
Simple analytical models for flow over an erodable bed

P.-Y. LAGRÉE
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• applications in the Nature

• simple point of view

• simple models for the fluid

• simple models for the erodable bed

• stability analysis/ numerical computation
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The coupled problem

- for a given soil f(x, t)
- we have to compute the flow (u(x, y, t)).

- the flow erodes the soil.
- which changes the soil.
- etc

we aim to present a simple description for the flow and
obtain simple model equations to describe the interaction.



The fluid

Numerical resolution of Navier Stokes equations.
In real applications: viscosity changed... turbulence...

here we will present some simplifications:

• Steady flow
• Linearized solutions
• ideal fluid at Re = ∞
• creeping flow at Re = 0
• asymptotic solution of N.S.: Triple Deck: laminar viscous theory at Re = ∞



The erodable bed

Mass conservation for the sediments:

∂f

∂t
= −∂q

∂x
.

Problem :
What is the relationship between q and the flow?
hint: the larger u the larger the erosion, the larger q

q seems to be proportional to the skin friction
u

q



The erodable bed: relations between q and u

∂f

∂t
+

∂q

∂x
= 0

In the literature one founds Charru /Izumi & Parker / Yang / Blondeau

q = EH(τ − τs)((τ − τs)a)

or with a slope correction for the threshold value:

τs + λ
∂f

∂x
,

with H Heaviside function, a,E coefficients



Continuous theory

... leads to q = τ3



First example: Basic case, at Re = ∞

Uniform flow over a topography at large Reynolds number

Starting from an initial shape, the ideal fluid flow is computed (in the Small Perturbation
Theory):

f(x, t) gives u = (1 + 1
π

∫∞
−∞

f ′

x−ξdξ)

This is a very good approximation
But problems arise in the decelerated region (we will see this in the next section).



Second example: Basic case, at Re = 0

Shear flow over a topography f(x, t) at small Reynolds number

Starting from an initial shape, the creeping flow is computed (in the Small Perturbation
Theory), we obtain after some algebra:

τ = 1 +
2
π

∫ ∞

−∞

f ′

x− ξ
dξ



perturbation of a shear flow Re = 0
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Linking q and u

assuming that q is proportional to u− 1 or q proportional to τ − 1
without threshold this gives the same relation in the two cases (2!):

∂f

∂t
= −1

π

∂

∂x

∫
f ′

x− ξ
dξ.

we recognize the linear Benjamin -Ono equation.



Supposed Evolution

The ideal fluid theory has been introduced by Exner.

Issued from Yang (1995) reproduced from Exner (1925?).
”wave” inspiration in the dune evolution



Computed Evolution

Numerical resolution: finite differences, explicit
Tested on complete Benjamin - Ono: RHS+ 4f∂f/∂x gives the soliton 1/(1 + x2)

But here we observe the dispersion of the bump...
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Remark: linear KDV equation

The linear KDV equation reads ∂f
∂t = ∂3f

∂x3 , with selfsimilar solutions, η = xt−1/3:
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asymptotic solution of L.B.O.

L.B.O.
∂f

∂t
= −1

π

∂

∂x

∫
f ′

x− ξ
dξ.

Selfsimilar variable η = xt−1/2, self similar solution f(x, t) = t−1/2φ(xt−1/2).

In the Fourier space exp(−ikx) gives, in the RHS, −i|k|kexp(−ikx), so:

−1
π

∂

∂x

∫
f ′

x− ξ
dξ ' i

∂2f

∂x2

The self similar problem is approximated by:

−1
2

(φ(η) + ηφ′(η)) ' iφ′′(η).

whose exact solution is φ(η) = exp(i(η/2)2)



asymptotic solution of L.B.O.
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Conclusions for those two special cases L.B.O.

When Re = 0 or Re = ∞ (in a simple ideal flow theory), the topography is stable,
there is a dispersive wave

There is an approximate solution (non linearities...?)

Stability arises because of the fact that skin friction is ”in phase” with the bump crest

We have to introduce viscous effects, but small

It will change the the fluid response: skin friction will be ”out of phase” (in advance)
with the bump crest



Asymptotic solution of the flow over a bump; double deck theory

We guess that viscous effects are important near the wall
Perturbation of a shear flow

∂u

∂y
|0 = 1 + αFT−1[(3Ai(0))(−ik)1/3FT [f ]] + O(α2).



Asymptotic solution of the flow over a bump;
Linear/ Non Linear double deck theory
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Comparison with Navier Stokes
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Other asymptotic solution of the flow over a bump; triple deck
theory
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Simplification of mass transport

q
Ar

-Vf

q
Ar

-Vf

c

∂

∂x
q + V q = β(H(τ − τs − λ

∂f

∂x
)(τ − τs − λ

∂f

∂x
))γ.

- total flux of convected sediments q (left figure).
- threshold effect τs

- ”slope” effect λ∂f
∂x

- H: Heaviside function, γ, V , β...



