scales.
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Fig. 10. Incipient separation : comparison between Triple Deck and IBL :
value of α that promotes the incipient separation versus the longitudinal width of
the constriction x̄l computed by the full IBL equations. The line of slope 1/5 (i.e.

α ' x̄
1/5
l ) is the Triple Deck prediction.
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Fig. 11. Flow configuration in the Double Deck case : A mild constriction is
located at a station where a Poiseuille flow has developed. Its length is ε3 and its
height is ε, such as it lies in the lower deck (LD). The core flow is the main deck
(MD).

30



0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

RNSP
Double Deck

bump

P
S
frag

rep
lacem

en
ts

∂
ǔ
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Fig. 12. Longitudinal evolution of the WSS near the incipient separation

case for xl = 0.0125. D.D. : Double Deck resolution ; RNSP : RNSP resolution
rescaled in Double Deck scales.
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Fig. 13. Incipient separation : comparison between Double Deck and

RNSP : value of α which promotes the incipient separation versus the longitu-
dinal width of the constriction xl computed by the RNSP approach. The line of

slope 1/3 (i.e. α ' x
1/3
l ) is the Double Deck prediction.
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Fig. 14. Coefficient a and b for the maximum WSS (see Eq. 43). � : coefficient
a derived from Siegel for λ = 3 ; × : coefficient a derived from Siegel for λ = 6 ; ©
: coefficient b derived from Siegel for λ = 3 ; + : coefficient b derived from Siegel for
λ = 6. Coefficients a (4) and b (2) obtained using the IBL integral method ; solid
lines : Coefficients a and b from Eq. 44.
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Fig. 15. Evolution of the velocity profile along the convergent part of a

70% stenosis computed using the RNSP approach, with Re = 500 ; solid line:
Poiseuille entry profile; broken line: flat entry profile.
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Fig. 16. Longitudinal evolution of the WSS along the convergent part of

a 70% stenosis computed using the RNSP approach with Re = 500 ; solid line:
Poiseuille entry profile ; broken line: flat entry profile.
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Fig. 17. The different models: RNSP is obtained from Navier Stokes (NS). Triple
Deck, Double Deck and IBL are obtained from NS, they may be obtained from
RNSP in the pipe flow considered .
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Fig. 18. Flow configurations : A constriction may be located at x1 = O(ε2) where
an inviscid fluid core still exists; if the width is ε2 IBL applies (§3.2.1). If the width
is ε2 the Triple Deck applies (§3.3). A constriction may be located at x2 > 1 where
the Poiseuille profile has developed, but the width has to be ε3 for Double Deck
(§3.4). If the constriction is short, but severe enough, IBL applies (§3.6.1).
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