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motivation, facts

• sand, granulates:    6 103 kg/french/year 

• 2nd most used "fluid" after water >> petroleum 
(water 1.0, granulates 0.1, petroleum 0.025) 

• corn: 450 kg/french/year 

• Food, Medicines 

• Environmental flows (avalanches, mud flow….)
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Sable, riz, sucre, neige, ciment... Bien qu’omniprésents dans notre vie quotidienne, les milieux granulaires 
continuent de défier l’industriel, de fasciner le chercheur et d’intriguer l’amateur. Pourquoi le sable 
est-il tantôt assez solide pour former un tas ou soutenir le poids d’un immeuble, et coule-t-il tantôt 
comme un liquide, lors d’une avalanche ou dans un sablier ? Pourquoi est-il difficile de compacter ou 
de mélanger des grains ? Comment le vent sculpte-t-il les rides de sable sur la plage et les dunes 
dans le désert ? Longtemps l’apanage des ingénieurs et des géologues, l’étude des milieux granulaires 
constitue aujourd’hui un sujet de recherche actif à la frontière de nombreuses disciplines – physique, 
mécanique, sciences  de l’’environnement, géophysique et sciences de l’ingénieur.
Cet ouvrage s’attache à dresser l’état des connaissances sur les milieux granulaires et à présenter 
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la formation de structures géologiques).  La description des phénomènes mêle arguments qualitatifs 
et formels, permettant de pénétrer des domaines aussi variés que l’’élasticité, la plasticité, la physique 
statistique, la mécanique des fluides ou la géomorphologie. De nombreux encadrés permettent d’appro-
fondir certains phénomènes et illustrent les propriétés singulières des milieux granulaires au travers de 
leurs manifestations les plus spectaculaires (chant des dunes, sables mouvants, avalanches de neige…)
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http://books.google.fr/books?id=HY6Z5od4-E4C&pg=PA49&dq=granular+flow&hl=fr&ei=lamtTaa_NYyVOoToldcL&sa=X&oi=book_result&ct=result&resnum=10&ved=0CFkQ6AEwCTgK#v=onepage&q&f=true

40km
8km

http://www.cieletespace.fr/image-du-jour/5126_la-saison-des-avalanches-sur-mars

Mars

motivation, facts

NASA’S Mars Reconnaissance Orbiter (MRO)

http://books.google.fr/books?id=HY6Z5od4-E4C&pg=PA49&dq=granular+flow&hl=fr&ei=lamtTaa_NYyVOoToldcL&sa=X&oi=book_result&ct=result&resnum=10&ved=0CFkQ6AEwCTgK#v=onepage&q&f=true
http://www.cieletespace.fr/image-du-jour/5126_la-saison-des-avalanches-sur-mars


PYL

motivation, facts



PYL

Beetroots spoil tip (“terril”) silos

North of France

motivation, facts



342 The European Physical Journal E

in the different configurations? Are there underlying com-
mon physical phenomena controlling flow properties in the
different geometries? As a result, we expect to identify
simple and basic features that could help in developing
future model for dense granular flows.

Let us emphasise that this collective work is not a re-
view. New results are presented and the paper does not
pretend to be exhaustive. First, the paper focus only on
steady uniform flows of slightly polydispersed grains, leav-
ing aside very important questions such as avalanche trig-
gering, intermittent flows or segregation. Second, since the
data presented here come from the research group GDR
MiDi and collaborators, many important contributions are
not included. We refer to them in the references. However,
the huge activity in the domain makes the exercise diffi-
cult. We take refuge behind this excuse for all the contri-
butions that have been omitted.

2 Six different configurations

Dense granular flows are mainly studied in six different
configurations (Fig. 1), where a simple shear is achieved
and rheological properties can be measured. These geome-
tries are divided in two families: confined and free surface
flows.

The confined flows are the plane shear geometry
(Fig. 1a) where a shear is applied due to the motion of
one wall, the annular shear (Fig. 1b) where the material
confined in between two cylinders is sheared by the ro-
tation of the inner cylinder and the vertical-chute flow
configuration (Fig. 1c) where material flows due to the
gravity in between two vertical rough walls. Free surface
flows are flow of granular material on a rough inclined
plane (Fig. 1d), flow at the surface of a pile (Fig. 1e)
and flow in a rotating drum (Fig. 1f). The driving force
is in these last three cases the gravity. In the following,
we consider successively the six configurations. The data
comes from different experiments and numerical simula-
tions briefly described in a table at the beginning of each
section. We report for each of them the flowing threshold,
the kinematic properties (velocity V (y), volume fraction
Φ(y) and velocity fluctuation δV 2(y) profiles) and the rhe-
ological behaviour, before discussing the influence of the
various experimental or numerical parameters. Both the
notations and the dimensionless quantities naturally used
to present the results are given in Appendix A.

3 Plane shear flow

3.1 Set-up

In the aim of studying flow rheology, the plane shear
(Fig. 2a) is conceptually the simplest geometry one natu-
rally thinks of. The flow is obtained between two parallel
rough walls, a distance L apart and moving at the rela-
tive velocity Vw. In the following, we note γ̇w = Vw/L the
mean shear rate. In this configuration, the stress distribu-
tion is uniform inside the sheared layer. However, because

g

g g

(c)(a) (b)

(d) (e) (f)

Fig. 1. The six configurations of granular flows: (a) plane
shear, (b) annular shear, (c) vertical-chute flows, (d) inclined
plane, (e) heap flow, (f) rotating drum.

of gravity, this homogeneous state is not achieved in exist-
ing experiments [15,16] but is obtained in discrete parti-
cle simulations. Most of the results found in the literature
are obtained imposing the wall velocity and measuring the
shear stress [17–21]. Some are carried out controlling the
shear force applied to the moving wall in order to study
the flow thresholds [22].

In the following, we present results of two-dimensional
discrete particle simulations where Vw is imposed and the
number of grains (size d and mass m) within the cell is
fixed (periodic boundary conditions are used along the
shear direction). The data are summarised in Table 1. In
one case the volume —the cell width L— and thereby the
density ρ —or the volume fraction Φ— are controlled and
the pressure P is measured, while in the other case the
pressure is controlled and the density is measured. Once
the inter-particle contact laws are fixed, the simulations
depend on two parameters: the wall velocity Vw and the
normal stress P or the density ρ. This define a single di-
mensionless number describing the relative importance of
inertia and confining stresses,

I =
γ̇wd√
P/ρ

. (1)

Both simulations are performed in the limit of rigid grains,
so that the macroscopic timescale L/Vw is much larger
than the microscopic timescales i.e. the elastic and the
dissipative ones. The inter-particle friction coefficient µp

is null when not specified. The roughness of the walls is
made of glued grains similar to the flowing grains.

