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Abstract. A continuum-mechanical model for the steady flows of dry granular materials is pro-
posed, based on a modelling of the stresses generated by contacts and impacts between particles.
The model takes the non-homogeneity of these materials into account via several transport coeffi-
cients depending on the solid fraction. When applied to the Couette flow between rotating coaxial
cylinders, the model leads to compaction and velocity profiles which are in close agreement with
those found experimentally.

1 Introduction

A Couette cell is certainly amongst the most convenient devices for determining the sta-
tionary flow behaviour of complex materials. The main specificity of dense granular media
is their localized motion, the so-called shear localization. The main difficulty with granular
media is their opacity which explains why the first experiments were mostly two-dimensional
[11] or limited to the observation of the upper or bottom surfaces [2]. Magnetic resonance
imaging and X-ray tomography allowed true three-dimensional measurements [7] [3]. The
main conclusions of these 2D or 3D experiments were the exponential-like (or Gaussian-
like) velocity profile in the shear band, and the depletion of the compaction close to the
moving inner cylinder. To explain that behaviour, we will use a model based on a suggestion
made long ago by Savage [8] and Johnson and Jackson [5] who split the stress tensor into a
first part due to contacts and a second one due to impacts between particles. The resulting
stress involves several transport coefficients depending on the grain volume fraction. We
have renewed that approach by giving the transport coefficients better expressions, some of
them inspired by the model of Bocquet et al. [2] and we tested them in flows over heaps or
rough inclines [6]. Here we want to detail the predictions of the model for the Couette flow.
The specific features of the motion in a Couette cell are briefly reviewed in section 2. The
main lines of the model are presented in section 3. The predicted velocity and concentration
profiles in Couette flow are the subject of section 4.

2 Pressure and shear in a Couette cell

A widely used apparatus to study the rheology of continuous media is the Couette cell,
made of two co-axial vertical cylinders of radii r1 and r2 > r1. The inner cylinder rotates
and imparts momentum to the medium bounded by the two cylinders. Once in a stationary
state, the medium moves with an angular velocity ω(r, z) an azimuthal velocity rω(r, z)
and a shear rate r∂ω/∂r for r1 < r < r2. Mass conservation is automatically satisfied.
Momentum conservation simplifies considerably when assuming that the stress tensor τ
is symmetric and has vanishing components τzr and τzθ. These assumptions are far from
trivial in case of granular media : a rough boundary prevents the grains to rotate freely
(meaning that the average rotation rate of the grains is possibly different from the local
rotation rate ω) and the stress tensor is presumably not symmetric at distances less than
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a few diameters from it. Moreover the assumption of a vanishing τzr means the neglect of
any Janssen-like effect in the Couette cell (i.e. no vertical friction forces on the cylinders).
When these assumptions are taken for granted, momentum conservation reduces to

r
∂τrr

∂r
+ τrr − τθθ = ρr2ω2

∂r2τrθ

∂r
= 0

∂τzz

∂z
= ρg.

Here g is the gravity accelleration and ρ is the total mass per unit volume. For granular
media, ρ = φρp +(1−φ)ρf where φ is the volume fraction of the grains while ρp and ρf are
the true mass densities of the grains and the interstitial fluid respectively.The momentum
balance in the radial direction implies

τrr(r2, z) = τrr(r1, z) +
∫ r2

r1

(τθθ − τrr + ρr2ω2)
dr

r
.

The normal stress difference τθθ − τrr is possibly non-zero in granular media but since the
free (upper) surface of a granular medium in a Couette cell is close to perfectly horizontal,
we conclude hat both the normal stress difference and the centrifugal pressure give negli-
gible contributions to the above integral [10] . As a consequence, the conservation of the
momentum of slowly moving and dense granular media is expressed as

τrr ≈ P (z) (1a)

τrθ = (
r1

r
)2 S(z) (1b)

where P (z) and S(z) are the confining pressure and shear on the inner cylinder respectively.

3 Constitutive relations for dense and dry granular media

A dense granular medium is one in which contacts between grains are long-lived and lead to
a contact network spanning all over the sample. This requires a minimum volume fraction
φm which is of order 0.5 for spherical grains and represents the loosest random packing.
When φ is larger than φm , the medium displays a compressibility which is not linked to
the elasticity of the grains but stems from the loose packing and the possibility of spatial
reorganisation of the grains when submitted to a pressure step. This irrelevance of the elastic
properties of the grains is an approximation which holds up to the tightest random packing
φM of order 0.65 for spherical grains. The constitutive relations to be presented in what
follows are those prevailing in the narrow compaction range φm ≤ φ ≤ φM . In a Couette
device the main pressure load is exerted along the radial direction and one can refer to τrr

as the granular pressure. This granular pressure is the result of two distinct phenomena,
long-lived contacts and impacts between grains. The contact pressure depends on the solid
fraction and we write it as ρpgDF (φ) where D is the grain diameter and ∂F/∂φ represents
the rigidity of the granular medium. Besides the contact pressure, the normal stress also
includes the effects of the impacts between grains. The name ”impact” is used to stress
on the difference between the many-body and reboundless collisions that prevail in dense
media as opposed to the more traditional two-body collisions of dilute media (φ < φm).
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At variance with the contact pressure, the impact pressure only exists when the medium
is in motion. It is thus rate-dependent and on dimensional grounds must be written in the
Bagnold-like form [1] so that the overall granular pressure appears in the form

