Boundary layer flows in large vessels

Simplified set of Navier Stokes Equations: Application in Biomecanics

Lagrée Pierre-Yves

Laboratoire de Modélisation en Mécanique CNRS UMR 7607 -- Université Paris VI Jussieu

Aim

- simplification of Navier Stokes equations
- thanks to asymptotic theory:

"Boundary Layer"

Aim

- simplification of Navier Stokes equations
- thanks to asymptotic theory:

"Boundary Layer"

Starting from Navier Stokes (Axi)

- we simplify NS to a Reduced set of equations
 - which contains the physical scales,
 - the most important phenomena
- much more simple set of equations: Integral equations (1D)
- $\bullet\,$ cross comparisons in some cases of NS/ RNSP/ Integral

reality?

straight pipe, smooth walls, symmetry

velocity profile

velocity profile

- simplified set
- deduced from orders of magnitude

Rigid wall: u = v = 0

First given profile:

First given profile:

marching procedure

 \longrightarrow

distribution of pressure is a result

or given pressure drop by Newton iteration on the entrance flux

Numerical resolution

finite differences, implicit in time

$$p^{given} \rightarrow u^*$$

$$\frac{u^* - u^n}{\Delta t} + NL(u^n) = -\frac{\partial p^{given}}{\partial x} + \frac{\partial}{r\partial r} r \frac{\partial u^*}{\partial r}$$

$$p^{given} \to u^*$$
 $rv^*(R) = -\int_0^R r \frac{\partial u^*}{\partial x} dr$

$$\frac{u^* - u^n}{\Delta t} + NL(u^n) = -\frac{\partial p^{given}}{\partial x} + \frac{\partial}{r\partial r}r\frac{\partial u^*}{\partial r}$$
$$p^{given} \to u^* \qquad rv^*(R) = -\int_0^R r\frac{\partial u^*}{\partial x}dr \left| \frac{\partial R}{\partial t} \right|_{0?}$$

?

Newton on the pressure to obtain the boundary condition

Pressure is a result of the computation

- integral system (ID) is included in RNSP
- we compute a more real profile

$$Q = \int_0^R 2\pi r u dr$$

$$Q = \int_0^R 2\pi r u dr$$

$$\frac{\partial u}{\partial x} + \frac{\partial rv}{r\partial r} = 0$$

$$Q = \int_0^R 2\pi r u dr$$

$$\int_0^R 2\pi r dr \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial r v}{r \partial r} \right) = 0$$

$$Q = \int_0^R 2\pi r u dr$$

$$\int_{0}^{R} 2\pi r dr \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial r v}{r \partial r} \right) = 0 \longrightarrow \frac{\partial (2\pi R^2)}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

 $Q = \int_0^R 2\pi r u dr$

 $\frac{\partial(2\pi R^2)}{\partial t} + \frac{\partial Q}{\partial x} = 0$

 $Q = \int_0^R 2\pi r u dr$

 $\tau = \frac{\partial u}{\partial r}$

 $Q = \int_{0}^{R} 2\pi r u dr \qquad Q_{2} = \int_{0}^{R} 2\pi r u^{2} dr \qquad \tau = \frac{\partial u}{\partial r}$

$$\int \left(\begin{array}{c} \frac{\partial u}{\partial t} + u \frac{\partial}{\partial x} u + v \frac{\partial}{\partial r} u = -\frac{\partial p}{\rho \partial x} + v \frac{\partial}{r \partial r} r \frac{\partial u}{\partial r} \\ 0 = -\frac{\partial p}{\rho \partial r} \end{array} \right)$$

 $Q = \int_{0}^{R} 2\pi r u dr \qquad Q_{2} = \int_{0}^{R} 2\pi r u^{2} dr \qquad \tau = \frac{\partial u}{\partial r}$

 $\frac{\partial Q}{\partial t} + \frac{\partial Q_2}{\partial t} = -(2\pi R^2)\frac{\partial p}{\partial x} - \tau$

 $Q = \int_{0}^{R} 2\pi r u dr \qquad Q_{2} = \int_{0}^{R} 2\pi r u^{2} dr \qquad \tau = \frac{\partial u}{\partial r}$