• Solid - Liquid - Gas


• Looking for a continuum description for liquid phase


• Many experiments in simple configurations:   
shear/ inclined plane,   
with model material (glass beads, sand…)


• Simulations with discrete elements  (disks, polygona, spheres)
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Abstract. The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has
been the subject of many experiments and discrete particle simulations. This paper is a collective work
carried out among the French research group Groupement de Recherche Milieux Divisés (GDR MiDi). It
proceeds from the collection of results on steady uniform granular flows obtained by different groups in six
different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation
of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc.
First, a quantitative comparison between data coming from different experiments in the same geometry
identifies the robust features in each case. Second, a transverse analysis of the data across the different
configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to
propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates
the richness of granular flows and underlines the open problem of defining a single rheology.

PACS. 45.70.-n Granular systems

1 Introduction

At the frontier between physics and mechanics, the flow of
granular materials has become a very active research do-
main [1–9]. The behaviour of assemblies of grains can be
very complex even in the simple case of dry cohesionless
particles. When the grains are large enough (d > 250µm)
and the surrounding fluid is not too viscous, the particle
interactions are dominated by contact interactions. Capil-
lary forces, van der Waals forces or viscous interactions
can be neglected and the mechanical properties of the
material are only controlled by the momentum transfer
during collision or frictional contacts between grains.

Still, the flows of these dry granular materials are not
easy to describe. They are usually divided in three classes
depending on the flow velocity. First, a quasi-static regime
where grain inertia is negligible. The material is often de-
scribed using soil plasticity models [10,11]. Secondly, a
“gaseous” regime exists when the medium is strongly agi-
tated and the grains are far apart one from another. In this
regime particles interact through binary collisions and a
kinetic theory has been developed by analogy with the ki-
netic theory of gases [12,13]. In between these two regimes
there exists a dense flow regime where grain inertia be-
comes important but where a contact network still exists
that percolates through particles [14]. Up to now no con-
stitutive equations are available in this “liquid” regime

a e-mail: gdrmidi@polytech.univ-mrs.fr;
http://www.lmgc.univ-montp2.fr/MIDI/

and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-
cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often diffi-
cult to extract common features and general trends for
granular flows. Configurations are not the same, experi-
mental or numerical conditions varies from one study to
another. In this paper we collect the data from different
groups belonging to a French research network supported
by the CNRS, the Groupement De Recherche Milieux Di-
visés (GDR MiDi). The goal of this network is to exchange
and discuss scientific results among the members of the
French laboratories involved in granular media.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc. in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set-up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
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and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-
cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often diffi-
cult to extract common features and general trends for
granular flows. Configurations are not the same, experi-
mental or numerical conditions varies from one study to
another. In this paper we collect the data from different
groups belonging to a French research network supported
by the CNRS, the Groupement De Recherche Milieux Di-
visés (GDR MiDi). The goal of this network is to exchange
and discuss scientific results among the members of the
French laboratories involved in granular media.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc. in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set-up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
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in the different configurations? Are there underlying com-
mon physical phenomena controlling flow properties in the
different geometries? As a result, we expect to identify
simple and basic features that could help in developing
future model for dense granular flows.

Let us emphasise that this collective work is not a re-
view. New results are presented and the paper does not
pretend to be exhaustive. First, the paper focus only on
steady uniform flows of slightly polydispersed grains, leav-
ing aside very important questions such as avalanche trig-
gering, intermittent flows or segregation. Second, since the
data presented here come from the research group GDR
MiDi and collaborators, many important contributions are
not included. We refer to them in the references. However,
the huge activity in the domain makes the exercise diffi-
cult. We take refuge behind this excuse for all the contri-
butions that have been omitted.

2 Six different configurations

Dense granular flows are mainly studied in six different
configurations (Fig. 1), where a simple shear is achieved
and rheological properties can be measured. These geome-
tries are divided in two families: confined and free surface
flows.

The confined flows are the plane shear geometry
(Fig. 1a) where a shear is applied due to the motion of
one wall, the annular shear (Fig. 1b) where the material
confined in between two cylinders is sheared by the ro-
tation of the inner cylinder and the vertical-chute flow
configuration (Fig. 1c) where material flows due to the
gravity in between two vertical rough walls. Free surface
flows are flow of granular material on a rough inclined
plane (Fig. 1d), flow at the surface of a pile (Fig. 1e)
and flow in a rotating drum (Fig. 1f). The driving force
is in these last three cases the gravity. In the following,
we consider successively the six configurations. The data
comes from different experiments and numerical simula-
tions briefly described in a table at the beginning of each
section. We report for each of them the flowing threshold,
the kinematic properties (velocity V (y), volume fraction
Φ(y) and velocity fluctuation δV 2(y) profiles) and the rhe-
ological behaviour, before discussing the influence of the
various experimental or numerical parameters. Both the
notations and the dimensionless quantities naturally used
to present the results are given in Appendix A.

3 Plane shear flow

3.1 Set-up

In the aim of studying flow rheology, the plane shear
(Fig. 2a) is conceptually the simplest geometry one natu-
rally thinks of. The flow is obtained between two parallel
rough walls, a distance L apart and moving at the rela-
tive velocity Vw. In the following, we note γ̇w = Vw/L the
mean shear rate. In this configuration, the stress distribu-
tion is uniform inside the sheared layer. However, because

g
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(d) (e) (f)

Fig. 1. The six configurations of granular flows: (a) plane
shear, (b) annular shear, (c) vertical-chute flows, (d) inclined
plane, (e) heap flow, (f) rotating drum.

of gravity, this homogeneous state is not achieved in exist-
ing experiments [15,16] but is obtained in discrete parti-
cle simulations. Most of the results found in the literature
are obtained imposing the wall velocity and measuring the
shear stress [17–21]. Some are carried out controlling the
shear force applied to the moving wall in order to study
the flow thresholds [22].

In the following, we present results of two-dimensional
discrete particle simulations where Vw is imposed and the
number of grains (size d and mass m) within the cell is
fixed (periodic boundary conditions are used along the
shear direction). The data are summarised in Table 1. In
one case the volume —the cell width L— and thereby the
density ρ —or the volume fraction Φ— are controlled and
the pressure P is measured, while in the other case the
pressure is controlled and the density is measured. Once
the inter-particle contact laws are fixed, the simulations
depend on two parameters: the wall velocity Vw and the
normal stress P or the density ρ. This define a single di-
mensionless number describing the relative importance of
inertia and confining stresses,

I =
γ̇wd√
P/ρ

. (1)

Both simulations are performed in the limit of rigid grains,
so that the macroscopic timescale L/Vw is much larger
than the microscopic timescales i.e. the elastic and the
dissipative ones. The inter-particle friction coefficient µp

is null when not specified. The roughness of the walls is
made of glued grains similar to the flowing grains.

