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Navier Stokes Equations 
non dimensional
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Euler Equations

1/Re=0

Boundary condition: slip 
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simple ideal fluid flows
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ideal fluid flow
small perturbation theory
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Linearized Euler
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slip condition
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subsonic flow...
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pipe flow
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sub critical flow
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F>1super critical flow
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F<>1trans critical flow



supersonic flow...
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Slip velocity

must have no slip condition on the wall

have to introduce a Boundary Layer



Boundary Layer

(
!ũ
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No slip boundary condition

Matching ũ(x̄, ỹ→ !) = ū(x̄, ȳ→ 0)

ũ(x̄,0) = ṽ(x̄,0) = 0



weak coupling

Ideal Fluid gives the outer edge velocity

the Boundary layer develops



weak coupling
the displacement thickness
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Blasius

Self similar solution

2 f ′′′+ f f ′′ =0
f (0) = f ′(0) =0 and f ′(!) = 1.

f ′′(0)=0.332,Z
(1− f )=1.732



Blasius

Self similar solution
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Goldstein Singularity
Impossible to compute Boundary layer separation



Inverse Boundary Layer!
allows boundary layer separation,
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Inverse Boundary Layer!
allows boundary layer separation!!!



Perturbation of the 
Ideal fluid at the next 

order
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Interacting Boundary Layer

!̃1Ue <->



Interacting Boundary Layer

Boundary layer

Ideal Fluid
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Semi inverse coupling



in stenoses
Boundary Layer/ Perfect Fluid

d1

The displacement thickness acts as a ”new” wall!
→Interacting Boundary Layer (IBL)



RNSP/ IBL

After rescalling:
r = R(x̄) − (λ/Re)−1/2ȳ, u = ū, v = (λ/Re)1/2v̄ and x − xb = (λ/Re)x̄ , p = p̄,
where xb is the position of the bump, the RNSP(x) set gives the final IBL (interacting
Boundary Layer) problem as follows:
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IBL integral: 1D equation
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ūe =
1

(R2 − 2(λ/Re)−1/2δ̄1)
.

To solve this system, a closure relationship linking H and f2 to the velocity and the
displacement thickness is needed.

Defining Λ1 = δ̄2
1

dūe
dx̄ ,

the system is closed from the resolution of the Falkner Skan system as follows:

if Λ1 < 0.6 then H = 2.5905exp(−0.37098Λ1), else H = 2.074.

From H,f2 is computed as f2 = 1.05(−H−1 + 4H−2).



IBL integral: Comparison with Navier Stokes (Siegel et al. 1994)
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Wall Shear Stress
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Evolution of the velocity profile along the convergent part of a 70% stenosis
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broken line: flat entry



Testing asymmetry in the entry profile
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Figure 1: Left: the 3D Hele Shaw cell, of size Lc, Hc, b (b << Lc and
b << Hc). The bump is of length Lb. The relative height of the bump
is α << 1. Right up: the transverse profiles are supposed Poiseuille ones.
Right bottom: the equivalent 2D domain where the Averaged systems have
to be solved. The lower boundary is pertubed by the small bump.
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So, supposing that the velocity profiles remain of parabolic shape in
z, we define the prime velocities u(x, y, z) = 3

2 (1 − ( z
b/2 )2)u′(x, y),

w = 0, and v(x, y, z) = 3
2 (1 − ( z

b/2 )2)v′(x, y), and the prime pressure:
p(x, y, z) = p′(x, y).

The method developed by Gondret et al. ([5], and [6]) is to integrate
the three dimensional equations along z the transverse direction, and
to suppose that the velocity in this direction is always small: w = 0.
Gravity effect will be neglected too, but may be introduced without any
problems. With the chosen Poiseuille velocity profiles, the integrated
system of incompressibility and momentum balance is two dimensional:
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with γ2 = 6
5 and γ1 = 1, coefficients coming from the transverse inte-

gration. Ruyer-Quil [13] developed the method of ”weightened resid-
ual” which allows to have better approximation of these coefficients:
γ2 = 54

35 and γ1 = 6
5 . The additional term to classical Navier Stokes

equations is the Darcy one.
Writing x = γ2Lx̄, y = γ2Lȳ (same spatial scales), u′ = U0ū, v′ =

U0v̄, p′ = γ2ρU2
0 p̄ (same velocity scales), and choosing L = b

12 (U0b
ν ) (by

a Van Dyke [18], Darrozès [3] ”least degeneracy” principle) we write
the non-dimensional system:
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∂ȳ
) = 0 (3)

(ū
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∂ȳ
) = − ∂p

∂x̄
− ū +
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where we have defined a gap Reynolds number Rb = (U0b
ν ) and a ”L”

based Reynolds Re = (U0Lγ2
2

γ1ν ). We note the relation between the two

numbers: Re = R2
bγ2

2
12γ1

, and that γ1 and γ2 disappear from the equations.
This L corresponds to the entry length of the cell. It is analogous to
the problem of entry in a pipe (Schlichting [14]). Hence, the entrance
effect is located at the right of the cell on scale L. The bump is located
at a distance larger than L. In order to be self consistent, the order of
magnitude of the length bump is L.