 $\frac{\partial(2\pi R^2)}{\partial t} + \frac{\partial Q}{\partial x} = 0 \qquad \frac{\partial Q}{\partial t} + \frac{\partial Q_2}{\partial t} = -(2\pi R^2)\frac{\partial p}{\partial x} - \tau$

gives Q_2 as function of Q an τ as function Q

 $Q_2 = \int_0^R 2\pi r u^2 dr \qquad \tau = \frac{\partial u}{\partial r}$

 $Q_2 = \int_0^R 2\pi r u^2 dr \qquad \tau = \frac{\partial u}{\partial r}$

 $Q_2 = (\frac{4}{3}) \frac{Q^2}{\pi R^2}$ $\tau = (8\pi) \frac{Q}{\pi R^2}$

 $Q_2 = \int_0^R 2\pi r u^2 dr \qquad \tau = \frac{\partial u}{\partial r}$

 $Q_2 = \int_0^R 2\pi r u^2 dr \qquad \tau = \frac{\partial u}{\partial r}$

 $Q_2 = \frac{Q^2}{\pi R^2}$

 $\tau = F(Q)$

need of profile

"usual" ID equations are a simplification of RNSP

Choice of profiles

In an unsteady flow it is natural to use Womersley

$$\frac{\partial u}{\partial t} + u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial r}u = -\frac{\partial p}{\rho\partial x} + v\frac{\partial}{r\partial r}r\frac{\partial u}{\partial r}$$
$$0 = -\frac{\partial p}{\rho\partial r}$$

In an unsteady flow it is natural to use Womersley

Womersley profiles are solution of RNSP

In an unsteady flow it is natural to use Womersley

In an unsteady flow it is natural to use Womersley

In a steady flow it is natural to use Falkner Skan

gives Q_2 as function of Q an τ as function Q

Numerical resolution: finite differences

Interactive Boundary Layer

Interactive Boundary Layer

IBL is included in RNSP

Viscous region: boundary layer

Viscous region: boundary layer

Integral resolution

steady/ or large convective acceleration

 $U_e S = cst$

steady/ or large convective acceleration

U_e at the wall

U_e at the wall

is the velocity at the edge of the boundary layer at "infinity"

$$u(x,\infty)$$

$$\delta_1 = \int_0^\infty (1 - \frac{u}{U_e}) dn$$

IBL is included in RNSP

RNSP includes usual ID equations RNSP includes Womersley profiles RNSP includes Boundary Layer Theories (IBL)

Comparisons

Comparisons

Comparisons

- Flow in a stenozed vessel
- steady, rigid wall

RNSP Scales

Using:

$$x^* = xR_0Re, r^* = rR_0, u^* = U_0u, v^* = \frac{U_0}{Re}v,$$

 $p^* = p_0^* + \rho_0 U_0^2 p \text{ and } \tau^* = \frac{\rho U_0^2}{Re} \tau$

the following partial differential system is obtained from Navier Stokes as $Re \to \infty$:

$$\begin{aligned} \frac{\partial}{\partial x}u + \frac{\partial}{r\partial r}rv &= 0,\\ (u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial r}u) &= -\frac{\partial p}{\partial x} + \frac{\partial}{r\partial r}(r\frac{\partial}{\partial r}u),\\ 0 &= -\frac{\partial p}{\partial r}. \end{aligned}$$

$$\begin{aligned} \frac{\partial}{\partial x}u + \frac{\partial}{r\partial r}rv &= 0,\\ (u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial r}u) &= -\frac{\partial p}{\partial x} + \frac{\partial}{r\partial r}(r\frac{\partial}{\partial r}u),\\ 0 &= -\frac{\partial p}{\partial r}. \end{aligned}$$

+ The boundary conditions.

$$\begin{aligned} \frac{\partial}{\partial x}u + \frac{\partial}{r\partial r}rv &= 0,\\ (u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial r}u) &= -\frac{\partial p}{\partial x} + \frac{\partial}{r\partial r}(r\frac{\partial}{\partial r}u),\\ 0 &= -\frac{\partial p}{\partial r}. \end{aligned}$$

- axial symmetry ($\partial_r u = 0$ and v = 0 at r = 0),

- no slip condition at the wall (u = v = 0 at r = 1 f(x)),
- the entry velocity profiles (u(0,r) and v(0,r)) are given
- *no* output condition in $x_{out} = \frac{x_{out}^*}{R_0 Re}$
- streamwise marching, even when flow separation.