• Solid - Liquid - Gas


• Looking for a continuum description for liquid phase


• Many experiments in simple configurations:   
shear/ inclined plane,   
with model material (glass beads, sand…)


• Simulations with discrete elements  (disks, polygona, spheres)
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1 Introduction

At the frontier between physics and mechanics, the flow of
granular materials has become a very active research do-
main [1–9]. The behaviour of assemblies of grains can be
very complex even in the simple case of dry cohesionless
particles. When the grains are large enough (d > 250µm)
and the surrounding fluid is not too viscous, the particle
interactions are dominated by contact interactions. Capil-
lary forces, van der Waals forces or viscous interactions
can be neglected and the mechanical properties of the
material are only controlled by the momentum transfer
during collision or frictional contacts between grains.

Still, the flows of these dry granular materials are not
easy to describe. They are usually divided in three classes
depending on the flow velocity. First, a quasi-static regime
where grain inertia is negligible. The material is often de-
scribed using soil plasticity models [10,11]. Secondly, a
“gaseous” regime exists when the medium is strongly agi-
tated and the grains are far apart one from another. In this
regime particles interact through binary collisions and a
kinetic theory has been developed by analogy with the ki-
netic theory of gases [12,13]. In between these two regimes
there exists a dense flow regime where grain inertia be-
comes important but where a contact network still exists
that percolates through particles [14]. Up to now no con-
stitutive equations are available in this “liquid” regime
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and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-
cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often diffi-
cult to extract common features and general trends for
granular flows. Configurations are not the same, experi-
mental or numerical conditions varies from one study to
another. In this paper we collect the data from different
groups belonging to a French research network supported
by the CNRS, the Groupement De Recherche Milieux Di-
visés (GDR MiDi). The goal of this network is to exchange
and discuss scientific results among the members of the
French laboratories involved in granular media.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc. in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set-up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
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during collision or frictional contacts between grains.

Still, the flows of these dry granular materials are not
easy to describe. They are usually divided in three classes
depending on the flow velocity. First, a quasi-static regime
where grain inertia is negligible. The material is often de-
scribed using soil plasticity models [10,11]. Secondly, a
“gaseous” regime exists when the medium is strongly agi-
tated and the grains are far apart one from another. In this
regime particles interact through binary collisions and a
kinetic theory has been developed by analogy with the ki-
netic theory of gases [12,13]. In between these two regimes
there exists a dense flow regime where grain inertia be-
comes important but where a contact network still exists
that percolates through particles [14]. Up to now no con-
stitutive equations are available in this “liquid” regime
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and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-
cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often diffi-
cult to extract common features and general trends for
granular flows. Configurations are not the same, experi-
mental or numerical conditions varies from one study to
another. In this paper we collect the data from different
groups belonging to a French research network supported
by the CNRS, the Groupement De Recherche Milieux Di-
visés (GDR MiDi). The goal of this network is to exchange
and discuss scientific results among the members of the
French laboratories involved in granular media.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc. in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set-up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
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Figure 1. (a) Ratio of shear to normal stress τ/P as a function of the
dimensionless shear rate I = ud/h

√
P/ρ in simulations of plane shear. (b) τ/P

as a function of I = ud/h
√

gh estimated at the base for flow down inclined planes.
(c) Sketch of the dependence of the friction coefficient µ with dimensionless shear
rate I = γ̇d/

√
P/ρ.

stays trapped is tmean − tmicro, we can compute the time averaged volume fraction φ:

φ =
tmicroφmin + (tmean − tmicro)φmax

tmean
. (4)

It follows that the volume fraction varies linearly with the dimensionless shear rate
I = tmicro/tmean:

φ = φmax − (φmax − φmin)I. (5)

Typical values are φmax = 0.6 and φmin = 0.5.
Equations (3) and (5) represent constitutive equations that can be applied to predict

different flow configurations. In the next section we discuss the predictions made with
this approach and compare them with experimental observations.

3. Different flow configurations

3.1. Plane shear

The first important test of the rheology concerns simple plane shear without gravity.
The plane shear configuration is shown in figure 2(a). A granular layer of thickness h
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This leads us to argue that the visco-plastic rheology 
proposed in [11] is extremely efficient to describe 
quasi- unidirectional flows as those investigated in 
[9–11] but remains unapplicable, when applied in its 
non-invariant form (eq. (1)), to highly multi-
directional flows such as those observed in rotating 
drum. 
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dary terms in the above estimate. However, we mention that the 
appropriate boundary conditions on the hopper walls dissipate energy. 

Even if the initial value problem for (2.1) is well posed, solutions of this 
equation will probably behave erratically. In particular, it seems likely to 
us that as time evolves, some of the assumptions in the derivation of (2.1) 
may cease to hold. Let us elaborate. In (2.1), the function (T must be 
positive; likewise, although the function q in (2.12) was eliminated in deriv- 
ing (2.1), this function must also be positive. However, since the instability 
amplifies Fourier modes at high wave numbers, one expects the solution to 
develop a highly oscillatory profile. The oscillations may grow until the 
minimum of either 0 or q is forced to zero, thereby invalidating the 
derivation of (2.1). If e is so forced, voids will develop in the material; 
indeed, such voids may be seen in certain plane strain hoppers. If q is so 
forced, elastic properties of the material will become relevant and the flow 
must be studied with elastic-plastic theory. 

Based on the experimental fact that granular flow in silos is typically 
pulsating, we conjecture that there are time periodic solutions of the 
elastic-plastic equations. We expect that, starting from rest, such a solution 
would be plastic (i.e., satisfy (2.20) because ldev T\ =ko) during part of a 
period and would be elastic (i.e., satisfy (2.20) because q = 0) during the 
remainder of a period. When ldev TI = kc-r, the elastic-plastic equations are 
a small, but singular, perturbation of (2.1); thus during the plastic part of 
the period, such a solution would tend to grow as predicted by (2.1). 
(However, at high wave number the singular nature of the perturbation 
will probably limit the growth rate. A similar cutoff was found for the com- 
pressible equations. There is a need to investigate which theory provides 
the greater stabilizing influence.) During the elastic part of the period, fric- 
tional contact with the walls would bring the material to rest again. 