Simple instability mechanism

fHx,tL
qHx,tL

fHx,t+Delta tL



Stability analysis

• If pure shear flow λ = 0, V = 0, Re(σ) > for any k
λ 6= 0 or V 6= 0 stabilises high frequencies

• Infinite depth case (Hilbert case). The real part of σ for β = V = γ = 1 as function
of the wave length k:
- on the left figure λ = 0: there is no slope effect
- on the right figure, we focus on the small k which are amplified when λ = 0, but
are damped for λ > 0 (following the arrow, from up to down λ = 0, λ = 0.1, λ = 0.2, λ = 0.3, λ = 0.316 and λ = 0.4).
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Time Evolution
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The spatial frequency kM giving the larger Re(σ) in the band 0 < kM < km has been
selected.



Slope effect: influence of λ
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Coarsening process, pure shear flow case
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Coarsening process, pure shear flow case
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Coarsening process,Hilbert case
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predicted by the linearized theory. Here
V = β = 1, Lx = 32, τs = −0.25. Notice
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very long time (10 < t < 25000) three bumps
are present.



Conclusion

avalanches...

http://www.lmm.jussieu.fr/MEMBRES/LAGREE/TEXTES/SEDIM/AVALANCHE/avalanches.html


Equations sans dimension

q =
R2

2
E =

R3

3
h(x, t) = Z(x, t) + R(x, t)

∂h

∂t
+ R

∂R

∂x
= 0

∂R

∂t
+ R

∂R

∂x
= − 1

1 + (∂Z
∂x )2

(
∂Z

∂x
+ µI) + ν

∂2R

∂x2



Cas BRdG 98

h(x, t) = Z(x, t) + R(x, t)
∂h

∂t
+

∂R

∂x
= 0

∂R

∂t
+

∂R

∂x
= − 1

1 + (∂Z
∂x )2

(
∂Z

∂x
+ µI) + ν

∂2R

∂x2

ActeI

ActeIetII

ActeIetIIetIII



Cas DAD 99 modifié

q =
R2

2
E =

R3

3
h(x, t) = Z(x, t) + R(x, t)

∂h

∂t
+ R

∂R

∂x
= 0

∂R

∂t
+ R

∂R

∂x
= − 1

1 + (∂Z
∂x )2

(
∂Z

∂x
+ µI) + ν

∂2R

∂x2

relation µI(R,Z ′, ...)
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Exemples
• sans frein:

si |∂Z
∂x | > µs alors µI = µs

• simple
µI = µs

R
R+d

si |∂Z
∂x | < µs alors µI = −∂Z

∂x

• DAD 99 simp.:
si |∂Z

∂x | > µs alors µI = µs

si |∂Z
∂x | < µs alors µI = µs − (∂Z

∂x + µs)exp(−R/R0)

• DAD 99 modif.:

si |∂Z
∂x | > µs alors µI = µs

si |∂Z
∂x | < µs alors µI = µs − (∂Z

∂x + µs)exp(− R
∂Z
∂x +µs

)



un cas lin\’eaire
dt=.0001
tmax=10
dx=0.01
nx=1000
nu=0.05
mu=0.3
modelmu=4
tas=-1
theta=0.35
K=0
Nlin=0
v0=1

dt=.001



tmax=350
dx=0.01
nx=1000
nu=0.05
mu=0.3
modelmu=4
tas=-1
theta=0.35
K=0
Nlin=1
v0=0



Non Linear velocity: The Acts

Non Linear velocity: The Acts
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Linear velocity: The Acts

Linear velocity: The Acts
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Figure 1: The linear solution (in the Triple Deck scales) for the perturbation
of the wall shear function of x, in the A = 0 case, and in the Hilbert case
p = −π−1

∫
(x − ξ)−1(−A′)dξ. The bump perturbation is here e−πx2

. The case
A = 0 leads to no upstream influence, the Hilbert case leads to a small upstream
influence: the skin friction anticipates the bump. The skin friction is extreme before the
maximum of the bump. Skin friction s larger in the wind side than in the lee side.
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Figure 2: The linear solution (in the Triple Deck scales) for the perturbation of the
wall shear function of x, in the p = −A case, and in the p = A. The bump perturbation

is here e−πx2
. The case p = A (subcritical) leads to no upstream influence, the case

p = −A (supercritical) leads to a strong upstream influence: the skin friction anticipates
the bump. The skin friction is extreme before the maximum of the bump only in the
fluvial case.
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Figure 3: Influence of the initial width Lb of a bump exp(−π(x/Lb)2), the maximum
of the bump is plotted for Lb = 1, 2, 3, 4 and 5 for t < 100; f(x, t) is plotted as well
(for t = 0, 2, 4, 6, . . . , 100 with Lb = 3). The larger the bump, the smaller its velocity;
β = 1, γ = 1, V = 1, λ = 0 and τs = 0.
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Figure 4: Destruction of a bump exp(−π(x/6)2) in the supercritical régime, with
β = 1, γ = 1, V = 1, λ = 0 and τs = 0; the maximum of the bump is plotted for
t < 100, it is moving upstream; f(x, t) is plotted as well (for t = 0, 2, 4, 6, . . . , 100).
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