$$\frac{\partial}{\partial x}u + \frac{\partial}{r\partial r}rv = 0,$$

$$(u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial r}u) = -\frac{\partial p}{\partial x} + \frac{\partial}{r\partial r}(r\frac{\partial}{\partial r}u),$$

$$0 = -\frac{\partial p}{\partial r}.$$

Parabolic Problem - Marching Problem

- axial symmetry ($\partial_r u = 0$ and v = 0 at r = 0),
- no slip condition at the wall (u = v = 0 at r = 1 f(x)),
- the entry velocity profiles (u(0,r) and v(0,r)) are given
- *no* output condition in $x_{out} = \frac{x_{out}^*}{R_0 Re}$
- streamwise marching, even when flow separation.

Testing asymmetry in the entry profile

The velocities in the middle for Comflo and RNS. Comflo uses here 50X50X100 points. Dimensionless scales!

Wall Shear Stress

Evolution of the WSS distribution along the convergent part of a 70% stenosis (Re = 500); solid line: Poiseuille entry profile; broken line: flat entry profile.

Boundary Layer/ Perfect Fluid

The boundary layer is generated near the wall δ_1 is the displacement thickness.

Boundary Layer/ Perfect Fluid

The displacement thickness acts as a "new" wall! →Interacting Boundary Layer (IBL)

RNSP/IBL

After rescalling:

 $r = R(\bar{x}) - (\lambda/Re)^{-1/2}\bar{y}$, $u = \bar{u}$, $v = (\lambda/Re)^{1/2}\bar{v}$ and $x - x_b = (\lambda/Re)\bar{x}$, $p = \bar{p}$, where x_b is the position of the bump, the RNSP(x) set gives the final IBL (interacting Boundary Layer) problem as follows:

$$\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{n}} = 0$$
$$(\bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{n}}) = \bar{u}_e\frac{d\bar{u}_e}{d\bar{s}} + \frac{\partial}{\partial \bar{n}}\frac{\partial \bar{u}}{\partial \bar{n}}$$

with: $\bar{u}(\bar{x},0) = 0$, $\bar{v}(\bar{x},0) = 0$ $\bar{u}(\bar{x},\infty) = u_e$, where $\bar{\delta}_1 = \int_0^\infty (1 - \frac{\bar{u}}{\bar{u}_e}) d\bar{n}$, and

$$\bar{u}_e = \frac{1}{(R^2 - 2((\lambda/Re)^{-1/2})\bar{\delta}_1)}$$

IBL integral: 1D equation

$$\begin{aligned} \frac{d}{d\bar{x}}(\frac{\bar{\delta}_1}{H}) &= \bar{\delta}_1(1+\frac{2}{H})\frac{d\bar{u}_e}{d\bar{x}} + \frac{f_2H}{\bar{\delta}_1\bar{u}_e},\\ \bar{u}_e &= \frac{1}{(R^2 - 2(\lambda/Re)^{-1/2}\bar{\delta}_1)}. \end{aligned}$$

To solve this system, a closure relationship linking H and f_2 to the velocity and the displacement thickness is needed.

Defining $\Lambda_1 = ar{\delta}_1^2 rac{dar{u}_e}{dar{x}}$,

the system is closed from the resolution of the Falkner Skan system as follows:

if $\Lambda_1 < 0.6$ then $H = 2.5905 exp(-0.37098 \Lambda_1)$, else H = 2.074.

From H, f_2 is computed as $f_2 = 1.05(-H^{-1} + 4H^{-2})$.

- variation of velocity (flux conservation)

х

- variation of velocity (flux conservation) $U_0 o U_0/(1-lpha-\delta_1)^2$

х

- variation of velocity (flux conservation) $U_0
ightarrow U_0/(1-lpha-\delta_1)^2$

- acceleration: boundary layer $\delta_1 \simeq \frac{\lambda}{\sqrt{Re_\lambda}}$,

х

- variation of velocity (flux conservation) $U_0 o U_0/(1-lpha-\delta_1)^2$

- acceleration: boundary layer $\delta_1 \simeq \frac{\lambda}{\sqrt{Re_\lambda}}$, with $Re_\lambda = \frac{\lambda U_0}{(1-\alpha)^2 \nu} = \frac{Re\lambda}{(1-\alpha)^2}$