The conjecture suggests a host of other problems-principally to use 
homogenization to derive effective equations for the time averaged stress 
and velocity. It would also be desirable to calculate the amplitude and 
period of the oscillations; this information would be useful in designing 
silos and the calculation would provide a good test of the theory. It seems 
that these problems must be solved before mathematics can be effectively 
applied to silo design. 
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stays trapped is tmean − tmicro, we can compute the time averaged volume fraction φ:

φ =
tmicroφmin + (tmean − tmicro)φmax

tmean
. (4)

It follows that the volume fraction varies linearly with the dimensionless shear rate
I = tmicro/tmean:

φ = φmax − (φmax − φmin)I. (5)

Typical values are φmax = 0.6 and φmin = 0.5.
Equations (3) and (5) represent constitutive equations that can be applied to predict

different flow configurations. In the next section we discuss the predictions made with
this approach and compare them with experimental observations.

3. Different flow configurations

3.1. Plane shear

The first important test of the rheology concerns simple plane shear without gravity.
The plane shear configuration is shown in figure 2(a). A granular layer of thickness h
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• Introduction
• presentation of µ(I)  rheology
• Simplification with shallow water (depth average) 1D continuum model

• use of contact dynamics (simulation all grains, discrete, here 2D)
• implementation of µ(I) in a continuum Navier Stokes 2D code
• applications to archetypal flows:  collapse of columns - hourglass
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1.1. LE MODÈLE

y [m] les coordonnées spatiales et t [s] le temps, voir la figure 1.1). Ce système s’écrit sous
la forme 





∂th + ∂x (hu) + ∂y (hv) = P − I

∂t (hu) + ∂x
(
hu2 + gh2/2

)
+ ∂y (huv) = gh(S0x − Sf x)

∂t (hv) + ∂x (huv) + ∂y
(
hv2 + gh2/2

)
= gh(S0y − Sf y)

, (1.1)

avec S0x = −∂xz(x, y) et S0y = −∂yz(x, y),

où
– g = 9.81 m/s2 est la constante de gravité,
– P (t, x, y) [m/s] l’intensité de la pluie,
– I(t, x, y) [m/s] le taux d’infiltration de l’eau dans le sol,

– "Sf =
(
Sf x, Sf y

)
∈ R2 le terme de frottement qui dépend de la loi de frottement

choisie (voir le chapitre 3),
– z(x, y) [m] la topographie.

Enfin, l’opposé de S0x (respectivement de S0y) est un nombre sans dimension qui représente
la variation de la topographie selon x (respectivement selon y). Il est plus communément
appelé pente selon x (respectivement selon y).

Fig. 1.2: Adhémar Jean-Claude Barré de Saint-Venant (extrait de Debauve [1893, p.432]).

Le système de Saint-Venant a été introduit dans un cadre unidimensionnel par l’in-
génieur des Ponts et Chaussées Adhémar Jean-Claude Barré de Saint-Venant (figure 1.2)
dans un Compte Rendu à l’Académie des Sciences (voir de Saint Venant [1871]). Pour
décrire l’écoulement de l’eau dans un canal dont la section est rectangulaire et le fond plat
et horizontal, il propose le système suivant
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kind of Nusselt solution

Bagnold 1954

«Bagnold» avalanche

Ralph Bagnold
1896-1990

• explored Lybian desert in 30’
• low pressure in tires when driving on sand
• waffle-boards (tôle de désensablement)
• commando in desert WW2 (Long Range Desert Group)
• field observations (The Physics of Blown Sand & Desert Dunes, 1941)
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Experimental set up: 
Pouliquen 99 & 99

Front in Savage Hutter St Venant

With Stéphanie Deboeuf and Guillaume Saingier
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Figure 4: Front profiles from Pouliquen8: comparison between experiments for different h1
(symbols) and theory obtained with fractional rheology (solid lines). Colored and dark

lines correspond to the calculations with ↵ = 5/4 and ↵ = 1 respectively. The curves for
↵ = 1 with a fractional expression for the rheology are superimposed on the numerical

fronts obtained by Pouliquen with an exponential expression.

(10). This term adds a dependence of the front profile on the Froude number Fr and the

velocity profile through the value of ↵.

Figure 5: Rescaled granular profiles: comparison between experiments and analytical
predictions for different inclinations and different thicknesses h1. Analytical solutions

(colored lines) are calculated by using the thickness h1 and the front velocity u0 measured
for each experimental front (colored circles) with a shape factor ↵ = 5/4. The analytical

solution evaluated for ↵ = 1 is plotted in black line.

We have realized new experiments with the set-up described in Sec. II. This allows

us to explore a more important range of velocity, from 10 to 80cm/s (from Fr = 0.5 to

11
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full system before averaging
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Thin Layer (Boundary Layer) and integral SHSV are finally very close
there is a noticeable effect of inertia  
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• implementing the µ(I) friction law in Shallow Water (SVSH) 
- friction is only at the bottom 
- pay attention to the shape factor: should be α=5/4  
- but: α=1  in the SVSH for Galilean invariance and entropy 

• Widely used in geophysics with α=1 

• 1 D model   

 
Go now to grains (contact dynamics) vs  full Navier Stokes  

Front in Savage Hutter St Venant



t

• Direct simulation of movement of thousands of grains

Newton’s law

m(
��
U + ���U �) =

��
F �t

fn

un

ft

µfn

−µfn

ut

Fig. 6. Solution of the local Signorini-Coulomb problem at the intersection points
between transfer equations and complementarity relations.

The transfer equations (26) and (27) define a system of two linear equations
between the contact variables at each contact point. The solution, when the
values of an and at at a contact are assumed, should also verify the contact
complementarity relations (3) and (8). Graphically, this means that the solu-
tion is at the intersection between the straight line (26) and Signorini’s graph
on one hand, and between (27) and Coulomb’s graph, on the other hand. This
is a highly nonlinear procedure for a multicontact system as discussed below.

5 Iterative determination of contact forces and velocities

5.1 Single contact problem

In order to solve the system of 2Nc transfer equations (in 2D) with the corre-
sponding complementarity relations, we proceed by an iterative method which
converges to the solution simultaneously for all contact forces and velocities.
We first consider a single-contact situation to which we will refer as the local
SC problem (SC standing for Signorini-Coulomb). It consists of the determi-
nation of contact variables fα

n , f
α
t , u

α
n and uα

t at a single contact given the
values of the offsets aαn and aαt at the same contact. Formally, by combining
the transfer equations (26) and (27) with the complementarity relations (4)
and (9), it is easily shown that the local SC problem is equivalent to the
following relations:
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nt f
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t )

S
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n , (32)

Wαα
tt fα

t − (aαt −Wαα
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α
n )

C
←→ fα

t . (33)

The solution of this problem is given by intersecting the lines representing
transfer equations with Signorini’s and Coulomb’s graphs; see Fig. 6. The

15

take the form of an equality between the change 

of momentum and the average impulse during δt.

written for each grain at the contact
un, ut

Contact Dynamics 1988

!