In experiments from Gondret et al. [7] or Loiseleux [10] the values
are: b = 0.002m, as 500 < (U0b

ν ) < 1200, we have 8cm < L < 20cm
and 0.002 < Re−1/2 < 0.006.
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(ū
∂ū
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(ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
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A given perturbation of the boundary gives the slip velocity Ūe =
1 + αū1 + O(α2). This is exactly the same formula for classical 2D
ideal fluid, but the perturbation of pressure will be different. We have
to introduce a boundary layer in order to recover the no slip condition
at the boundary.

2.3 Averaged Boundary Layer

2.3.1 Averaged Boundary Layer Equations

Writing (4, 5 and 3) with again x̄ = x̃, ū = ũ, p̄ = p̃, but now focusing
at a very small scale in the transverse direction: ȳ = (δ/L)ỹ and
v̄ = (δ/L)ṽ, with (δ/L) << 1. Choosing (δ/L) = Re−1/2, to keep
the transverse derivative term, this gives δ = b/(

√
12γ2

2/γ1). This is
again the Van Dyke [18], Darrozès [3] principle, and this is the classical
boundary layer point of view (Schlichting [14], Gersten & Herwig [4]).
The boundary layer scale is the scale of the distance between the plates
(b). The Averaged Boundary Layer equations read:

(
∂ũ

∂x̄
+

∂ṽ

∂ỹ
) = 0, (13)

(ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
) = − ∂p

∂x̄
+

∂2ũ

∂ỹ2
− ũ, (14)

0 = −∂p̃

∂ỹ
. (15)

The relative boundary layer thickness δ/L should be smaller than the
relative size of the bump α in classical boundary layer theory. In fact ỹ
is taken from the boundary itself in the normal direction. Nevertheless,
we will see in the next section that they may be of the same amplitude,
so by anticipation f̃ = f̄ . We may do a Prandtl transform (x̄ → x̄,
ỹ → ỹ − f̃(x̄), and ṽ → ṽ − df̃

dx̄
∂ũ
∂x̄ ), so that the transformed boundary

is flat with this new variables.
The boundary conditions are first the no slip condition at the lower

boundary ũ(x̄, 0) = 0 and ṽ(x̄, 0) = 0: the effort has been done to re-
obtain this. The matching condition ũ(x̄, ỹ →∞) = ū(x̄, ȳ → 0) gives
ũ(x̄,∞) = Ūe(x̄) and there is no matching to do with the transverse
velocity at this order. We note that p̃ is function of x̄ only and matches
with the ideal fluid pressure p̄(x̄, 0), and the pressure me be removed
from the equation: Ūe

dŪe
dx̄ + Ūe = − dp̄

dx̄ (remember x̄ = x̄, and see
Appendix).

The two main results of the computation are δ̃1 =
∫∞
0 (1− ũ

Ūe
)dỹ the

boundary layer displacement thickness and τ̃ = ∂ũ
∂ỹ (x̄, 0) the (mean)

shear (or skin friction) at the lower wall. The boundary layer dis-
placement δ1 once rescaled by Re−1/2 represent for the ideal fluid a

5
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∂ũ
∂x̄ ), so that the transformed boundary

is flat with this new variables.
The boundary conditions are first the no slip condition at the lower
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3.2 Interacting Boundary Layer

As just said, near the point of zero friction, there is an abrupt change
in the boundary layer which has been identified by Goldstein (see Ce-
beci & Cousteix [2] or Gersten & Herwig [4]). To solve the boundary
layer separation, one has to do a ” triple deck theory” (Neiland [11],
Stewartson [16], Sychev et al. [17], Smith [15]). A more simple way to
deal with boundary layer separation is to use the idea of ”Interacting
Boundary Layer” (Smith [15], Sychev et al. [17], Cebeci & Cousteix
[2], Le Balleur [9]). The idea of this theory lies in the fact that, as one
reaches separation, δ̃1 becomes larger and larger. So, as the Reynolds
number is large but finite in practice, the boundary layer will pertur-
bate the perfect fluid. That is to say, displacement thickness becomes
of same size than the bump itself.