х

- variation of velocity (flux conservation) $U_0 o U_0/(1-lpha-\delta_1)^2$

- acceleration: boundary layer $\delta_1 \simeq \frac{\lambda}{\sqrt{Re_\lambda}}$, with $Re_\lambda = \frac{\lambda U_0}{(1-\alpha)^2 \nu} = \frac{Re\lambda}{(1-\alpha)^2}$

- WSS = (variation of velocity)/(boundary layer thickness)

х

- variation of velocity (flux conservation) $U_0 o U_0/(1-lpha-\delta_1)^2$

- acceleration: boundary layer $\delta_1 \simeq \frac{\lambda}{\sqrt{Re_\lambda}}$, with $Re_\lambda = \frac{\lambda U_0}{(1-\alpha)^2 \nu} = \frac{Re\lambda}{(1-\alpha)^2}$

- WSS = (variation of velocity)/(boundary layer thickness) = $\frac{(Re/\lambda)^{1/2}}{(1-\alpha)^3}$

х

- variation of velocity (flux conservation) $U_0 o U_0/(1-lpha-\delta_1)^2$

- acceleration: boundary layer $\delta_1 \simeq \frac{\lambda}{\sqrt{Re_\lambda}}$, with $Re_\lambda = \frac{\lambda U_0}{(1-\alpha)^2 \nu} = \frac{Re\lambda}{(1-\alpha)^2}$

- WSS = (variation of velocity)/(boundary layer thickness) = $\frac{(Re/\lambda)^{1/2}}{(1-\alpha)^3}$

A simple formula as been settled:

$$WSS = (\mu \frac{\partial u^*}{\partial y^*}) / ((\mu \frac{4U_0}{R})) \sim .22 \frac{((Re/\lambda)^{1/2} + 3)}{(1 - \alpha)^3}$$

Reynolds number is no longer Re but $Re\lambda$ and $(Re/\lambda)^{1/2}$ is the inverse of the relative boundary layer thickness.

IBL integral: Comparison with Navier Stokes (Siegel et al. 1994)

$$WSS = aRe^{1/2} + b$$

Coefficient a and b for the maximum WSS. solid lines with \triangle and "square" : coefficient a and bobtained using the IBL integral method ;

 $\begin{aligned} \diamond: \text{ coefficient } a \text{ derived from Siegel for } \lambda &= 3 ; \\ \times: \text{ coefficient } a \text{ derived from Siegel for } \lambda &= 6 ; \\ \bigcirc: \text{ coefficient } b \text{ derived from Siegel for } \lambda &= 3 ; \\ +: \text{ coefficient } b \text{ derived from Siegel for } \lambda &= 6. \end{aligned}$

- Flow in a 2D stenozed vessel
- steady, rigid wall

- Flow in a stenozed vessel
- steady, rigid wall

 $\frac{\partial}{\partial x}u + \frac{\partial}{\partial y}v = 0 \qquad \qquad u\frac{\partial}{\partial x}u + v\frac{\partial}{\partial y}u = -\frac{\partial}{\partial x}p + \frac{\partial^2}{\partial y^2}u \\ 0 = -\frac{\partial}{\partial y}p$

RNSP non dimensional

Fig. 2 A comparison between computed non-dimensional pressure for the three models (NS, IBL and RNSP, in this last case the wall has

1

Fig. 4. A comparison between computed skin friction divided by $(0.47 \times 2.07)(1-\alpha)^{-1}/\tilde{\delta}_{+-} \propto (1-\alpha)^{-2} Be^{1/2}$ for the three models

- Flow in a stenozed vessel
- steady, rigid wall
- non symetrical case

non symmetrical case

- RNSP
- modified integral method to take into account the transverse variation of pressure
- NS

non symmetrical case

- RNSP
- modified integral method to take into account the transverse variation of pressure
- NS