!

Décès&de&Jean&Jacques&MOREAU&
!

!
!

Jean! Jacques!Moreau,! né! en! 1923! à! Blaye! (Gironde),! fut! agrégé! en!mathématiques! et!

docteur! en!m	�� �	���������� �%��������� �����	���#� ����� ��

����������� 
���
����� 	��
CNRS,!professeur!en!méthodes!mathématiques!de!la!physique!à!l'Université!de!Poitiers,!

enfin! professeur! de! mécanique! générale! à! l'Université! Montpellier! II.! Il! y! créera! le!

Groupe!�%��	������������$�����	������������!dernières!années!précédant!son!départ!à!la!
ret�	���� ��� (,+*#� �% ������ �%��	����� �����quée! et! Mécanique! évoluera,! sous! sa!
responsabilité,!pour!devenir!le!Laboratoire!de!Mécanique!Générale!des!Milieux!Continus!

(LMGMC),!associé!au!CNRS!à!compter!de!1986.!Ce!dernier,!avec!le!Laboratoire!de!Génie!

Civil,! ! deviendra! en!1991! le! Laboratoire!de!Mécanique! et!Génie!Civil! (LMGC).!�%���� 	��
���������������%����oursuivit!ses!recherches!comme!p��������� � ����������%���)'('.!
!

Le! thème! central! de! ses! recherches! fut! la! mécanique! non! régulière,! champ! dont! les!

applications!concernent!par!exemple!les!contacts!entre!corps!rigides!ou!déformables,!le!

frottement,! la! déformation! plastique! des! matériaux,! le! sillage! dans! les! écoulements!

������#��	�
	���	����$$$��&���	��	����%� ��
�� �������	������������������	�	���#�� 
�������
par! Jean! Jacques!Moreau!en!1962,! a! fourni!un!point!���� �	����	���������� �% ��������
certains!problèmes!de!dynamique!des!fluides.!

!

Sa! connaissance! fine! des! mathématiques! lui! a! permis! de! développer! des! outils!

�� ��������	�	�� ����
����������	����������%���������	������%�����%�����	���
���	������
mécanique!non!régulière.!Au!delà!de!la!mécanique,!la!généralité!des!concepts!introduits!

�%	�
����������&������	�����
�����butions!à!la!construction!de!l'analyse!non!régulière,!un!
domaine! mathématique! qui! a! suscité! aussi! l'intérêt! des! spécialistes! en! optimisation,!

recherche! opérationnell�� ���  
������$� �%���� 	����� ���#! fondé! en! 1970,! le! Groupe!
�%��	�yse! Convexe! de! l'Institut! de! Mathématiques! de! �%Université! ! Montpellier! II,! a!
produit!des!résultats!remarquables.!
 

Jean-Jacques Moreau 
1923-2014

With Lydie Staron 



first order fluids  
(linear Stokesian or linear Reiner Rivlin) 

�ij = f(Dij)

D2 =
p

DijDij

Dij =
ui,j + uj,i

2

With strain rate tensor
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Non newtonian flows: 
local constitutive law  
(Stokesian or Reiner Rivlin) 

General formulation

tensorial formulation 
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classic formulation 

practical formulation 
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General formulation



- the «min» limits viscosity to a large constant value 
- always flow, even slowl

construction of a viscosity based on the D2 invariant and redefinition of I

Boundary Conditions: no slip and p=0 at the interface for µ(I)

D2 =
p

DijDij Dij =
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2

�ij = �p�ij + 2⌘(D2)Dij
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(|p|/⇢).⌘ = min(⌘max,max (⌘(D2) , 0))

Implementation in Basilisk flow solver?
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D2 =
p

DijDij Dij =
ui,j + uj,i

2

� · u = 0, �
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= ��p +� · (2�D) + �g,

@c

@t
+r · (cu) = 0, ⇢ = c⇢1 + (1� c)⇢2, ⌘ = c⌘1 + (1� c)⌘2

construction of a viscosity based on the D2 invariant and redefinition of I

The granular fluid is covered by a passive light fluid (it allows for a zero pressure boundary condition at the surface, bypassing 
an up to now difficulty which was to impose this condition on a unknown moving boundary).  

�ij = �p�ij + 2⌘(D2)Dij

Boundary Conditions: no slip and p=0 at the interface for µ(I)
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Volume Of Fluids, projection method, finite volumes



��g

fluid
small density

small viscosity

The granular fluid is covered by a passive light fluid (it allows for a zero pressure boundary condition at the surface, bypassing 
an up to now difficulty which was to impose this condition on a unknown moving boundary).  
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@t
+r · (cu) = 0, ⇢ = c⇢1 + (1� c)⇢2, ⌘ = c⌘1 + (1� c)⌘2

neumann and p=0

no slip
no slip

no slip

neumann and p=0

Boundary Conditions: no slip and p=0 at the interface for µ(I)

Implementation in Basilisk flow solver?

granular fluid
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+ u ·�u
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= ��p +� · (2�D) + �g,

Volume Of Fluids, projection method, finite volumes



Implementations of NS-µ(I)

Implementations of Bingham
-  Liu,  Balmforth,  Hormozi, Hewitt, 2016, 
- Dufour and Pijaudier-Cabotz 2005 
- Vinay Wachs,   Agassant 2005 
- Vola, Babik, Latché 2004

⌧ =

 
⌧0
@u
@y

+ ⌘

!
@u

@y

⌧ =

 
µp
@u
@y

!
@u

@y

- Lagrée Staron Popinet 2011 
- Mangeney, Ionescu, Bouchut, Lusso 2016 
- Krabbenhoft 2014 
- Dunatunga & Kamrin 2015 
- Barker Shaeffer Bohorquez & Gray 2015 
- Daviet & Bertails-Descoubes 2016



kind of Nuβelt solution

Bagnold 1954

Test of the code: «Bagnold» avalanche

http://www.boker.org.il/meida/negev/desert_biking/bagnold/tsoar_paper.htm

http://www.boker.org.il/meida/negev/desert_biking/bagnold/tsoar_paper.htm


 Contact Dynamic 
simulation

Test of the code: «Bagnold» avalanche

kind of Nusselt  film solution
“Half Poiseuille”
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slip velocity p=0