τrr = ρpgDF (φ) + ρpD
2µN(φ)(r∂ω/∂r)2 . (2)

In this expression µN(φ) represents Reynolds’ dilatancy : shearing the medium at a constant
volume fraction creates a larger pressure or conversely shearing the medium at constant
pressure induces a decrease of the granular concentration. Considering now the shear stress,
we assume it to be the sum of a Coulomb-like contribution and a viscous-like contribution

τrθ = −µ(φ)τrrsign(∂ω/∂r) − ρpD
2µT (φ)r2 ‖ ∂ω/∂r ‖ ∂ω/∂r .

Because the local rotation rate ω decreases when one moves away from the inner cylinder,
the above expression is simplified into

τrθ = µ(φ)τrr + ρpD
2µT (φ)(r

∂ω

∂r
)2 . (3)

In this expression µ(φ) is a compaction-dependent friction coefficient and µT (φ) depicts
the extra dissipation due to the friction developed by sliding contacts. Because the normal
stress difference τrr − τθθ appears to be negligible, the modelling of the two components
τrr and τrθ is enough for the description of the Couette-like flow. Expressions (2) and (3)
contain four positive scalar functions of the compaction. If we admit an infinite rigidity and
the impossibility of any motion for φ > φM , then F , µN and µT are expected to diverge for
φ = φM . If we take for granted the absence of contact pressure and dilatancy phenomena
for φ < φm , then F , µN and µT are expected to be very small and perhaps to vanish for
φ = φm . The friction coefficient µ has a much smoother behaviour since it is expected
neither to vanish nor to become infinite in the whole range φm ≤ φ ≤ φM . In fact F , µN ,
µT and µ are functions of the reduced compaction

ϕ =
φ − φm

φM − φm

(4)

which can be considered as some order parameter with ϕ = 0 for the loosest random
packing and ϕ = 1 for the tightest one. For flows over heaps as well as over rough inclines,
a satisfactory fit with experimental results could be obtained with [6]

F (ϕ) = F0 log
1

1 − ϕ
(5)

µN(ϕ) =
µN0

(1 − ϕ)2
(6)

µT (ϕ) =
µT0

(1 − ϕ)2
(7)

µ(ϕ) = µ0 . (8)

The expression for F (ϕ) is reminiscent of the configuration pressure in the lattice-gas model
and it was already adopted by Savage [9]. The other three functions are more debatable.
From numerical simulations of the plane shear flow, Da Cruz [3] suggested the linear vari-
ation µ(ϕ) = µ(0) − [µ(0) − µ(1)]ϕ with the interesting but rather non-intuitive result
µ(0) > µ(1). Because of a dispute on the velocity profile close to the free-surface of heap
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flows (linear or Bagnold-like or other) the present authors [6] have explored the potentiali-
ties of µT (ϕ) = µT0 ϕγ/(1 − ϕ)2 with an exponent γ in the range 0 ≤ γ ≤ 3. This suggests
that a more general expression for µN could be µN(ϕ) = µN0 ϕδ/(1 − ϕ)2 , with a positive
exponent δ possibly different from γ. However, not to confuse the issue, we will use the
simpler expressions (5) to (8) in what follows.

4 Compaction and Velocity Profiles

Let us consider some horizontal plane (z fixed) somewhere between the upper and bottom
surface of the granular medium. Combining equations (1) and the constitutive relations (2)
and (3) results in

ρpgDF (ϕ) + ρpD
2µN(ϕ)(r

∂ω

∂r
)2 = P

µ(ϕ)P + ρpD
2µT (ϕ)(r

∂ω

∂r
)2 = (

r1

r
)2 S .

The compaction profile is obtained after elimination of ω between the two above expressions.
Taking expressions (5) to (8) for granted, one obtains

F0 log[1 − ϕ(r)] =
µN0

µT0

[(
r1

r
)2S∗ − µ0P

∗] − P ∗ (9)

where P ∗ = P/ρpgD and S∗ = S/ρpgD are the non-dimensional pressure and shear on the
inner cylinder. Once the reduced compaction ϕ(r) is obtained from (9), it is introduced in
the equation

√

µT0D

g
r
∂ω

∂r
= −(1 − ϕ(r))

√

(
r1

r
)2S∗ − µ0P ∗ (10)

which then gives the velocity profile. It is clear from (10) that to move the granular medium
requires S∗ > µ0P

∗ and that the motion is restricted to a band r1 < r < r∗ close to the
inner cylinder with (r∗/r1)