Boundary layer thinner

Acceleration

Boundary layer thicker

Х

- Flow in a stenozed vessel/ aneurism
- unsteady, rigid wall

- Flow in a stenozed vessel/
- unsteady, rigid wall

- Flow in a stenozed vessel/ aneurism
- unsteady, rigid wall

Up to now, the wall was rigid

we use a simple elastic model

- Flow in a collapsible tube
- unsteady, elastic wall, no inertia

Collapsible tube

 R^n gives p^{n+1}

х

х

• flow with elastic wall with mass (glottis)

$$\mu \frac{\partial^2 \eta}{\partial t^2} + k\eta = -p$$

 $\eta^n, \frac{\partial \eta^n}{\partial t} \xrightarrow{} p$

 $\eta^n, \frac{\partial \eta^n}{\partial t} \stackrel{\text{fluid}}{\to} p \qquad \eta^e, \frac{\partial \eta^e}{\partial t}$

spring-prediction

flow in arteries

introducing wall elasticity: $p(x,t) = k(R(x,t) - R_0)$

+ The boundary conditions: here hyperbolical ($R(x_{in},t)$ and $R(x_{out},t)$) given

week coupling

$$\frac{u^{n+1} - u^n}{\Delta t} + NL(u^n) = -\frac{\partial p^n}{\rho \partial x} + v \frac{\partial}{r \partial r} r \frac{\partial u^{n+1}}{\partial r}$$
$$v^{n+1}(R^n) = -\int_0^{R^n} \frac{r}{R^n} \frac{\partial u^{n+1}}{\partial x} dr$$

week coupling

$$\frac{u^{n+1} - u^n}{\Delta t} + NL(u^n) = -\frac{\partial p^n}{\rho \partial x} + v \frac{\partial}{r \partial r} r \frac{\partial u^{n+1}}{\partial r}$$

$$v^{n+1}(\mathbb{R}^n) = -\int_0^{\mathbb{R}^n} \frac{r}{\mathbb{R}^n} \frac{\partial u^{n+1}}{\partial x} dr$$

 $R^{n+1} = R^n + v^{n+1}(R^n)\Delta t$

week coupling

$$\frac{u^{n+1} - u^n}{\Delta t} + NL(u^n) = -\frac{\partial p^n}{\rho \partial x} + v \frac{\partial}{r \partial r} r \frac{\partial u^{n+1}}{\partial r}$$

$$v^{n+1}(R^n) = -\int_0^{R^n} \frac{r}{R^n} \frac{\partial u^{n+1}}{\partial x} dr$$

 $R^{n+1} = R^n + v^{n+1}(R^n)\Delta t \qquad p^{n+1} = k(R^{n+1} - R_0)$

Flow in an elastic artery: integral relations

- new integral equations: adapting Von Kármán integral methods

The key is to integrate the equations with respect to the variable $\eta = r/R$ from the centre of the pipe to the wall ($0 \le \eta \le 1$).

Flow in an elastic artery: integral relations

- new integral equations: adapting Von Kármán integral methods

The key is to integrate the equations with respect to the variable $\eta = r/R$ from the centre of the pipe to the wall ($0 \le \eta \le 1$).

- U_0 , the velocity along the axis of symmetry,
- q a kind of loss of flux (δ_1),
- Γ a kind of loss of momentum flux (δ_2):

$$U_0(x,t) = u(x,\eta = 0,t), \quad q = R^2(U_0 - 2\int_0^1 u\eta d\eta) \quad \& \quad \Gamma = R^2(U_0^2 - 2\int_0^1 u^2\eta d\eta).$$

Flow in an elastic artery: integral relations

$$\frac{\partial R^2}{\partial t} + \varepsilon_2 \frac{\partial}{\partial x} (R^2 U_0 - q) = 0, \quad R = 1 + \varepsilon_2 h.$$

Integrating RNSP, with the help of the boundary conditions, we obtain the equation for q(x,t):

$$\frac{\partial q}{\partial t} + \varepsilon_2 (\frac{\partial}{\partial x} \Gamma - U_0 \frac{\partial}{\partial x} q) = -2 \frac{2\pi}{\alpha^2} \tau, \qquad \tau = (\frac{\partial u}{\partial \eta})|_{\eta=1} - (\frac{\partial^2 u}{\partial \eta^2})|_{\eta=0}.$$

From the same equation evaluated on the axis of symmetry (in $\eta = 0$), we obtain an equation for the velocity along the axis $U_0(x, t)$:

$$\frac{\partial U_0}{\partial t} + \varepsilon_2 U_0 \frac{\partial U_0}{\partial x} = -\frac{\partial p}{\partial x} + 2\frac{2\pi}{\alpha^2} \frac{\tau_0}{R^2}, \qquad \tau_0 = (\frac{\partial^2 u}{\partial \eta^2})|_{\eta=0}.$$

Boundary conditions ($h(x_{in},t)$ and $h(x_{out},t)$) given

Closure

The two previous relations introduced the values of the friction in $\eta = 0$, the axis of symmetry: $\left(\left(\frac{\partial^2 u}{\partial \eta^2}\right)|_{\eta=0}\right)$ and the skin friction in $\eta = 1$, at the wall: $\left(\left(\frac{\partial u}{\partial \eta}\right)|_{\eta=1}\right)$.