E. Lajeunesse A. Mangeney-Castelnau and J.-P. Vilotte PoF 2005

granulars are fluids and solids



Granular Column Collapse 

L0

L�H�

H0

t = 0

t =�

aspect ratio a = H0/R0 = H0/L0

The sand pit problem: quickly remove the bucket of sand



Collapse of columns simulation Basilisk µ(I)

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column.c

reproduce Lagrée Staron Popinet 2011

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column.c


optimisation 
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a = 0.5

Collapse of columns

DCM vs µ(I)



a = 1.42

Collapse of columns

DCM vs µ(I)



a = 6.6

Collapse of columns

DCM vs µ(I)



Collapse of columns

DCM vs Navier Stokes µ(I)



Collapse of columns

DCM vs Navier Stokes µ(I)



at the tip, a=6.6 t=1.33 2 2.66

Collapse of columns

DCM vs Navier Stokes µ(I)



DCM vs Gerris µ(I)

Collapse of columns



These figures can be reproduced using lydie/0.9/tas.gfs and lydie/9.1/tas.gfs. We
should also do this better using Lydie’s results directly.

These simulations were repeated for a ranging from 0.25 to 60. In order to estimate the
influence of numerical integration errors, the spatial resolution was also varied from 32/29 to 32/
212. Figure 7 illustrates the evolution of the normalised final deposit extent as a function of
aspect ratio a. Well-defined power law dependencies are observed with exponents of 1 and 2/3
respectively. The transition between the two regimes occurs for a ≈ 7. This is a larger aspect
ratio than that observed in experiments or discrete-grain simulations (a≈ 2). Recovering a tran-
sition for smaller a would require either a larger prefactor for the linear regime or a smaller pref-
actor for the power-law regime. For example, while the prefactor of 3.5 for the power-law regime
is close to that of Staron and Hinch (2005) (3.25), the prefactor for the linear regime is only 1.85
compared to 2.5 for Staron and Hinch. This may suggest that the mobility of the tip of columns
is under-estimated by the continuum model which could be explained by the limitations dis-
cussed previously. Note also the good convergence of the results with spatial resolution.
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Figure 7. Normalised final deposit extent as a function of aspect ratio. The different sets of points cor-
respond to the spatial resolutions given in the legend. The points which are obvious outliers correspond
to simulations which were still running when I generated the figure. This figure can be reproduced using
the scaling.plot gnuplot script.

Figure 8 gives the evolution of the maximum thickness of the final deposit as a function of
the initial aspect ratio. Linear dependence is observed for a ! 0.65, a power law with an expo-
nent of ≈ 0.35 for 0.65 < a < 6 followed by saturation with a maximum at a ≈ 15. From a ≈ 32,
the maximum thickness of the deposit is not reached on the axis of lateral symmetry of the
column anymore but in the deposited “wave” formed toward the front of the flow. The thickness
on the axis of lateral symmetry continue to decrease for a > 32 (Figure 9). These results are con-
sistent with Staron and Hinch (2005) although they did not discuss the transition for a > 32.
Note also that the maximum thickness of the deposit is much less dependent on the accurate
description/resolution of the dynamics of the avalanche tip than the horizontal extent.

Lydie, in your 2005 paper I don’t understand what H̄∞ is. Is it different from H0 R0/R∞? It

Collapse of columns simulation µ(I)

We recover the experimental scaling [Lajeunesse 
et al. 04] and [Staron et al. 05]. 

Differences in the prefactors are due to the 
difficulties to obtain the run out length (discrete  
simulation shows that the tip is very gazeous, it 
can no longer explained by a continuum 
description).

Normalised final deposit extent as a 
function of aspect ratio a. 

W e l l - d e fi n e d p o w e r l a w 
dependencies with exponents of 1 
and 2/3 respectively.

Hf

Li
! !a a " 0.7,

a1/3 a # 0.7,
"

$L

Li
! !a a " 3,

a2/3 a # 3.
"

Note that the power-law exponent of the runout observed in
our rectangular channel is identical to the one reported by
Balmforth and Kerswell11 for a narrow channel.

Let us first comment on the behavior of the runout dis-
played in Fig. 6#a$. Two different regimes are observed de-
pending on the range of a. For small a, namely a"3, $L /Li
increases linearly with a for both flow geometries. In other
words, the runout $L increases linearly with Hi, a result that
is easily obtained from dimensional analysis.9 It is also for
this range of a that shallow-water equations show good
agreement with the experimental data.13,14

For a#3, the scaled runout does not vary linearly with a
but follows a power law whose exponent depends on the
flow geometry as summarized above. Two different mecha-
nisms are likely to account for this crossover. First, vertical
acceleration, which is negligible at low a, becomes important

when a increases. Second, pressure gradients, which scale as
%0ga, are likely to be small compared to friction forces at
small a but become important at large a. The change of
power-law exponents observed for a%3 might therefore be
interpreted as the transition between small a flows dominated
by friction and large a flows where vertical acceleration and
pressure gradient effects become predominant. Note also that
the mass conservation expressions are different in the rect-
angular and the axisymmetric geometries, which may ac-
count for the different power-law exponents for large a.

The deposit height exhibits two different regimes char-
acterized by changes of power-law exponents depending on
the range of a &see Fig. 6#b$'. For a"0.7, all the data fall on
the same line independent of the flow geometry: Hf /Li%a.
This is of course a trivial consequence of the fact that Hf
=Hi for the truncated cone deposits observed in this range
of a.

For a#0.7, two different behaviors are observed de-
pending on the flow geometry. In the axisymmetric geom-
etry, the scaled deposit height roughly saturates at a value of
the order of 0.74.10 In the rectangular channel, it increases as
a1/3. Interestingly this latter result is recovered in two recent
2D numerical investigations of the collapse of a granular
column of disks using contact dynamics.16,17 The similarity
between the experiments and the numerical simulations #per-
formed without a wall$ strongly suggests that the differences
between the evolution of Hf /Li in the axisymmetric geom-
etry and that in the rectangular channel are not an experimen-
tal artifact due to the friction at the wall of the rectangular
channel but have their origin in the geometry itself.

No model has yet provided a fully satisfactory explana-
tion of the slumping dynamics that has revealed the physical
origin of the different power-law exponents reported above.
This is what motivates the investigation of the internal flow
structure reported in the next section.