Hence , we take into account the perturbation due to the boundary
layer in adding to the lower boundary the quantity: δ̃1Re−1/2, so that
(12) becomes now:

Ūe = 1 +
1
π

fp

∫ ∞

−∞

d
dx̄ (αf̄ + δ̃1Re−1/2)

x̄− ξ
dξ. (17)

As said before this term is in fact the next order term. It is not relevant
at the considered order. Doing that, we consider that the Reynolds is
large but finite. So we brake the asymptotic sequence of the weak
coupling. We do a strong coupling: the final system is then to solve
the strongly coupled set of equations which is the set of boundary layer
equation (14, 15, 13) and the ideal fluid solution (17). They are solved
together.

The justification is in fact in the triple deck theory (Neiland [11],
Stewartson [16], Sychev et al. [17], Smith [15]). Details of the nu-
merical resolution are given in the appendix: boundary layer must be
solved in inverse way, and a coupling semi-inverse procedure is done.

As an example of resolution we show on figure 3 typical distribu-
tions of outer edge velocity, skin friction and displacement thickness.
The interaction result is that the ideal fluid flow ”feels” a new bump
which is no more αf̄ but αf̄ + δ̃1Re−1/2. The effect is to smooth
the deflection of stream lines after the bump. This deflection may be
associated with a separation bulb: skin friction is negative there.

On figure 4 we plot the velocity field (ũ, Re−1/2ṽ), the displacement
thickness (corresponding to a stream line) is plotted too. On the lower
part of the figure there is an amplified view of the bump and of the
equivalent bump. The perturbation of outer edge velocity is plotted
too. It is no more symmetrical.

Finally on figure 5 and 6 we change the parameters Re and α in
order to see their influence. On figure 5, at fixed α, we increase Re
from a non separated configuration to separated ones. Increasing the
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Figure 2: Case of direct resolution, flow over αf̄ = αe−πx̄2 . Boundary layer
displacement δ̃1 and skin friction τ̃ are displayed for various α. The arrow
is in the direction of increasing α, for α = 0.1, 0.2, .21, .22 no separation
occurs, for α = .23 we have incipient separation. For α = .24, .25, .3 there is
a singularity: when τ̃ goes to 0, δ̃1 becomes infinite.
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Figure 3: A typical case of interacting resolution, flow over αf̄ = 0.2(1 +
cos(2πx) at Reynolds Number Re = 103. The velocity Ũe, the skin friction
τ̃ , the bump αf̄ , and the equivalent bump αf̄ + Re−1/2δ̃1 are plotted.

13



0

1

2

3

4

5

6

7

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

P
Sfrag

replacem
ents

x̄

x̄

αf̄
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Figure 4: Interacting resolution, flow over αf̄ = 0.2(1+cos(2πx) at Reynolds
Number Re = 103. Top: velocity profiles (ũ/Ūe, Re−1/2ṽ/Ūe), and the
displacement thickness δ̃1. Bottom: The perturbation velocity (Ũe− 1), the
skin friction τ̃ , the bump αf̄ , and the equivalent bump αf̄ + Re−1/2δ̃1 are
plotted.
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Figure 5: Case of interacting resolution, flow over αf̄ = 0.2(1 + cos(2πx).
Skin friction as function of x̄. Increasing the Reynolds Number Re from 102

to 105 leads to boundary layer separation. The arrow is in the direction of
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Increasing the bump height from α = 0.1 to 0.3 at Re = 103 leads to
boundary layer separation. The arrows are in the direction of increasing α.
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Looking at AB functions

(Ū2

e

d

dx̄
(
!̃1

H
)+(!̃1+

2!̃1

H
)Ūe

dŪe

dx̄
) = f1

Ūe

!̃1
− !̃1Ūe.

Ūe = 1+
1

!
f p

Z "

−"

d
dx̄

(# f̄ + $̃1Re
−1/2)

x̄−% d%.

Suppose the profile remains the same 
exponential profile



Linearized AB
Looking at AB functions

C(k) =− (−ik)
(−ik)
2

+2

!̃= 1+FT−1[(1−C(k)|k|(1− |k|Re−1/2)
1−C(k)|k|Re−1/2 )|k|FT [" f̄ ]].



The TRIPLE DECK
justification of the Interacting Boundary Layer

Rational way to look at Looking at 
AB functions in laminar flow at high 

Re



Triple Deck
new scales



x3

∆3





triple deck



equations 
lower Deck

!

!x
u+

!

!y
v=0,

u
!

!x
u+ v

!

!y
u=− d

dx
p+

!2

!y2
u.

u(x,y= f (x))=0, v(x,y= f (x)) = 0

& lim
y→"

u(x,y)=y+A.



coupling relation

p=
1

!

Z dA(")
dx

x−"d"
p=±A
A=0
p=−dA

dx

Upper Deck



Linearised Fourier 
Solution

“Andreotti Bruno Functions”

!∗=(3Ai′(0))−1(−ik)1/3
!p f=1/ |k| ,0,1,−1,1/(ik)

FT ["]=
(−ik)2/3
Ai′(0)

Ai(0)
FT [ f ]
!∗−!p f



incompressible



incompressible p=
1

!