- Information has been lost here, so we need a closure relation between (Γ,τ,τ_0) and $(q,R,U_0).$

- we have to imagine a velocity profile and deduce from it relations linking Γ , τ and τ_0 and q, U_0 et R.

Closure: Womersley

• the most simple idea is to use the profiles from the analytical linearized solution given by Womersley (1955) for

$$(j_r + ij_i) = \left(\frac{1 - \frac{J_0(i^{3/2}\alpha\eta)}{J_0(i^{3/2}\alpha)}}{1 - \frac{1}{J_0(i^{3/2}\alpha)}}\right)$$

• assume that the velocity distribution in the following has the same dependence on η . It means that we suppose that the fundamental mode imposes the radial structure of the flow.

The coefficients of closure

- by integration/ derivation, we obtain:

$$\Gamma = \gamma_{qq} \frac{q^2}{R^2} + \gamma_{qu} q U_0 + \gamma_{uu} R^2 U_0^2, \quad \tau = \tau_q \frac{q}{R^2} + \tau_u U_0 \quad \tau_0 = \tau_{0q} \frac{q}{R^2} + \tau_{0u} U_0.$$

The coefficients $((\gamma_{qq}, \gamma_{qu}, \gamma_{uu}), (\tau_q, \tau_u), (\tau_{0q}, \tau_{0u}))$ are only functions of α .

The coefficients of closure

- by integration/ derivation, we obtain:

$$\Gamma = \gamma_{qq} \frac{q^2}{R^2} + \gamma_{qu} q U_0 + \gamma_{uu} R^2 U_0^2, \quad \tau = \tau_q \frac{q}{R^2} + \tau_u U_0 \quad \tau_0 = \tau_{0q} \frac{q}{R^2} + \tau_{0u} U_0.$$

The coefficients $((\gamma_{qq}, \gamma_{qu}, \gamma_{uu}), (\tau_q, \tau_u), (\tau_{0q}, \tau_{0u}))$ are only functions of α .

$$\begin{split} \gamma_{uu} &= 1 - \int j_i^2 / (\int j_i)^2 - (2 \int j_r j_i) / \int j_i - \int j_r^2 + \\ &+ (2 \int j_i^2 \int j_r) / (\int j_i)^2 + (2 \int j_i j_r \int j_r) / \int j_i - \\ &- (\int j_i^2 (\int j_r)^2) / (\int j_i), \end{split}$$

$$\end{split}$$

$$\tau_{0u} &= \partial_{\eta}^2 j_{r\eta=0} + \partial_{\eta}^2 j_{i\eta=0} / \int j_i - (\partial_{\eta}^2 j_{i\eta=0} \int j_r) / \int j_i. \end{split}$$

Figure 1: The displacement of the wall (h(x, t = 2.5)) as a function of x is plotted here at time t = 2.5. The dashed line (wom3(x,2.5)) is the Womersley solution (reference), the solid line (B.L.) is the result of the Boundary Layer code and the dots (intg) are the results of the integral method ($\alpha = 3$, $k_1 = 1$, $k_2 = 0$ and $\varepsilon_2 = 0.2$).

Conclusion

- starting from Navier Stokes
 - set of simple equations RNSP
- set of more simple equations Integral

Conclusion

- starting from Navier Stokes
 - set of simple equations RNSP
- set of more simple equations Integral
- Good agreement with full Navier Stokes

Conclusion

- starting from Navier Stokes
 - set of simple equations RNSP
- set of more simple equations Integral
- Good agreement with full Navier Stokes
- "explain" the features of the flow
- boundary conditions for full NS
- real time simulation

- Use <u>Acrobat Reader 7.05</u> to see animations
- Updated version may be <u>found here</u>.

- Use <u>Acrobat Reader 7.05</u> to see animations
- Updated version may be <u>found here</u>.