IV. INTERNAL FLOW STRUCTURE

We used two different tools in order to probe the internal
structure of the slumping granular mass. First, the shape and
evolution of the flowing layer were investigated by calculat-
ing the intensity difference between two consecutive images.
The result is then thresholded so as to distinguish between
static regions, which appear as black pixels, and the flowing
layer, where the motion of the beads appears as white pixels.
In practice, one needs to evaluate the noise caused by light-
ing fluctuations or intrinsic vibrations of camera and appara-
tus. The intensity difference between two consecutive images
of the pile at rest shows that lighting fluctuations are negli-
gible compared to the signal generated by the flowing beads,
provided the time interval between the two images is larger
than about $t=5 ms. We chose to work with $t=10 ms,
which turned out to be long enough to achieve a good signal-
to-noise ratio, and small enough compared to the character-
istic slumping time scale &c. Typical sequences of image dif-
ferences observed for different initial aspect ratios a in both
flow geometries are displayed in Figs. 7 and 8.

We also measured the velocity field in the flowing layer
using a particle image velocimetry #PIV$ algorithm based on

FIG. 5. Scaled distance traveled by the pile foot &L#t$−Li' /Li as a function
of t /&c. #a$ a=0.6, M =470 g, Li=102 mm. #b$ a=2.4, M =560 g, Li
=56 mm. #c$ a=16.7, M =170 g, Li=10 mm.
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a the granular mass spreads through avalanching of the
flanks, producing either truncated cone deposits for a
!0.74 !Fig. 3"a#$ or conical deposits for a"0.74 !Fig. 3"b#$.
A transition towards a different flow regime is observed
when a is increased. This second flow regime is illustrated in
Fig. 3"c#: upon release, the upper part of the granular mass
descends, conserving its shape while the foot of the pile
propagates along the channel. Along the deposit an inflection
point separates a steep sloped from a large, almost flat re-
gion.

Figure 4 shows the time evolution of the profiles of three
different granular heaps of the same initial aspect ratio a
=3.2 but obtained with different masses or bead sizes. The

profiles h"x , t# are scaled with respect to Li and the time
interval between two consecutive profiles is scaled with re-
spect to the free-fall time of the granular column #c=%Hi /g.
The three profiles are identical at each time. This observation
demonstrates that, for fixed granular material and substrate
properties, the flow dynamics and the final deposit morphol-
ogy do not depend on the volume of granular material re-
leased but only depend on a. The range of substrate and
material properties "including the bead size# explored in this
paper is too restricted to evaluate their influence. Note how-
ever that the observations of Lajeunesse et al.10 and Balm-
forth and Kerswell11 indicate that properties such as the bead

FIG. 2. Three sequences of images corresponding to
d=1.15 mm beads spreading in the semiaxisymmetric
setup. The first image of each sequence corresponds to
the moment where the gate is being lifted, the time
interval between the following images is $t=%Hi /g,
except for the last image taken at the very end of the
flow when the heap is at rest. "a# Regime 1 a=0.6, M
=100 g, Li=39 mm, $t=49 ms. "b# Regime 1 a=2.4,
M =400 g, Li=39 mm, $t=98 ms. "c# Regime 2 a
=3.6, M =600 g, Li=39 mm, $t=120 ms.

FIG. 3. Same as Fig. 2 but in the rectangular channel.
"a# Regime 1, a=0.6, M =470 g, Li=102 mm, $t
=80 ms. "b# Regime 1, a=2.4, M =560 g, Li=56 mm,
$t=117 ms. "c# Regime 2, a=16.7, M =170 g, Li
=10 mm, $t=130 ms.
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Collapse of columns

Numerical simulations based on Ionescu et al.(2015) results where they compared experiments with a
finite element model have been performed to see the influence of the friction at the bottom. Two different
configurations are presented. For both case the intial column is 0.14m high and 0.2m wide but slope angle
is varied from 0 to 16 degrees. The friction condition is implemented as

u.t[bottom] =

(

t < 1 ?dirichlet(0) : neumann

(

µ.y[ ] ? −
µc p[ ]

µ.y[ ]

u1.x[ ]
√

|u1.x[]|2 + ε2
: 0.

))

: dirichlet(0); (37)

where ε = 1.10−6 used to regularise the rheology (see F. Bouchut) µc = 0.48 the bottom friction coefficient.
Note that, to help the solver, a no-slip condition is imposed while t < 1, this help the initialisation of
the problem and allow the implementation of a small time step (∆t = 0.0025 which corresponds to ∆t =
2.98.10−4s in dimensional variable)

Figure 4 – Comparison with previous results (experiments and finite elements method). The slope angle is
θ = 0◦ (left) and θ = 16◦ (right).

Taking into account a friction condition instead of no-slip for θ = 0◦ doesn’t really have consequences on
the results. Basilisk gives better results than the numerical simulations of Ionescu et al. (2015), especially
near the left boundary of the domain. Moreover, the free surface shape of the deposit is in really good
agreement with the experiment. For θ = 16◦ both numerical methods (Basilisk and finite element) are not
as good as θ = 0◦. The final runout distance is relatively well captured with the no-slip condition in Basilisk
whereas some issue are encountered with the friction condition (the simulation crashes before the end so
technically here the green curve is not exactly at the good time on the bottom rigt figure...).

6

Solids are with friction at the wall 

implement solid friction at the wall  
instead of no slip

⌧ = µsp

Neumann condition, instead of no slip 

under work 
with Sylvain Viroulet IMFT, Anne Mangeney IPGP

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_muw.c

@u

@y
|0 =

µsp

⌘

Results identical, good fit with experiment,  
better than Ionescu 2015

discussion of BC

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_muw.c


Collapse of columns under work 
with Sylvain Viroulet IMFT, Anne Mangeney IPGP

comparison Exp., Discrete, NS & SVSH

(Exp. ~ Discrete ~ NS) > SVSH  

http://basilisk.fr/sandbox/M1EMN/Exemples/savagestaron.c

http://basilisk.fr/sandbox/M1EMN/Exemples/savagestaron.c


• Problem:  

Simulate the hour glass with discrete and continuum theories


• try to recover the well know experimental result:  
Beverloo 1961 Hagen 1852 law from discrete and continuum 
simulations

Gotthilf Hagen 
1797-1884



• Flow in a Hourglass Discharge from Hoppers

simulation DCM



simulation Navier Stokes µ(I)

• Flow in a Hourglass Discharge from Hoppers



no influence of the hight 

nor the width

influence of  D, d and  , 

so by dimensional analysis: 