2 = S∗/µ0P
∗. Such a result suggests that increasing the shear

will increase the thickness of the shear band. This is true if the shear satisfies the inequality
1 < S∗/µ0P

∗ < 1 + µT0/µ0µN0. When S∗ > (µ0 + µT0/µN0)P
∗ , the right-hand side of

equation (9) is positive for r = r1 which implies that the compaction at the inner cylinder
is smaller than φm while our model holds for φ > φm only. This means that for very large
shears the contact network breaks down close to the moving cylinder and that the grains
must develop another way to receive impulse from it. In case the grains are surrounded
by a gas, collisions with the moving cylinder is the only efficient way to get momentum.
A thin layer where concentration is smaller than φm will then develop around the inner
cylinder, with a comparatively high velocity and large velocity fluctuations. Outside this
thin collisional layer, the granular medium is compact (its concentration is everywhere
larger than φm) and its motion is localized in a shear band of thickness r∗max where

r∗max = r1

√

1 + µT0/µ0µN0. (11)

It is worthy to note that this maximum thickness is proportional to the radius of the moving
cylinder r1 and not to the particle size. This is not a complete surprise because in the limit
of very large r1, the Couette cell is transformed into a plane shear cell for which there is
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no shear localization [4]. The thickness of the shear layer at very large shears is thus the
sum of r∗max and the small and shear-dependent thickness of the collision layer. We are
not interested in these very high shears which are quite difficult to obtain experimentally
and will consider r∗max − r1 as the maximum width of the shear band. We now define the
compaction φ∗, or reduced compaction ϕ∗, related to the magnitude of the pressure load
P by P = ρpgDF (φ∗) or equivalently P ∗ = F0 log[1/(1 − ϕ∗)]. The compaction φ∗ (or
ϕ∗) increases with the pressure load and is the one prevailing in the motionless part of the
granular medium. Any moving part has a compaction smaller than φ∗. From (9) one easily
deduces the generic form of the compaction profile in the shear band

φ(r) = φ∗ − (φM − φ∗)[expλ(r∗2/r2
−1) − 1] (12)

where r1 ≤ r ≤ r∗ ≤ r∗max while λ is proportional to the confining pressure and defined as

λ =
µ0µN0

F0µT0
P ∗ .

The generic form of the strain rate profile is deduced from (10) and appears as

√

µN0D

F0g
r
∂ω

∂r
= −(1 − ϕ)

√

log
1 − ϕ

1 − ϕ∗

= −(1 − ϕ∗)
√

λ(r∗2/r2 − 1) expλ(r∗2/r2
−1) . (13)

Typical compaction, strain rate and velocity profiles, deduced from (12) and (13), are
represented in Figures 1 to 3 for a fixed confining pressure and variable shears. It is worthy
to note that the velocity profile is neither exponential nor Gaussian but somewhere ”in
between” as seen on Figures 4 and 5, to be compared with the experimental results reported
in Figures 6.d and 6.e of [12]. It must be understood that all the existing experiments have
being performed with relatively small shears, and we have not represented the collision
layer which would develop close to the inner cylinder for larger shears, i.e. for S > (µ0 +
µT0/µN0)P . According to result (11), in a Couette cell with r2 < r∗max and for large enough
shears, the grains are moving all over the gap between the two cylinders, giving the (wrong)
impression that the localization phenomena have disappeared. Conversely, since localization
has been observed in all Couette cells with r2 > 1.3r1 [2,3,7,11] we deduce that the ratio
µT0/µN0 is of order 0.3 - 0.7 for most granular media. The same order of magnitude was
adopted in [6] to explain the maximum angle of chute observed in experiments on heap
flows.

5 Conclusions

We have tested the potentialities of a frictional-collisional model for describing the shear
localization in a Couette cell. The results are quite encouraging. Among the predictions of
the model are i) the presence of a fully motionless medium at the boundary of the shear band
(contrasting with the exponential decrease of the velocity for flows over heaps that were
predicted with the same model equations (2) and (3) in [6]) ii) the proportionality (11) of the
maximum width of the shear band with the radius of the inner cylinder, independently of
the particle size and iii) a local relationship (13) between the shear rate and the compaction.
Future work will include an extension of the above model to ”wet” granular media.
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Fig. 1. Compaction profile φ(r) for fixed pressure and variable shear. The two dotted profiles
correspond to two small shears. The third profile is common to all shears larger than (µ0 +
µT0/µN0)P . The maximum width of the shear layer was arbitrarily chosen as r∗max = 1.3r1.
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Fig. 2. Shear rate r ∂ω
∂r under conditions stated in caption of figure 1.
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Fig. 3. Velocity profile rω under conditions stated in caption of figure 1.
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Fig. 4. Log plot of reduced velocity profile under conditions stated in caption of figure 1.
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Fig. 5. Log plot of reduced velocity profile as function of (r/r1 − 1)2 under conditions stated in
caption of figure 1.
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