Z dA(")
dx

x−"d"



pipe/ subcritical



pipe/ subcritical p= A



supercritical



supercritical p=−A



supersonic



supersonic p=
−dA
dx



A= 0shear flow



Exemples with 
Boundary layer 

separation

small separation bubble



incompressible p=
1

!

Z dA(")
dx

x−"d"



supersonic p=
−dA
dx



A= 0shear flow



subcritical p= A



subcritical p= A



conclusion of this 
hydrodynamic part

IBL : strong interaction between the boundary 
layer and the ideal fluid thanks to the 
displacement thickness

Triple Deck : rigorous asymptotical justification 

IBL: laminar or turbulent



Application
we use the proposed values of functions 

“A(k) and B(k)” to solve the case of the shear 
flow (i.e. the triple deck case A=0)
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Comparison with Navier Stokes
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conclusion: Perturbation of shear flow is in advance compared to the bump crest.
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The erodable bed: relations between q and u

∂f

∂t
+

∂q

∂x
= 0

In the literature one founds Charru /Izumi & Parker / Yang / Blondeau

qs = E"(τ − τs)a

if (τ − τs) > 0 then "(τ − τs) = (τ − τs) else "((τ − τs)) = 0.

or with a slope correction for the threshold value:

τs + Λ
∂f

∂x
,

a,E coefficients, a = 3/2

IHP2005 / 24. Januar 2005 back to start
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Other simplification of mass transport

q
Ar

-Vf

q
Ar

-Vf

c

Sauerman, Kroy, Hermann 01/ Andreotti Claudin Douady 02/ Lagrée 00/03

ls
∂

∂x
q + q = ("(τ − τs − Λ

∂f

∂x
)γ).

- total flux of convected sediments q (left figure).
- threshold effect τs

- slope effect Λ∂f
∂x

- "(x) = x if x > 0 (else 0), γ, ls ...

IHP2005 / 24. Januar 2005 back to start



first case
unstability of a bed in a steady shear  flow
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Interpretation AB effect

up to now U ′
0 = 1
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Figure 3: Constant shear, Ū ′
S = 1, amplification factor σ as function of number

k, case (6 or 22 or 23) with l̃K = 1, decreasing l̃K increases the cut off value of
k.

fluid

erodible bed

PSfrag replacements

τ̃ − Ū ′
S

f̃

Figure 4: A wavy profile (bold line, f̃) has a perturbation of skin friction (dashed
line, τ̃ − Ū ′

S) in advance of phase. When it is positive, the matter is moved
down stream (small arrows on the profile), when is is negative, it is in opposite
direction. The result is an increase of the wave and a displacement in the stream
direction (large inclined arrows).
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Figure 5: Amplification factor function of wave number. Averaged oscillating
case, Λ = 1 case (4 and 27).
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numerical resolution of the long time evolution

there is coarsening



second case

unstability of a bed in an oscillating shear  flow



oscillating case

36

Interpretation AB effect

here U ′
0 = cos(t̄)
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Figure 6: Amplification factor function of wave number. Averaged oscillating
case, l̃K = 1 case (6and 28).
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Figure 7: A wavy profile (bold line, f̃) has a mean perturbation of skin friction
(dashed line, < τ̃ >) out of phase. When < τ̃ > is positive, the matter is moved
from left to right (small arrows on the profile), when it is negative, it is in
opposite direction. The result is an increase of the wave without displacement
(large vertical arrows).
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Figure 8: Decelerated case Λ = 1 (21 and 30), plot of log(f̃k(t̄)) as function of k
for various increasing times. As time increases, short waves are more and more
stabilised.
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numerical resolution of the long time evolution

there is coarsening

37
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Figure 13: Oscillating régime with (22), spatio temporal diagram, time increases
from bottom to top. Ripples growth from a random noise and merge two by
two.
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Figure 14: oscillating case Ū ′
S = cos(t̄), l̃K = 1, evolution of the maximum

height of the bumps, and number of bumps in the domain versus time.
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third case

movement of a “dune” in a steady shear  flow
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final shapes lin/ non lin
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Fig. 5. The non-linear final moving ”dune” solution ffin(x − ct) is represented
with solid lines, the linear solution is represented with dashed lines, and τs = 0.9,
1/ls = 2.5, m = 2, 3, 4, 5 (bottom curve to top curve).
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Linear / Non linear comparison
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Fig. 6. An example of a non-linear final moving “dune” solution (τs = 0.9, 1/ls = 2.5,
m = 6). The weather side is nearly flat. The skin friction is represented; it is negative
in the lee side: there is boundary layer separation.
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conclusion

- a method to otain A(k)B(k) functions in laminar flows
- long time evolution shows coarsening
- ...