• Hagen 1852 Beverloo 1961 constant discharge law
mass flow rate
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• Flow in a Hourglass Discharge from Hoppers
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http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass.c
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• Flow in a Hourglass Discharge from Hoppers
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comparing Torricelli
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discrete vs continuum (at same rate)Staron Lagrée Popinet 2014



Staron Lagrée Popinet 2014 discrete vs continuum (at same rate)
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3D as Hele-Shaw approximation 
The 3D equations are averaged across the cell of thickness W
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suppose an almost transverse flat profile: 
non linear closure coefficient is one 
extra wall friction source term

With Pascale Aussillous Pierre Ruyer and Yixian Zhou

2D width averaged Equations



Q = ⇢W 2
p
gW F(D/W )rescaling with:

(D/W ) ⌧ 1 (D/W ) � 1
small thicknesslarge thickness

plot as function of D/W

(D/W ) < 1, Q ⇠ D3/2W (D/W ) > 1, Q ⇠ W 3/2D

with the friction µ(I) depending on the inertial number I , ([4], [3]), see details in [6, 7] (µs = 0.4, �µ = 0.28, I0=0.4 ):

⌘ =
µ(I)pp
2D2

, with I =
d
p
2D2p
p/⇢

, µ(I) = µs +
�µ

I0/I + 1
, and D2 =

q
D : D .

Modeling the friction on the wall (proportional to µwp) is a problem with the fluid description as we can impose only no slip
or slip for the velocity at the wall. To take into account this lateral friction, we average the momentum equation across the
width of the silo (in the Hele-Shaw spirit, [2]). This adds �2(µwp/W )(�!u /|�!u |) as an averaged additional force from the
sidewalls in the momentum equation. We test these three models with both codes.

RESULTS

For the 2D configuration simulations we obtain a good agreement between contact dynamics and Navier–Stokes, and again
we recover the Hagen–Beverloo 2D law. Interestingly enough, we found a simple analytical solution for the pressure field (a
kind of Flamant solution plus lithostatic pressure), which describes well the initial times. For pure 3D continuum simulations
with Navier-Stokes (with slip conditions at the wall), we obtain as well the Hagen–Beverloo 3D law for the flow for aspect
ratio of order one and for square or round holes. Changing now the width W of the silo, from the experiments, we identify two
regimes, which depend on the ratio of height to width of the orifice. When D/W is smaller than a critical value, Q ⇠ D3/2W ,
when D/W is larger then Q ⇠ W 3/2D (see figure 1 center). The same trend is observed for 2D cross-averaged simulations
(with the additional sidewalls friction term), this is plotted on figure 1 right.

Figure 1: Left, the model configuration: an asymmetrical 3D silo with lateral orifice. When D/W is smaller than a critical
value C, we have Q ⇠ D3/2W , like the Hagen–Beverloo 2D scaling. When D/W is larger than C, we have Q ⇠ W 3/2D.
The trends obtained from the experiments (center) are reproduced with the averaged Navier–Stokes with µ(I), (right).

CONCLUSIONS

The main result of this work is the identification, both experimentally and numerically, of a new flow regime for thin
silos with a lateral opening, where the discharge rate is proportional to D, in contrast to the classical 2D behavior where
the discharge rate is in power 3/2, obtained for thick silos. This work also demonstrates that the continuum µ(I)-rheology
describes well granular flows compared to experiments and discrete simulations. It can thus be used as a tool to compute many
industrial configurations.
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Streamlines
Granular
Fluid

r · up = 0

r · uf = 0

Coupling unsteady Darcy Forchheimer (porous)

With granular flow
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The flow rate is increased by the constant pressure drop 

axi

With Pascale Aussillous Pierre Ruyer and Zhenhai Zou
Coupling granular with air:  Darcy Forchheimer 

 
Using simplified Jackson 00 two fluids equations model

http://basilisk.fr/sandbox/M1EMN/Exemples/forchheimer.c

http://basilisk.fr/sandbox/M1EMN/Exemples/forchheimer.c


cohesive material vs experimental 
With Anaïs Abramian, Lydie Staron, Adrien Gans ANR COPRINT

influence of cohesion: adds a threshold 

num/exp

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_cohesif.c

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_cohesif.c


cohesive material continuum vs discrete 
With Anaïs Abramian, Lydie Staron, Adrien Gans ANR COPRINT

DCIM

discrete adhesion on each grain 



cohesive material continuum vs discrete 
With Anaïs Abramian, Lydie Staron, Adrien Gans ANR COPRINT

failure height: 

DCIM

discrete adhesion on each grain 



cohesive material continuum vs discrete 
With Anaïs Abramian, Lydie Staron, Adrien Gans ANR COPRINT

NS 

failure height: 

DCIM

discrete adhesion on each grain 



Obvious societal problem 

Experiment/ simulation/ modelisation 
  
Granular µ(I) rheology shows agreement with experiments  
at least qualitatively  

Method conserving exactly mass, fast code.   

Problems here:  
- it always flows (regularisation at small shear) 
- no void formation (constant density) 
- no steady flow  
- no solid 
- no "h stop" 
- instabilities (ill posed) 

Next: 
- non locality, 
- coupling with air/water

Conclusion perspectives



Lydie Staron 
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comparisons  
-2D  
-RNSP Multilayer/ 
-1D (integral) 

compared experiments, discrete and continuum simulations
http://basilisk.fr/sandbox/M1EMN/Exemples/column_SCC.c

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass_muw.c
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass.c
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_muw.c

the model for the pertinent level of simplification 

http://basilisk.fr/sandbox/M1EMN/Exemples/
viscous_collapse_ML.chttp://basilisk.fr/sandbox/M1EMN/Exemples/
bingham_collapse_ML.c

http://basilisk.fr/sandbox/M1EMN/Exemples/bingham_collapse_noSV.c

Conclusion: a simple class of non newtonian  
flows solved with Basilisk  

+ shallow water Savage Hutter on the web
http://basilisk.fr/sandbox/M1EMN/Exemples/front_poul_ed.c

http://basilisk.fr/sandbox/M1EMN/Exemples/column_SCC.c
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass_muw.c
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass.c
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_muw.c
http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapse_ML.c
http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapse_ML.c
http://basilisk.fr/sandbox/M1EMN/Exemples/bingham_collapse_ML.c
http://basilisk.fr/sandbox/M1EMN/Exemples/bingham_collapse_ML.c
http://basilisk.fr/sandbox/M1EMN/Exemples/bingham_collapse_noSV.c
http://basilisk.fr/sandbox/M1EMN/Exemples/front_poul_ed.c



